1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/satgen.h"
#include "kernel/sigtools.h"
#include "kernel/modtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
bool memcells_cmp(RTLIL::Cell *a, RTLIL::Cell *b)
{
if (a->type == "$memrd" && b->type == "$memrd")
return a->name < b->name;
if (a->type == "$memrd" || b->type == "$memrd")
return (a->type == "$memrd") < (b->type == "$memrd");
return a->parameters.at("\\PRIORITY").as_int() < b->parameters.at("\\PRIORITY").as_int();
}
struct MemoryShareWorker
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap sigmap, sigmap_xmux;
ModWalker modwalker;
CellTypes cone_ct;
std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
std::map<std::set<std::map<RTLIL::SigBit, bool>>, RTLIL::SigBit> conditions_logic_cache;
// -----------------------------------------------------------------
// Converting feedbacks to async read ports to proper enable signals
// -----------------------------------------------------------------
bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions)
{
if (async_rd_bits.count(sig)) {
conditions.insert(state);
return true;
}
if (sig_to_mux.count(sig) == 0)
return false;
RTLIL::Cell *cell = sig_to_mux.at(sig).first;
int bit_idx = sig_to_mux.at(sig).second;
std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A"));
std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B"));
std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S"));
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y"));
log_assert(sig_y.at(bit_idx) == sig);
for (int i = 0; i < int(sig_s.size()); i++)
if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) {
RTLIL::SigSpec new_b = cell->getPort("\\B");
new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
cell->setPort("\\B", new_b);
}
return false;
}
for (int i = 0; i < int(sig_s.size()); i++)
{
if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
continue;
std::map<RTLIL::SigBit, bool> new_state = state;
new_state[sig_s[i]] = true;
if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) {
RTLIL::SigSpec new_b = cell->getPort("\\B");
new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
cell->setPort("\\B", new_b);
}
}
std::map<RTLIL::SigBit, bool> new_state = state;
for (int i = 0; i < int(sig_s.size()); i++)
new_state[sig_s[i]] = false;
if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) {
RTLIL::SigSpec new_a = cell->getPort("\\A");
new_a.replace(bit_idx, RTLIL::State::Sx);
cell->setPort("\\A", new_a);
}
return false;
}
RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, int &created_conditions)
{
if (conditions_logic_cache.count(conditions))
return conditions_logic_cache.at(conditions);
RTLIL::SigSpec terms;
for (auto &cond : conditions) {
RTLIL::SigSpec sig1, sig2;
for (auto &it : cond) {
sig1.append_bit(it.first);
sig2.append_bit(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
}
terms.append(module->Ne(NEW_ID, sig1, sig2));
created_conditions++;
}
if (terms.size() > 1)
terms = module->ReduceAnd(NEW_ID, terms);
return conditions_logic_cache[conditions] = terms;
}
void translate_rd_feedback_to_en(std::string memid, std::vector<RTLIL::Cell*> &rd_ports, std::vector<RTLIL::Cell*> &wr_ports)
{
std::map<RTLIL::SigSpec, std::vector<std::set<RTLIL::SigBit>>> async_rd_bits;
std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map;
std::set<RTLIL::SigBit> non_feedback_nets;
for (auto wire_it : module->wires_)
if (wire_it.second->port_output) {
std::vector<RTLIL::SigBit> bits = RTLIL::SigSpec(wire_it.second);
non_feedback_nets.insert(bits.begin(), bits.end());
}
for (auto cell_it : module->cells_)
{
RTLIL::Cell *cell = cell_it.second;
bool ignore_data_port = false;
if (cell->type == "$mux" || cell->type == "$pmux")
{
std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A"));
std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B"));
std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S"));
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y"));
non_feedback_nets.insert(sig_s.begin(), sig_s.end());
for (int i = 0; i < int(sig_y.size()); i++) {
muxtree_upstream_map[sig_y[i]].insert(sig_a[i]);
for (int j = 0; j < int(sig_s.size()); j++)
muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]);
}
continue;
}
if ((cell->type == "$memwr" || cell->type == "$memrd") &&
cell->parameters.at("\\MEMID").decode_string() == memid)
ignore_data_port = true;
for (auto conn : cell_it.second->connections())
{
if (ignore_data_port && conn.first == "\\DATA")
continue;
std::vector<RTLIL::SigBit> bits = sigmap(conn.second);
non_feedback_nets.insert(bits.begin(), bits.end());
}
}
std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets;
while (!expand_non_feedback_nets.empty())
{
std::set<RTLIL::SigBit> new_expand_non_feedback_nets;
for (auto &bit : expand_non_feedback_nets)
if (muxtree_upstream_map.count(bit))
for (auto &new_bit : muxtree_upstream_map.at(bit))
if (!non_feedback_nets.count(new_bit)) {
non_feedback_nets.insert(new_bit);
new_expand_non_feedback_nets.insert(new_bit);
}
expand_non_feedback_nets.swap(new_expand_non_feedback_nets);
}
for (auto cell : rd_ports)
{
if (cell->parameters.at("\\CLK_ENABLE").as_bool())
continue;
RTLIL::SigSpec sig_addr = sigmap(cell->getPort("\\ADDR"));
std::vector<RTLIL::SigBit> sig_data = sigmap(cell->getPort("\\DATA"));
for (int i = 0; i < int(sig_data.size()); i++)
if (non_feedback_nets.count(sig_data[i]))
goto not_pure_feedback_port;
async_rd_bits[sig_addr].resize(std::max(async_rd_bits.size(), sig_data.size()));
for (int i = 0; i < int(sig_data.size()); i++)
async_rd_bits[sig_addr][i].insert(sig_data[i]);
not_pure_feedback_port:;
}
if (async_rd_bits.empty())
return;
log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(memid));
for (auto cell : wr_ports)
{
RTLIL::SigSpec sig_addr = sigmap_xmux(cell->getPort("\\ADDR"));
if (!async_rd_bits.count(sig_addr))
continue;
log(" Analyzing write port %s.\n", log_id(cell));
std::vector<RTLIL::SigBit> cell_data = cell->getPort("\\DATA");
std::vector<RTLIL::SigBit> cell_en = cell->getPort("\\EN");
int created_conditions = 0;
for (int i = 0; i < int(cell_data.size()); i++)
if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0))
{
std::map<RTLIL::SigBit, bool> state;
std::set<std::map<RTLIL::SigBit, bool>> conditions;
if (cell_en[i].wire != NULL) {
state[cell_en[i]] = false;
conditions.insert(state);
}
find_data_feedback(async_rd_bits.at(sig_addr).at(i), cell_data[i], state, conditions);
cell_en[i] = conditions_to_logic(conditions, created_conditions);
}
if (created_conditions) {
log(" Added enable logic for %d different cases.\n", created_conditions);
cell->setPort("\\EN", cell_en);
}
}
}
// ------------------------------------------------------
// Consolidate write ports that write to the same address
// ------------------------------------------------------
RTLIL::SigSpec mask_en_naive(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits)
{
// this is the naive version of the function that does not care about grouping the EN bits.
RTLIL::SigSpec inv_mask_bits = module->Not(NEW_ID, mask_bits);
RTLIL::SigSpec inv_mask_bits_filtered = module->Mux(NEW_ID, RTLIL::SigSpec(RTLIL::State::S1, bits.size()), inv_mask_bits, do_mask);
RTLIL::SigSpec result = module->And(NEW_ID, inv_mask_bits_filtered, bits);
return result;
}
RTLIL::SigSpec mask_en_grouped(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits)
{
// this version of the function preserves the bit grouping in the EN bits.
std::vector<RTLIL::SigBit> v_bits = bits;
std::vector<RTLIL::SigBit> v_mask_bits = mask_bits;
std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, std::pair<int, std::vector<int>>> groups;
RTLIL::SigSpec grouped_bits, grouped_mask_bits;
for (int i = 0; i < bits.size(); i++) {
std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]);
if (groups.count(key) == 0) {
groups[key].first = grouped_bits.size();
grouped_bits.append_bit(v_bits[i]);
grouped_mask_bits.append_bit(v_mask_bits[i]);
}
groups[key].second.push_back(i);
}
std::vector<RTLIL::SigBit> grouped_result = mask_en_naive(do_mask, grouped_bits, grouped_mask_bits);
RTLIL::SigSpec result;
for (int i = 0; i < bits.size(); i++) {
std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]);
result.append_bit(grouped_result.at(groups.at(key).first));
}
return result;
}
void merge_en_data(RTLIL::SigSpec &merged_en, RTLIL::SigSpec &merged_data, RTLIL::SigSpec next_en, RTLIL::SigSpec next_data)
{
std::vector<RTLIL::SigBit> v_old_en = merged_en;
std::vector<RTLIL::SigBit> v_next_en = next_en;
// The new merged_en signal is just the old merged_en signal and next_en OR'ed together.
// But of course we need to preserve the bit grouping..
std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups;
std::vector<RTLIL::SigBit> grouped_old_en, grouped_next_en;
RTLIL::SigSpec new_merged_en;
for (int i = 0; i < int(v_old_en.size()); i++) {
std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]);
if (groups.count(key) == 0) {
groups[key] = grouped_old_en.size();
grouped_old_en.push_back(key.first);
grouped_next_en.push_back(key.second);
}
}
std::vector<RTLIL::SigBit> grouped_new_en = module->Or(NEW_ID, grouped_old_en, grouped_next_en);
for (int i = 0; i < int(v_old_en.size()); i++) {
std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]);
new_merged_en.append_bit(grouped_new_en.at(groups.at(key)));
}
// Create the new merged_data signal.
RTLIL::SigSpec new_merged_data(RTLIL::State::Sx, merged_data.size());
RTLIL::SigSpec old_data_set = module->And(NEW_ID, merged_en, merged_data);
RTLIL::SigSpec old_data_unset = module->And(NEW_ID, merged_en, module->Not(NEW_ID, merged_data));
RTLIL::SigSpec new_data_set = module->And(NEW_ID, next_en, next_data);
RTLIL::SigSpec new_data_unset = module->And(NEW_ID, next_en, module->Not(NEW_ID, next_data));
new_merged_data = module->Or(NEW_ID, new_merged_data, old_data_set);
new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, old_data_unset));
new_merged_data = module->Or(NEW_ID, new_merged_data, new_data_set);
new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, new_data_unset));
// Update merged_* signals
merged_en = new_merged_en;
merged_data = new_merged_data;
}
void consolidate_wr_by_addr(std::string memid, std::vector<RTLIL::Cell*> &wr_ports)
{
if (wr_ports.size() <= 1)
return;
log("Consolidating write ports of memory %s.%s by address:\n", log_id(module), log_id(memid));
std::map<RTLIL::SigSpec, int> last_port_by_addr;
std::vector<std::vector<bool>> active_bits_on_port;
bool cache_clk_enable = false;
bool cache_clk_polarity = false;
RTLIL::SigSpec cache_clk;
for (int i = 0; i < int(wr_ports.size()); i++)
{
RTLIL::Cell *cell = wr_ports.at(i);
RTLIL::SigSpec addr = sigmap_xmux(cell->getPort("\\ADDR"));
if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable ||
(cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk ||
cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity)))
{
cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool();
cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool();
cache_clk = sigmap(cell->getPort("\\CLK"));
last_port_by_addr.clear();
if (cache_clk_enable)
log(" New clock domain: %s %s\n", cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk));
else
log(" New clock domain: unclocked\n");
}
log(" Port %d (%s) has addr %s.\n", i, log_id(cell), log_signal(addr));
log(" Active bits: ");
std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN"));
active_bits_on_port.push_back(std::vector<bool>(en_bits.size()));
for (int k = int(en_bits.size())-1; k >= 0; k--) {
active_bits_on_port[i][k] = en_bits[k].wire != NULL || en_bits[k].data != RTLIL::State::S0;
log("%c", active_bits_on_port[i][k] ? '1' : '0');
}
log("\n");
if (last_port_by_addr.count(addr))
{
int last_i = last_port_by_addr.at(addr);
log(" Merging port %d into this one.\n", last_i);
bool found_overlapping_bits = false;
for (int k = 0; k < int(en_bits.size()); k++) {
if (active_bits_on_port[i][k] && active_bits_on_port[last_i][k])
found_overlapping_bits = true;
active_bits_on_port[i][k] = active_bits_on_port[i][k] || active_bits_on_port[last_i][k];
}
// Force this ports addr input to addr directly (skip don't care muxes)
cell->setPort("\\ADDR", addr);
// If any of the ports between `last_i' and `i' write to the same address, this
// will have priority over whatever `last_i` wrote. So we need to revisit those
// ports and mask the EN bits accordingly.
RTLIL::SigSpec merged_en = sigmap(wr_ports[last_i]->getPort("\\EN"));
for (int j = last_i+1; j < i; j++)
{
if (wr_ports[j] == NULL)
continue;
for (int k = 0; k < int(en_bits.size()); k++)
if (active_bits_on_port[i][k] && active_bits_on_port[j][k])
goto found_overlapping_bits_i_j;
if (0) {
found_overlapping_bits_i_j:
log(" Creating collosion-detect logic for port %d.\n", j);
RTLIL::SigSpec is_same_addr = module->addWire(NEW_ID);
module->addEq(NEW_ID, addr, wr_ports[j]->getPort("\\ADDR"), is_same_addr);
merged_en = mask_en_grouped(is_same_addr, merged_en, sigmap(wr_ports[j]->getPort("\\EN")));
}
}
// Then we need to merge the (masked) EN and the DATA signals.
RTLIL::SigSpec merged_data = wr_ports[last_i]->getPort("\\DATA");
if (found_overlapping_bits) {
log(" Creating logic for merging DATA and EN ports.\n");
merge_en_data(merged_en, merged_data, sigmap(cell->getPort("\\EN")), sigmap(cell->getPort("\\DATA")));
} else {
RTLIL::SigSpec cell_en = sigmap(cell->getPort("\\EN"));
RTLIL::SigSpec cell_data = sigmap(cell->getPort("\\DATA"));
for (int k = 0; k < int(en_bits.size()); k++)
if (!active_bits_on_port[last_i][k]) {
merged_en.replace(k, cell_en.extract(k, 1));
merged_data.replace(k, cell_data.extract(k, 1));
}
}
// Connect the new EN and DATA signals and remove the old write port.
cell->setPort("\\EN", merged_en);
cell->setPort("\\DATA", merged_data);
module->remove(wr_ports[last_i]);
wr_ports[last_i] = NULL;
log(" Active bits: ");
std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN"));
active_bits_on_port.push_back(std::vector<bool>(en_bits.size()));
for (int k = int(en_bits.size())-1; k >= 0; k--)
log("%c", active_bits_on_port[i][k] ? '1' : '0');
log("\n");
}
last_port_by_addr[addr] = i;
}
// Clean up `wr_ports': remove all NULL entries
std::vector<RTLIL::Cell*> wr_ports_with_nulls;
wr_ports_with_nulls.swap(wr_ports);
for (auto cell : wr_ports_with_nulls)
if (cell != NULL)
wr_ports.push_back(cell);
}
// --------------------------------------------------------
// Consolidate write ports using sat-based resource sharing
// --------------------------------------------------------
void consolidate_wr_using_sat(std::string memid, std::vector<RTLIL::Cell*> &wr_ports)
{
if (wr_ports.size() <= 1)
return;
ezDefaultSAT ez;
SatGen satgen(&ez, &modwalker.sigmap);
// find list of considered ports and port pairs
std::set<int> considered_ports;
std::set<int> considered_port_pairs;
for (int i = 0; i < int(wr_ports.size()); i++) {
std::vector<RTLIL::SigBit> bits = modwalker.sigmap(wr_ports[i]->getPort("\\EN"));
for (auto bit : bits)
if (bit == RTLIL::State::S1)
goto port_is_always_active;
if (modwalker.has_drivers(bits))
considered_ports.insert(i);
port_is_always_active:;
}
log("Consolidating write ports of memory %s.%s using sat-based resource sharing:\n", log_id(module), log_id(memid));
bool cache_clk_enable = false;
bool cache_clk_polarity = false;
RTLIL::SigSpec cache_clk;
for (int i = 0; i < int(wr_ports.size()); i++)
{
RTLIL::Cell *cell = wr_ports.at(i);
if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable ||
(cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk ||
cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity)))
{
cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool();
cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool();
cache_clk = sigmap(cell->getPort("\\CLK"));
}
else if (i > 0 && considered_ports.count(i-1) && considered_ports.count(i))
considered_port_pairs.insert(i);
if (cache_clk_enable)
log(" Port %d (%s) on %s %s: %s\n", i, log_id(cell),
cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk),
considered_ports.count(i) ? "considered" : "not considered");
else
log(" Port %d (%s) unclocked: %s\n", i, log_id(cell),
considered_ports.count(i) ? "considered" : "not considered");
}
if (considered_port_pairs.size() < 1) {
log(" No two subsequent ports in same clock domain considered -> nothing to consolidate.\n");
return;
}
// create SAT representation of common input cone of all considered EN signals
std::set<RTLIL::Cell*> sat_cells;
std::set<RTLIL::SigBit> bits_queue;
std::map<int, int> port_to_sat_variable;
for (int i = 0; i < int(wr_ports.size()); i++)
if (considered_port_pairs.count(i) || considered_port_pairs.count(i+1))
{
RTLIL::SigSpec sig = modwalker.sigmap(wr_ports[i]->getPort("\\EN"));
port_to_sat_variable[i] = ez.expression(ez.OpOr, satgen.importSigSpec(sig));
std::vector<RTLIL::SigBit> bits = sig;
bits_queue.insert(bits.begin(), bits.end());
}
while (!bits_queue.empty())
{
std::set<ModWalker::PortBit> portbits;
modwalker.get_drivers(portbits, bits_queue);
bits_queue.clear();
for (auto &pbit : portbits)
if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) {
std::set<RTLIL::SigBit> &cell_inputs = modwalker.cell_inputs[pbit.cell];
bits_queue.insert(cell_inputs.begin(), cell_inputs.end());
sat_cells.insert(pbit.cell);
}
}
log(" Common input cone for all EN signals: %d cells.\n", int(sat_cells.size()));
for (auto cell : sat_cells)
satgen.importCell(cell);
log(" Size of unconstrained SAT problem: %d variables, %d clauses\n", ez.numCnfVariables(), ez.numCnfClauses());
// merge subsequent ports if possible
for (int i = 0; i < int(wr_ports.size()); i++)
{
if (!considered_port_pairs.count(i))
continue;
if (ez.solve(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i))) {
log(" According to SAT solver sharing of port %d with port %d is not possible.\n", i-1, i);
continue;
}
log(" Merging port %d into port %d.\n", i-1, i);
port_to_sat_variable.at(i) = ez.OR(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i));
RTLIL::SigSpec last_addr = wr_ports[i-1]->getPort("\\ADDR");
RTLIL::SigSpec last_data = wr_ports[i-1]->getPort("\\DATA");
std::vector<RTLIL::SigBit> last_en = modwalker.sigmap(wr_ports[i-1]->getPort("\\EN"));
RTLIL::SigSpec this_addr = wr_ports[i]->getPort("\\ADDR");
RTLIL::SigSpec this_data = wr_ports[i]->getPort("\\DATA");
std::vector<RTLIL::SigBit> this_en = modwalker.sigmap(wr_ports[i]->getPort("\\EN"));
RTLIL::SigBit this_en_active = module->ReduceOr(NEW_ID, this_en);
wr_ports[i]->setPort("\\ADDR", module->Mux(NEW_ID, last_addr, this_addr, this_en_active));
wr_ports[i]->setPort("\\DATA", module->Mux(NEW_ID, last_data, this_data, this_en_active));
std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups_en;
RTLIL::SigSpec grouped_last_en, grouped_this_en, en;
RTLIL::Wire *grouped_en = module->addWire(NEW_ID, 0);
for (int j = 0; j < int(this_en.size()); j++) {
std::pair<RTLIL::SigBit, RTLIL::SigBit> key(last_en[j], this_en[j]);
if (!groups_en.count(key)) {
grouped_last_en.append_bit(last_en[j]);
grouped_this_en.append_bit(this_en[j]);
groups_en[key] = grouped_en->width;
grouped_en->width++;
}
en.append(RTLIL::SigSpec(grouped_en, groups_en[key]));
}
module->addMux(NEW_ID, grouped_last_en, grouped_this_en, this_en_active, grouped_en);
wr_ports[i]->setPort("\\EN", en);
module->remove(wr_ports[i-1]);
wr_ports[i-1] = NULL;
}
// Clean up `wr_ports': remove all NULL entries
std::vector<RTLIL::Cell*> wr_ports_with_nulls;
wr_ports_with_nulls.swap(wr_ports);
for (auto cell : wr_ports_with_nulls)
if (cell != NULL)
wr_ports.push_back(cell);
}
// -------------
// Setup and run
// -------------
MemoryShareWorker(RTLIL::Design *design, RTLIL::Module *module) :
design(design), module(module), sigmap(module)
{
std::map<std::string, std::pair<std::vector<RTLIL::Cell*>, std::vector<RTLIL::Cell*>>> memindex;
sigmap_xmux = sigmap;
for (auto &it : module->cells_)
{
RTLIL::Cell *cell = it.second;
if (cell->type == "$memrd")
memindex[cell->parameters.at("\\MEMID").decode_string()].first.push_back(cell);
if (cell->type == "$memwr")
memindex[cell->parameters.at("\\MEMID").decode_string()].second.push_back(cell);
if (cell->type == "$mux")
{
RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort("\\A"));
RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort("\\B"));
if (sig_a.is_fully_undef())
sigmap_xmux.add(cell->getPort("\\Y"), sig_b);
else if (sig_b.is_fully_undef())
sigmap_xmux.add(cell->getPort("\\Y"), sig_a);
}
if (cell->type == "$mux" || cell->type == "$pmux")
{
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y"));
for (int i = 0; i < int(sig_y.size()); i++)
sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
}
}
for (auto &it : memindex) {
std::sort(it.second.first.begin(), it.second.first.end(), memcells_cmp);
std::sort(it.second.second.begin(), it.second.second.end(), memcells_cmp);
translate_rd_feedback_to_en(it.first, it.second.first, it.second.second);
consolidate_wr_by_addr(it.first, it.second.second);
}
cone_ct.setup_internals();
cone_ct.cell_types.erase("$mul");
cone_ct.cell_types.erase("$mod");
cone_ct.cell_types.erase("$div");
cone_ct.cell_types.erase("$pow");
cone_ct.cell_types.erase("$shl");
cone_ct.cell_types.erase("$shr");
cone_ct.cell_types.erase("$sshl");
cone_ct.cell_types.erase("$sshr");
cone_ct.cell_types.erase("$shift");
cone_ct.cell_types.erase("$shiftx");
modwalker.setup(design, module, &cone_ct);
for (auto &it : memindex)
consolidate_wr_using_sat(it.first, it.second.second);
}
};
struct MemorySharePass : public Pass {
MemorySharePass() : Pass("memory_share", "consolidate memory ports") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" memory_share [selection]\n");
log("\n");
log("This pass merges share-able memory ports into single memory ports.\n");
log("\n");
log("The following methods are used to consolidate the number of memory ports:\n");
log("\n");
log(" - When write ports are connected to async read ports accessing the same\n");
log(" address, then this feedback path is converted to a write port with\n");
log(" byte/part enable signals.\n");
log("\n");
log(" - When multiple write ports access the same address then this is converted\n");
log(" to a single write port with a more complex data and/or enable logic path.\n");
log("\n");
log(" - When multiple write ports are never accessed at the same time (a SAT\n");
log(" solver is used to determine this), then the ports are merged into a single\n");
log(" write port.\n");
log("\n");
log("Note that in addition to the algorithms implemented in this pass, the $memrd\n");
log("and $memwr cells are also subject to generic resource sharing passes (and other\n");
log("optimizations) such as opt_share.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design) {
log_header("Executing MEMORY_SHARE pass (consolidating $memrc/$memwr cells).\n");
extra_args(args, 1, design);
for (auto module : design->selected_modules())
MemoryShareWorker(design, module);
}
} MemorySharePass;
PRIVATE_NAMESPACE_END
|