diff options
-rw-r--r-- | passes/pmgen/xilinx_dsp.cc | 14 | ||||
-rw-r--r-- | passes/pmgen/xilinx_dsp.pmg | 214 | ||||
-rw-r--r-- | passes/pmgen/xilinx_dsp_CREG.pmg | 81 | ||||
-rw-r--r-- | passes/pmgen/xilinx_dsp_cascade.pmg | 115 | ||||
-rw-r--r-- | techlibs/xilinx/synth_xilinx.cc | 12 |
5 files changed, 364 insertions, 72 deletions
diff --git a/passes/pmgen/xilinx_dsp.cc b/passes/pmgen/xilinx_dsp.cc index 3ff921957..054e123e4 100644 --- a/passes/pmgen/xilinx_dsp.cc +++ b/passes/pmgen/xilinx_dsp.cc @@ -609,8 +609,13 @@ struct XilinxDspPass : public Pass { extra_args(args, argidx, design); for (auto module : design->selected_modules()) { + // Experimental feature: pack $add/$sub cells with + // (* use_dsp48="simd" *) into DSP48E1's using its + // SIMD feature xilinx_simd_pack(module, module->selected_cells()); + // Match for all features ([ABDMP][12]?REG, pre-adder, + // post-adder, pattern detector, etc.) except for CREG { xilinx_dsp_pm pm(module, module->selected_cells()); pm.run_xilinx_dsp_pack(xilinx_dsp_pack); @@ -619,14 +624,17 @@ struct XilinxDspPass : public Pass { // is no guarantee that the cell ordering corresponds // to the "expected" case (i.e. the order in which // they appear in the source) thus the possiblity - // existed that a register got packed as CREG into a + // existed that a register got packed as a CREG into a // downstream DSP that should have otherwise been a - // PREG of an upstream DSP that had not been pattern - // matched yet + // PREG of an upstream DSP that had not been visited + // yet { xilinx_dsp_CREG_pm pm(module, module->selected_cells()); pm.run_xilinx_dsp_packC(xilinx_dsp_packC); } + // Lastly, identify and utilise PCOUT -> PCIN, + // ACOUT -> ACIN, and BCOUT-> BCIN dedicated cascade + // chains { xilinx_dsp_cascade_pm pm(module, module->selected_cells()); pm.run_xilinx_dsp_cascade(); diff --git a/passes/pmgen/xilinx_dsp.pmg b/passes/pmgen/xilinx_dsp.pmg index 4e174e753..604aa222b 100644 --- a/passes/pmgen/xilinx_dsp.pmg +++ b/passes/pmgen/xilinx_dsp.pmg @@ -1,3 +1,57 @@ +// This file describes the main pattern matcher setup (of three total) that +// forms the `xilinx_dsp` pass described in xilinx_dsp.cc +// At a high level, it works as follows: +// ( 1) Starting from a DSP48E1 cell +// ( 2) Match the driver of the 'A' input to a possible $dff cell (ADREG) +// (attached to at most two $mux cells that implement clock-enable or +// reset functionality, using a subpattern discussed below) +// If ADREG matched, treat 'A' input as input of ADREG +// ( 3) Match the driver of the 'A' and 'D' inputs for a possible $add cell +// (pre-adder) +// ( 4) If pre-adder was present, find match 'A' input for A2REG +// If pre-adder was not present, move ADREG to A2REG +// If A2REG, then match 'A' input for A1REG +// ( 5) Match 'B' input for B2REG +// If B2REG, then match 'B' input for B1REG +// ( 6) Match 'D' input for DREG +// ( 7) Match 'P' output that exclusively drives an MREG +// ( 8) Match 'P' output that exclusively drives one of two inputs to an $add +// cell (post-adder). +// The other input to the adder is assumed to come in from the 'C' input +// (note: 'P' -> 'C' connections that exist for accumulators are +// recognised in xilinx_dsp.cc). +// ( 9) Match 'P' output that exclusively drives a PREG +// (10) If post-adder and PREG both present, match for a $mux cell driving +// the 'C' input, where one of the $mux's inputs is the PREG output. +// This indicates an accumulator situation, and one where a $mux exists +// to override the accumulated value: +// +--------------------------------+ +// | ____ | +// +--| \ | +// |$mux|-+ | +// 'C' ---|____/ | | +// | /-------\ +----+ | +// +----+ +-| post- |___|PREG|---+ 'P' +// |MREG|------ | adder | +----+ +// +----+ \-------/ +// (11) If PREG present, match for a greater-than-or-equal $ge cell attached +// to the 'P' output where it is compared to a constant that is a +// power-of-2: e.g. `assign overflow = (PREG >= 2**40);` +// In this scenario, the pattern detector functionality of a DSP48E1 can +// to implement this function +// Notes: +// - The intention of this pattern matcher is for it to be compatible with +// DSP48E1 cells inferred from multiply operations by Yosys, as well as for +// user instantiations that may already contain the cells being packed... +// (though the latter is currently untested) +// - Since the $dff-with-optional-clock-enable-or-reset-mux pattern is used +// for each *REG match, it has been factored out into two subpatterns: +// in_dffe and out_dffe located at the bottom of this file. +// - Matching for pattern detector features is currently incomplete. For +// example, matching for underflow as well as overflow detection is +// possible, as would auto-reset, enabling saturated arithmetic, detecting +// custom patterns, etc. + pattern xilinx_dsp_pack state <SigBit> clock @@ -5,12 +59,11 @@ state <SigSpec> sigA sigB sigC sigD sigM sigP state <IdString> postAddAB postAddMuxAB state <bool> ffA1cepol ffA2cepol ffADcepol ffB1cepol ffB2cepol ffDcepol ffMcepol ffPcepol state <bool> ffArstpol ffADrstpol ffBrstpol ffDrstpol ffMrstpol ffPrstpol - state <Cell*> ffAD ffADcemux ffADrstmux ffA1 ffA1cemux ffA1rstmux ffA2 ffA2cemux ffA2rstmux state <Cell*> ffB1 ffB1cemux ffB1rstmux ffB2 ffB2cemux ffB2rstmux state <Cell*> ffD ffDcemux ffDrstmux ffM ffMcemux ffMrstmux ffP ffPcemux ffPrstmux -// subpattern +// Variables used for subpatterns state <SigSpec> argQ argD state <bool> ffcepol ffrstpol state <int> ffoffset @@ -19,6 +72,7 @@ udata <SigBit> dffclock udata <Cell*> dff dffcemux dffrstmux udata <bool> dffcepol dffrstpol +// (1) Starting from a DSP48E1 cell match dsp select dsp->type.in(\DSP48E1) endmatch @@ -50,17 +104,21 @@ code sigA sigB sigC sigD sigM clock sigM.append(P[i]); } log_assert(nusers(P.extract_end(i)) <= 1); + // This sigM could have no users if downstream sinks (e.g. $add) is + // narrower than $mul result, for example + if (sigM.empty()) + reject; } else sigM = P; - // This sigM could have no users if downstream $add - // is narrower than $mul result, for example - if (sigM.empty()) - reject; clock = port(dsp, \CLK, SigBit()); endcode +// (2) Match the driver of the 'A' input to a possible $dff cell (ADREG) +// (attached to at most two $mux cells that implement clock-enable or +// reset functionality, using a subpattern discussed above) +// If matched, treat 'A' input as input of ADREG code argQ ffAD ffADcemux ffADrstmux ffADcepol ffADrstpol sigA clock if (param(dsp, \ADREG).as_int() == 0) { argQ = sigA; @@ -81,6 +139,8 @@ code argQ ffAD ffADcemux ffADrstmux ffADcepol ffADrstpol sigA clock } endcode +// (3) Match the driver of the 'A' and 'D' inputs for a possible $add cell +// (pre-adder) match preAdd if sigD.empty() || sigD.is_fully_zero() // Ensure that preAdder not already used @@ -106,11 +166,12 @@ code sigA sigD if (preAdd) { sigA = port(preAdd, \A); sigD = port(preAdd, \B); - if (GetSize(sigA) < GetSize(sigD)) - std::swap(sigA, sigD); } endcode +// (4) If pre-adder was present, find match 'A' input for A2REG +// If pre-adder was not present, move ADREG to A2REG +// Then match 'A' input for A1REG code argQ ffAD ffADcemux ffADrstmux ffADcepol ffADrstpol sigA clock ffA2 ffA2cemux ffA2rstmux ffA2cepol ffArstpol ffA1 ffA1cemux ffA1rstmux ffA1cepol // Only search for ffA2 if there was a pre-adder // (otherwise ffA2 would have been matched as ffAD) @@ -173,6 +234,8 @@ ffA1_end: ; } endcode +// (5) Match 'B' input for B2REG +// If B2REG, then match 'B' input for B1REG code argQ ffB2 ffB2cemux ffB2rstmux ffB2cepol ffBrstpol sigB clock ffB1 ffB1cemux ffB1rstmux ffB1cepol if (param(dsp, \BREG).as_int() == 0) { argQ = sigB; @@ -222,6 +285,7 @@ ffB1_end: ; } endcode +// (6) Match 'D' input for DREG code argQ ffD ffDcemux ffDrstmux ffDcepol ffDrstpol sigD clock if (param(dsp, \DREG).as_int() == 0) { argQ = sigD; @@ -242,6 +306,7 @@ code argQ ffD ffDcemux ffDrstmux ffDcepol ffDrstpol sigD clock } endcode +// (7) Match 'P' output that exclusively drives an MREG code argD ffM ffMcemux ffMrstmux ffMcepol ffMrstpol sigM sigP clock if (param(dsp, \MREG).as_int() == 0 && nusers(sigM) == 2) { argD = sigM; @@ -263,6 +328,11 @@ code argD ffM ffMcemux ffMrstmux ffMcepol ffMrstpol sigM sigP clock sigP = sigM; endcode +// (8) Match 'P' output that exclusively drives one of two inputs to an $add +// cell (post-adder). +// The other input to the adder is assumed to come in from the 'C' input +// (note: 'P' -> 'C' connections that exist for accumulators are +// recognised in xilinx_dsp.cc). match postAdd // Ensure that Z mux is not already used if port(dsp, \OPMODE, SigSpec()).extract(4,3).is_fully_zero() @@ -291,6 +361,7 @@ code sigC sigP } endcode +// (9) Match 'P' output that exclusively drives a PREG code argD ffP ffPcemux ffPrstmux ffPcepol ffPrstpol sigP clock if (param(dsp, \PREG).as_int() == 0) { int users = 2; @@ -316,6 +387,19 @@ code argD ffP ffPcemux ffPrstmux ffPcepol ffPrstpol sigP clock } endcode +// (10) If post-adder and PREG both present, match for a $mux cell driving +// the 'C' input, where one of the $mux's inputs is the PREG output. +// This indicates an accumulator situation, and one where a $mux exists +// to override the accumulated value: +// +--------------------------------+ +// | ____ | +// +--| \ | +// |$mux|-+ | +// 'C' ---|____/ | | +// | /-------\ +----+ | +// +----+ +-| post- |___|PREG|---+ 'P' +// |MREG|------ | adder | +----+ +// +----+ \-------/ match postAddMux if postAdd if ffP @@ -333,6 +417,11 @@ code sigC sigC = port(postAddMux, postAddMuxAB == \A ? \B : \A); endcode +// (11) If PREG present, match for a greater-than-or-equal $ge cell attached to +// the 'P' output where it is compared to a constant that is a power-of-2: +// e.g. `assign overflow = (PREG >= 2**40);` +// In this scenario, the pattern detector functionality of a DSP48E1 can +// to implement this function match overflow if ffP if param(dsp, \USE_PATTERN_DETECT, Const("NO_PATDET")).decode_string() == "NO_PATDET" @@ -351,22 +440,45 @@ endcode // ####################### +// Subpattern for matching against input registers, based on knowledge of the +// 'Q' input. Typically, identifying registers with clock-enable and reset +// capability would be a task would be handled by other Yosys passes such as +// dff2dffe, but since DSP inference happens much before this, these patterns +// have to be manually identified. +// At a high level: +// (1) Starting from a $dff cell that (partially or fully) drives the given +// 'Q' argument +// (2) Match for a $mux cell implementing synchronous reset semantics --- +// one that exclusively drives the 'D' input of the $dff, with one of its +// $mux inputs being fully zero +// (3) Match for a $mux cell implement clock enable semantics --- one that +// exclusively drives the 'D' input of the $dff (or the other input of +// the reset $mux) and where one of this $mux's inputs is connected to +// the 'Q' output of the $dff subpattern in_dffe arg argD argQ clock code dff = nullptr; - for (auto c : argQ.chunks()) { + for (const auto &c : argQ.chunks()) { + // Abandon matches when 'Q' is a constant if (!c.wire) reject; + // Abandon matches when 'Q' has the keep attribute set if (c.wire->get_bool_attribute(\keep)) reject; - Const init = c.wire->attributes.at(\init, State::Sx); - if (!init.is_fully_undef() && !init.is_fully_zero()) - reject; + // Abandon matches when 'Q' has a non-zero init attribute set + // (not supported by DSP48E1) + Const init = c.wire->attributes.at(\init, Const()); + if (!init.empty()) + for (auto b : init.extract(c.offset, c.width)) + if (b != State::Sx && b != State::S0) + reject; } endcode +// (1) Starting from a $dff cell that (partially or fully) drives the given +// 'Q' argument match ff select ff->type.in($dff) // DSP48E1 does not support clock inversion @@ -379,14 +491,12 @@ match ff filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ) filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ + filter clock == SigBit() || port(ff, \CLK) == clock + set ffoffset offset endmatch code argQ argD -{ - if (clock != SigBit() && port(ff, \CLK) != clock) - reject; - SigSpec Q = port(ff, \Q); dff = ff; dffclock = port(ff, \CLK); @@ -398,9 +508,11 @@ code argQ argD // has two (ff, ffrstmux) users if (nusers(dffD) > 2) argD = SigSpec(); -} endcode +// (2) Match for a $mux cell implementing synchronous reset semantics --- +// exclusively drives the 'D' input of the $dff, with one of the $mux +// inputs being fully zero match ffrstmux if !argD.empty() select ffrstmux->type.in($mux) @@ -432,6 +544,10 @@ code argD dffrstmux = nullptr; endcode +// (3) Match for a $mux cell implement clock enable semantics --- one that +// exclusively drives the 'D' input of the $dff (or the other input of +// the reset $mux) and where one of this $mux's inputs is connected to +// the 'Q' output of the $dff match ffcemux if !argD.empty() select ffcemux->type.in($mux) @@ -456,16 +572,32 @@ endcode // ####################### +// Subpattern for matching against output registers, based on knowledge of the +// 'D' input. +// At a high level: +// (1) Starting from an optional $mux cell that implements clock enable +// semantics --- one where the given 'D' argument (partially or fully) +// drives one of its two inputs +// (2) Starting from, or continuing onto, another optional $mux cell that +// implements synchronous reset semantics --- one where the given 'D' +// argument (or the clock enable $mux output) drives one of its two inputs +// and where the other input is fully zero +// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the +// output of the previous clock enable or reset $mux cells) subpattern out_dffe arg argD argQ clock code dff = nullptr; for (auto c : argD.chunks()) + // Abandon matches when 'D' has the keep attribute set if (c.wire->get_bool_attribute(\keep)) reject; endcode +// (1) Starting from an optional $mux cell that implements clock enable +// semantics --- one where the given 'D' argument (partially or fully) +// drives one of its two inputs match ffcemux select ffcemux->type.in($mux) // ffcemux output must have two users: ffcemux and ff.D @@ -504,6 +636,10 @@ code argD argQ } endcode +// (2) Starting from, or continuing onto, another optional $mux cell that +// implements synchronous reset semantics --- one where the given 'D' +// argument (or the clock enable $mux output) drives one of its two inputs +// and where the other input is fully zero match ffrstmux select ffrstmux->type.in($mux) // ffrstmux output must have two users: ffrstmux and ff.D @@ -542,6 +678,8 @@ code argD argQ } endcode +// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the +// output of the previous clock enable or reset $mux cells) match ff select ff->type.in($dff) // DSP48E1 does not support clock inversion @@ -558,32 +696,30 @@ match ff // Check that FF.Q is connected to CE-mux filter !ffcemux || port(ff, \Q).extract(offset, GetSize(argQ)) == argQ + filter clock == SigBit() || port(ff, \CLK) == clock + set ffoffset offset endmatch code argQ - if (ff) { - if (clock != SigBit() && port(ff, \CLK) != clock) - reject; - - SigSpec D = port(ff, \D); - SigSpec Q = port(ff, \Q); - if (!ffcemux) { - argQ = argD; - argQ.replace(D, Q); - } - - for (auto c : argQ.chunks()) { - Const init = c.wire->attributes.at(\init, State::Sx); - if (!init.is_fully_undef() && !init.is_fully_zero()) - reject; - } + SigSpec D = port(ff, \D); + SigSpec Q = port(ff, \Q); + if (!ffcemux) { + argQ = argD; + argQ.replace(D, Q); + } - dff = ff; - dffQ = argQ; - dffclock = port(ff, \CLK); + // Abandon matches when 'Q' has a non-zero init attribute set + // (not supported by DSP48E1) + for (auto c : argQ.chunks()) { + Const init = c.wire->attributes.at(\init, Const()); + if (!init.empty()) + for (auto b : init.extract(c.offset, c.width)) + if (b != State::Sx && b != State::S0) + reject; } - // No enable/reset mux possible without flop - else if (dffcemux || dffrstmux) - reject; + + dff = ff; + dffQ = argQ; + dffclock = port(ff, \CLK); endcode diff --git a/passes/pmgen/xilinx_dsp_CREG.pmg b/passes/pmgen/xilinx_dsp_CREG.pmg index a31dc80bf..a57043009 100644 --- a/passes/pmgen/xilinx_dsp_CREG.pmg +++ b/passes/pmgen/xilinx_dsp_CREG.pmg @@ -1,3 +1,26 @@ +// This file describes the second of three pattern matcher setups that +// forms the `xilinx_dsp` pass described in xilinx_dsp.cc +// At a high level, it works as follows: +// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already, +// and (b) uses the 'C' port +// (2) Match the driver of the 'C' input to a possible $dff cell (CREG) +// (attached to at most two $mux cells that implement clock-enable or +// reset functionality, using a subpattern discussed below) +// Notes: +// - Running CREG packing after xilinx_dsp_pack is necessary since there is no +// guarantee that the cell ordering corresponds to the "expected" case (i.e. +// the order in which they appear in the source) thus the possiblity existed +// that a register got packed as a CREG into a downstream DSP that should +// have otherwise been a PREG of an upstream DSP that had not been visited +// yet +// - The reason this is separated out from the xilinx_dsp.pmg file is +// for efficiency --- each *.pmg file creates a class of the same basename, +// which when constructed, creates a custom database tailored to the +// pattern(s) contained within. Since the pattern in this file must be +// executed after the pattern contained in xilinx_dsp.pmg, it is necessary +// to reconstruct this database. Separating the two patterns into +// independent files causes two smaller, more specific, databases. + pattern xilinx_dsp_packC udata <std::function<SigSpec(const SigSpec&)>> unextend @@ -6,7 +29,7 @@ state <SigSpec> sigC sigP state <bool> ffCcepol ffCrstpol state <Cell*> ffC ffCcemux ffCrstmux -// subpattern +// Variables used for subpatterns state <SigSpec> argQ argD state <bool> ffcepol ffrstpol state <int> ffoffset @@ -15,13 +38,15 @@ udata <SigBit> dffclock udata <Cell*> dff dffcemux dffrstmux udata <bool> dffcepol dffrstpol +// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already, +// and (b) uses the 'C' port match dsp select dsp->type.in(\DSP48E1) select param(dsp, \CREG, 1).as_int() == 0 select nusers(port(dsp, \C, SigSpec())) > 1 endmatch -code argQ ffC ffCcemux ffCrstmux ffCcepol ffCrstpol sigC sigP clock +code sigC sigP clock unextend = [](const SigSpec &sig) { int i; for (i = GetSize(sig)-1; i > 0; i--) @@ -48,11 +73,13 @@ code argQ ffC ffCcemux ffCrstmux ffCcepol ffCrstpol sigC sigP clock else sigP = P; - if (sigC == sigP) - reject; - clock = port(dsp, \CLK, SigBit()); +endcode +// (2) Match the driver of the 'C' input to a possible $dff cell (CREG) +// (attached to at most two $mux cells that implement clock-enable or +// reset functionality, using the in_dffe subpattern) +code argQ ffC ffCcemux ffCrstmux ffCcepol ffCrstpol sigC clock argQ = sigC; subpattern(in_dffe); if (dff) { @@ -77,22 +104,44 @@ endcode // ####################### +// Subpattern for matching against input registers, based on knowledge of the +// 'Q' input. Typically, identifying registers with clock-enable and reset +// capability would be a task would be handled by other Yosys passes such as +// dff2dffe, but since DSP inference happens much before this, these patterns +// have to be manually identified. +// At a high level: +// (1) Starting from a $dff cell that (partially or fully) drives the given +// 'Q' argument +// (2) Match for a $mux cell implementing synchronous reset semantics --- +// one that exclusively drives the 'D' input of the $dff, with one of its +// $mux inputs being fully zero +// (3) Match for a $mux cell implement clock enable semantics --- one that +// exclusively drives the 'D' input of the $dff (or the other input of +// the reset $mux) and where one of this $mux's inputs is connected to +// the 'Q' output of the $dff subpattern in_dffe arg argD argQ clock code dff = nullptr; - for (auto c : argQ.chunks()) { + for (const auto &c : argQ.chunks()) { + // Abandon matches when 'Q' is a constant if (!c.wire) reject; + // Abandon matches when 'Q' has the keep attribute set if (c.wire->get_bool_attribute(\keep)) reject; - Const init = c.wire->attributes.at(\init, State::Sx); - if (!init.is_fully_undef() && !init.is_fully_zero()) - reject; + // Abandon matches when 'Q' has a non-zero init attribute set + // (not supported by DSP48E1) + Const init = c.wire->attributes.at(\init, Const()); + for (auto b : init.extract(c.offset, c.width)) + if (b != State::Sx && b != State::S0) + reject; } endcode +// (1) Starting from a $dff cell that (partially or fully) drives the given +// 'Q' argument match ff select ff->type.in($dff) // DSP48E1 does not support clock inversion @@ -105,14 +154,12 @@ match ff filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ) filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ + filter clock == SigBit() || port(ff, \CLK) == clock + set ffoffset offset endmatch code argQ argD -{ - if (clock != SigBit() && port(ff, \CLK) != clock) - reject; - SigSpec Q = port(ff, \Q); dff = ff; dffclock = port(ff, \CLK); @@ -124,9 +171,11 @@ code argQ argD // has two (ff, ffrstmux) users if (nusers(dffD) > 2) argD = SigSpec(); -} endcode +// (2) Match for a $mux cell implementing synchronous reset semantics --- +// exclusively drives the 'D' input of the $dff, with one of the $mux +// inputs being fully zero match ffrstmux if !argD.empty() select ffrstmux->type.in($mux) @@ -158,6 +207,10 @@ code argD dffrstmux = nullptr; endcode +// (3) Match for a $mux cell implement clock enable semantics --- one that +// exclusively drives the 'D' input of the $dff (or the other input of +// the reset $mux) and where one of this $mux's inputs is connected to +// the 'Q' output of the $dff match ffcemux if !argD.empty() select ffcemux->type.in($mux) diff --git a/passes/pmgen/xilinx_dsp_cascade.pmg b/passes/pmgen/xilinx_dsp_cascade.pmg index 6f4ac5849..7a32df2b7 100644 --- a/passes/pmgen/xilinx_dsp_cascade.pmg +++ b/passes/pmgen/xilinx_dsp_cascade.pmg @@ -1,3 +1,46 @@ +// This file describes the third of three pattern matcher setups that +// forms the `xilinx_dsp` pass described in xilinx_dsp.cc +// At a high level, it works as follows: +// (1) Starting from a DSP48E1 cell that (a) has the Z multiplexer +// (controlled by OPMODE[6:4]) set to zero and (b) doesn't already +// use the 'PCOUT' port +// (2.1) Match another DSP48E1 cell that (a) does not have the CREG enabled, +// (b) has its Z multiplexer output set to the 'C' port, which is +// driven by the 'P' output of the previous DSP cell, and (c) has its +// 'PCIN' port unused +// (2.2) Same as (2.1) but with the 'C' port driven by the 'P' output of the +// previous DSP cell right-shifted by 17 bits +// (3) For this subequent DSP48E1 match (i.e. PCOUT -> PCIN cascade exists) +// if (a) the previous DSP48E1 uses either the A2REG or A1REG, (b) this +// DSP48 does not use A2REG nor A1REG, (c) this DSP48E1 does not already +// have an ACOUT -> ACIN cascade, (d) the previous DSP does not already +// use its ACOUT port, then examine if an ACOUT -> ACIN cascade +// opportunity exists by matching for a $dff-with-optional-clock-enable- +// or-reset and checking that the 'D' input of this register is the same +// as the 'A' input of the previous DSP +// (4) Same as (3) but for BCOUT -> BCIN cascade +// (5) Recursively go to (2.1) until no more matches possible, keeping track +// of the longest possible chain found +// (6) The longest chain is then divided into chunks of no more than +// MAX_DSP_CASCADE in length (to prevent long cascades that exceed the +// height of a DSP column) with each DSP in each chunk being rewritten +// to use [ABP]COUT -> [ABP]CIN cascading as appropriate +// Notes: +// - Currently, [AB]COUT -> [AB]COUT cascades (3 or 4) are only considered +// if a PCOUT -> PCIN cascade is (2.1 or 2.2) first identified; this need +// not be the case --- [AB] cascades can exist independently of a P cascade +// (though all three cascades must come from the same DSP). This situation +// is not handled currently. +// - In addition, [AB]COUT -> [AB]COUT cascades (3 or 4) are currently +// conservative in that they examine the situation where (a) the previous +// DSP has [AB]2REG or [AB]1REG enabled, (b) that the downstream DSP has no +// registers enabled, and (c) that there exists only one additional register +// between the upstream and downstream DSPs. This can certainly be relaxed +// to identify situations ranging from (i) neither DSP uses any registers, +// to (ii) upstream DSP has 2 registers, downstream DSP has 2 registers, and +// there exists a further 2 registers between them. This remains a TODO +// item. + pattern xilinx_dsp_cascade udata <std::function<SigSpec(const SigSpec&)>> unextend @@ -6,7 +49,7 @@ state <Cell*> next state <SigSpec> clock state <int> AREG BREG -// subpattern +// Variables used for subpatterns state <SigSpec> argQ argD state <bool> ffcepol ffrstpol state <int> ffoffset @@ -19,12 +62,19 @@ code #define MAX_DSP_CASCADE 20 endcode +// (1) Starting from a DSP48E1 cell that (a) has the Z multiplexer +// (controlled by OPMODE[6:4]) set to zero and (b) doesn't already +// use the 'PCOUT' port match first select first->type.in(\DSP48E1) select port(first, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("000") select nusers(port(first, \PCOUT, SigSpec())) <= 1 endmatch +// (6) The longest chain is then divided into chunks of no more than +// MAX_DSP_CASCADE in length (to prevent long cascades that exceed the +// height of a DSP column) with each DSP in each chunk being rewritten +// to use [ABP]COUT -> [ABP]CIN cascading as appropriate code longest_chain.clear(); chain.emplace_back(first, -1, -1, -1); @@ -106,6 +156,10 @@ subpattern tail arg first arg next +// (2.1) Match another DSP48E1 cell that (a) does not have the CREG enabled, +// (b) has its Z multiplexer output set to the 'C' port, which is +// driven by the 'P' output of the previous DSP cell, and (c) has its +// 'PCIN' port unused match nextP select nextP->type.in(\DSP48E1) select !param(nextP, \CREG, State::S1).as_bool() @@ -116,6 +170,8 @@ match nextP semioptional endmatch +// (2.2) Same as (2.1) but with the 'C' port driven by the 'P' output of the +// previous DSP cell right-shifted by 17 bits match nextP_shift17 if !nextP select nextP_shift17->type.in(\DSP48E1) @@ -145,6 +201,14 @@ code next } endcode +// (3) For this subequent DSP48E1 match (i.e. PCOUT -> PCIN cascade exists) +// if (a) the previous DSP48E1 uses either the A2REG or A1REG, (b) this +// DSP48 does not use A2REG nor A1REG, (c) this DSP48E1 does not already +// have an ACOUT -> ACIN cascade, (d) the previous DSP does not already +// use its ACOUT port, then examine if an ACOUT -> ACIN cascade +// opportunity exists by matching for a $dff-with-optional-clock-enable- +// or-reset and checking that the 'D' input of this register is the same +// as the 'A' input of the previous DSP code argQ clock AREG AREG = -1; if (next) { @@ -152,7 +216,6 @@ code argQ clock AREG if (param(prev, \AREG, 2).as_int() > 0 && param(next, \AREG, 2).as_int() > 0 && param(next, \A_INPUT, Const("DIRECT")).decode_string() == "DIRECT" && - port(next, \ACIN, SigSpec()).is_fully_zero() && nusers(port(prev, \ACOUT, SigSpec())) <= 1) { argQ = unextend(port(next, \A)); clock = port(prev, \CLK); @@ -174,6 +237,7 @@ reject_AREG: ; } endcode +// (4) Same as (3) but for BCOUT -> BCIN cascade code argQ clock BREG BREG = -1; if (next) { @@ -203,13 +267,14 @@ reject_BREG: ; } endcode +// (5) Recursively go to (2.1) until no more matches possible, recording the +// longest possible chain code if (next) { chain.emplace_back(next, nextP_shift17 ? 17 : nextP ? 0 : -1, AREG, BREG); SigSpec sigC = unextend(port(next, \C)); - // TODO: Cannot use 'reject' since semioptional if (nextP_shift17) { if (GetSize(sigC)+17 <= GetSize(port(std::get<0>(chain.back()), \P)) && port(std::get<0>(chain.back()), \P).extract(17, GetSize(sigC)) != sigC) @@ -232,22 +297,44 @@ endcode // ####################### +// Subpattern for matching against input registers, based on knowledge of the +// 'Q' input. Typically, identifying registers with clock-enable and reset +// capability would be a task would be handled by other Yosys passes such as +// dff2dffe, but since DSP inference happens much before this, these patterns +// have to be manually identified. +// At a high level: +// (1) Starting from a $dff cell that (partially or fully) drives the given +// 'Q' argument +// (2) Match for a $mux cell implementing synchronous reset semantics --- +// one that exclusively drives the 'D' input of the $dff, with one of its +// $mux inputs being fully zero +// (3) Match for a $mux cell implement clock enable semantics --- one that +// exclusively drives the 'D' input of the $dff (or the other input of +// the reset $mux) and where one of this $mux's inputs is connected to +// the 'Q' output of the $dff subpattern in_dffe arg argD argQ clock code dff = nullptr; - for (auto c : argQ.chunks()) { + for (const auto &c : argQ.chunks()) { + // Abandon matches when 'Q' is a constant if (!c.wire) reject; + // Abandon matches when 'Q' has the keep attribute set if (c.wire->get_bool_attribute(\keep)) reject; - Const init = c.wire->attributes.at(\init, State::Sx); - if (!init.is_fully_undef() && !init.is_fully_zero()) - reject; + // Abandon matches when 'Q' has a non-zero init attribute set + // (not supported by DSP48E1) + Const init = c.wire->attributes.at(\init, Const()); + for (auto b : init.extract(c.offset, c.width)) + if (b != State::Sx && b != State::S0) + reject; } endcode +// (1) Starting from a $dff cell that (partially or fully) drives the given +// 'Q' argument match ff select ff->type.in($dff) // DSP48E1 does not support clock inversion @@ -260,14 +347,12 @@ match ff filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ) filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ + filter clock == SigBit() || port(ff, \CLK) == clock + set ffoffset offset endmatch code argQ argD -{ - if (clock != SigBit() && port(ff, \CLK) != clock) - reject; - SigSpec Q = port(ff, \Q); dff = ff; dffclock = port(ff, \CLK); @@ -279,9 +364,11 @@ code argQ argD // has two (ff, ffrstmux) users if (nusers(dffD) > 2) argD = SigSpec(); -} endcode +// (2) Match for a $mux cell implementing synchronous reset semantics --- +// exclusively drives the 'D' input of the $dff, with one of the $mux +// inputs being fully zero match ffrstmux if !argD.empty() select ffrstmux->type.in($mux) @@ -313,6 +400,10 @@ code argD dffrstmux = nullptr; endcode +// (3) Match for a $mux cell implement clock enable semantics --- one that +// exclusively drives the 'D' input of the $dff (or the other input of +// the reset $mux) and where one of this $mux's inputs is connected to +// the 'Q' output of the $dff match ffcemux if !argD.empty() select ffcemux->type.in($mux) diff --git a/techlibs/xilinx/synth_xilinx.cc b/techlibs/xilinx/synth_xilinx.cc index 41429b338..4fe287744 100644 --- a/techlibs/xilinx/synth_xilinx.cc +++ b/techlibs/xilinx/synth_xilinx.cc @@ -342,10 +342,14 @@ struct SynthXilinxPass : public ScriptPass if (check_label("map_dsp", "(skip if '-nodsp')")) { if (!nodsp || help_mode) { // NB: Xilinx multipliers are signed only - run("techmap -map +/mul2dsp.v -map +/xilinx/dsp_map.v -D DSP_A_MAXWIDTH=25 -D DSP_A_MAXWIDTH_PARTIAL=18 -D DSP_B_MAXWIDTH=18 " - "-D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 " // Blocks Nx1 multipliers - "-D DSP_Y_MINWIDTH=9 " // UG901 suggests small multiplies are those 4x4 and smaller - "-D DSP_SIGNEDONLY=1 -D DSP_NAME=$__MUL25X18"); + run("techmap -map +/mul2dsp.v -map +/xilinx/dsp_map.v -D DSP_A_MAXWIDTH=25 " + "-D DSP_A_MAXWIDTH_PARTIAL=18 -D DSP_B_MAXWIDTH=18 " // Partial multipliers are intentionally + // limited to 18x18 in order to take + // advantage of the (PCOUT << 17) -> PCIN + // dedicated cascade chain capability + "-D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 " // Blocks Nx1 multipliers + "-D DSP_Y_MINWIDTH=9 " // UG901 suggests small multiplies are those 4x4 and smaller + "-D DSP_SIGNEDONLY=1 -D DSP_NAME=$__MUL25X18"); run("select a:mul2dsp"); run("setattr -unset mul2dsp"); run("opt_expr -fine"); |