aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs
diff options
context:
space:
mode:
authorEddie Hung <eddie@fpgeh.com>2019-09-28 23:48:17 -0700
committerEddie Hung <eddie@fpgeh.com>2019-09-28 23:48:17 -0700
commit79b6edb6397c530a7304eb4334f95324a4208aba (patch)
tree3a3c3fd9511c2dbe31e0fcbf71771596eeb6a2c3 /techlibs
parentcfa6dd61ef79fb16abd83164b1e013c0a5a2a63a (diff)
downloadyosys-79b6edb6397c530a7304eb4334f95324a4208aba.tar.gz
yosys-79b6edb6397c530a7304eb4334f95324a4208aba.tar.bz2
yosys-79b6edb6397c530a7304eb4334f95324a4208aba.zip
Big rework; flop info now mostly in cells_sim.v
Diffstat (limited to 'techlibs')
-rw-r--r--techlibs/xilinx/abc_map.v77
-rw-r--r--techlibs/xilinx/abc_model.v90
-rw-r--r--techlibs/xilinx/abc_unmap.v122
-rw-r--r--techlibs/xilinx/abc_xc7.box22
-rw-r--r--techlibs/xilinx/cells_sim.v294
-rw-r--r--techlibs/xilinx/synth_xilinx.cc4
6 files changed, 314 insertions, 295 deletions
diff --git a/techlibs/xilinx/abc_map.v b/techlibs/xilinx/abc_map.v
index 9f96d16be..056f66bbb 100644
--- a/techlibs/xilinx/abc_map.v
+++ b/techlibs/xilinx/abc_map.v
@@ -26,27 +26,23 @@ module FDRE (output reg Q, input C, CE, D, R);
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
wire \$nextQ ;
- \$__ABC_FDRE #(
+ FDRE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
- .IS_R_INVERTED(IS_R_INVERTED),
- .CLK_POLARITY(!IS_C_INVERTED),
- .EN_POLARITY(1'b1)
+ .IS_R_INVERTED(IS_R_INVERTED)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
+ .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
wire \$nextQ ;
- \$__ABC_FDRE_1 #(
- .INIT(|0),
- .CLK_POLARITY(1'b0),
- .EN_POLARITY(1'b1)
+ FDRE_1 #(
+ .INIT(|0),
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
+ .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
endmodule
@@ -57,28 +53,24 @@ module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
wire \$nextQ , \$currQ ;
- \$__ABC_FDCE #(
+ FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
- .IS_CLR_INVERTED(IS_CLR_INVERTED),
- .CLK_POLARITY(!IS_C_INVERTED),
- .EN_POLARITY(1'b1)
+ .IS_CLR_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
+ .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
- \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
+ \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
wire \$nextQ , \$currQ ;
- \$__ABC_FDCE_1 #(
- .INIT(INIT),
- .CLK_POLARITY(1'b0),
- .EN_POLARITY(1'b1)
+ FDCE_1 #(
+ .INIT(INIT)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
+ .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
@@ -90,33 +82,56 @@ module FDPE (output reg Q, input C, CE, D, PRE);
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
wire \$nextQ , \$currQ ;
- \$__ABC_FDPE #(
+ FDPE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
- .CLK_POLARITY(!IS_C_INVERTED),
- .EN_POLARITY(1'b1)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
+ .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
- \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
+ \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
wire \$nextQ , \$currQ ;
- \$__ABC_FDPE_1 #(
- .INIT(INIT),
- .CLK_POLARITY(1'b0),
- .EN_POLARITY(1'b1)
+ FDPE_1 #(
+ .INIT(INIT)
) _TECHMAP_REPLACE_ (
- .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
+ .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
endmodule
+module FDSE (output reg Q, input C, CE, D, S);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_S_INVERTED = 1'b0;
+ wire \$nextQ ;
+ FDSE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_S_INVERTED(IS_S_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
+ );
+ \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+endmodule
+module FDSE_1 (output reg Q, input C, CE, D, S);
+ parameter [0:0] INIT = 1'b0;
+ wire \$nextQ ;
+ FDSE_1 #(
+ .INIT(|0),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
+ );
+ \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+endmodule
+
module RAM32X1D (
output DPO, SPO,
input D,
diff --git a/techlibs/xilinx/abc_model.v b/techlibs/xilinx/abc_model.v
index d94ddb7e5..a2914464d 100644
--- a/techlibs/xilinx/abc_model.v
+++ b/techlibs/xilinx/abc_model.v
@@ -26,97 +26,9 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
: (S0 ? I1 : I0);
endmodule
-module \$__ABC_FF_ (input C, D, output Q);
+module \$__ABC_FF_ (input D, output Q);
endmodule
(* abc_box_id = 1000 *)
module \$__ABC_ASYNC (input A, S, output Y);
endmodule
-
-(* abc_box_id=1001, lib_whitebox, abc_flop *)
-module \$__ABC_FDRE ((* abc_flop_q, abc_arrival=303 *) output Q,
- (* abc_flop_clk *) input C,
- (* abc_flop_en *) input CE,
- (* abc_flop_d *) input D,
- input R, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_R_INVERTED = 1'b0;
- parameter CLK_POLARITY = !IS_C_INVERTED;
- parameter EN_POLARITY = 1'b1;
- assign Q = (R ^ IS_R_INVERTED) ? 1'b0 : (CE ? (D ^ IS_D_INVERTED) : \$pastQ );
-endmodule
-
-(* abc_box_id=1002, lib_whitebox, abc_flop *)
-module \$__ABC_FDRE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
- (* abc_flop_clk *) input C,
- (* abc_flop_en *) input CE,
- (* abc_flop_d *) input D,
- input R, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter CLK_POLARITY = 1'b0;
- parameter EN_POLARITY = 1'b1;
- assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
-endmodule
-
-(* abc_box_id=1003, lib_whitebox, abc_flop *)
-module \$__ABC_FDCE ((* abc_flop_q, abc_arrival=303 *) output Q,
- (* abc_flop_clk *) input C,
- (* abc_flop_en *) input CE,
- (* abc_flop_d *) input D,
- input CLR, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_CLR_INVERTED = 1'b0;
- parameter CLK_POLARITY = !IS_C_INVERTED;
- parameter EN_POLARITY = 1'b1;
- assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
-endmodule
-
-(* abc_box_id=1004, lib_whitebox, abc_flop *)
-module \$__ABC_FDCE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
- (* abc_flop_clk *) input C,
- (* abc_flop_en *) input CE,
- (* abc_flop_d *) input D,
- input CLR, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter CLK_POLARITY = 1'b0;
- parameter EN_POLARITY = 1'b1;
- assign Q = (CE && !CLR) ? D : \$pastQ ;
-endmodule
-
-(* abc_box_id=1005, lib_whitebox, abc_flop *)
-module \$__ABC_FDPE ((* abc_flop_q, abc_arrival=303 *) output Q,
- (* abc_flop_clk *) input C,
- (* abc_flop_en *) input CE,
- (* abc_flop_d *) input D,
- input PRE, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_PRE_INVERTED = 1'b0;
- parameter CLK_POLARITY = !IS_C_INVERTED;
- parameter EN_POLARITY = 1'b1;
- assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
-endmodule
-
-(* abc_box_id=1006, lib_whitebox, abc_flop *)
-module \$__ABC_FDPE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
- (* abc_flop_clk *) input C,
- (* abc_flop_en *) input CE,
- (* abc_flop_d *) input D,
- input PRE, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter CLK_POLARITY = 1'b0;
- parameter EN_POLARITY = 1'b1;
- assign Q = (CE && !PRE) ? D : \$pastQ ;
-endmodule
-
-(* abc_box_id=2000 *)
-module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
-endmodule
-(* abc_box_id=2001 *)
-module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
-endmodule
diff --git a/techlibs/xilinx/abc_unmap.v b/techlibs/xilinx/abc_unmap.v
index c24571747..bf8253adb 100644
--- a/techlibs/xilinx/abc_unmap.v
+++ b/techlibs/xilinx/abc_unmap.v
@@ -24,124 +24,6 @@ module \$__ABC_ASYNC (input A, S, output Y);
assign Y = A;
endmodule
-module \$__ABC_FDRE (output Q,
- input C,
- input CE,
- input D,
- input R, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_R_INVERTED = 1'b0;
- parameter CLK_POLARITY = !IS_C_INVERTED;
- parameter EN_POLARITY = 1'b1;
-
- FDRE #(
- .INIT(INIT),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_R_INVERTED(IS_R_INVERTED),
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
- );
-endmodule
-
-module \$__ABC_FDRE_1 (output Q,
- input C,
- input CE,
- input D,
- input R, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter CLK_POLARITY = 1'b0;
- parameter EN_POLARITY = 1'b1;
- assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
-
- FDRE_1 #(
- .INIT(INIT),
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
- );
-endmodule
-
-module \$__ABC_FDCE (output Q,
- input C,
- input CE,
- input D,
- input CLR, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_CLR_INVERTED = 1'b0;
- parameter CLK_POLARITY = !IS_C_INVERTED;
- parameter EN_POLARITY = 1'b1;
-
- FDCE #(
- .INIT(INIT),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_CLR_INVERTED(IS_CLR_INVERTED),
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
- );
-endmodule
-
-module \$__ABC_FDCE_1 (output Q,
- input C,
- input CE,
- input D,
- input CLR, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter CLK_POLARITY = 1'b0;
- parameter EN_POLARITY = 1'b1;
-
- FDCE_1 #(
- .INIT(INIT),
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
- );
-endmodule
-
-module \$__ABC_FDPE (output Q,
- input C,
- input CE,
- input D,
- input PRE, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_PRE_INVERTED = 1'b0;
- parameter CLK_POLARITY = !IS_C_INVERTED;
- parameter EN_POLARITY = 1'b1;
-
- FDPE #(
- .INIT(INIT),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_PRE_INVERTED(IS_PRE_INVERTED),
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
- );
-endmodule
-
-module \$__ABC_FDPE_1 (output Q,
- input C,
- input CE,
- input D,
- input PRE, \$pastQ );
- parameter [0:0] INIT = 1'b0;
- parameter CLK_POLARITY = 1'b0;
- parameter EN_POLARITY = 1'b1;
-
- FDPE_1 #(
- .INIT(INIT),
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
- );
-endmodule
-
-module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
- assign Y = A;
-endmodule
-module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
- assign Y = A;
+module \$__ABC_FF_ (input D, output Q);
+ assign Q = D;
endmodule
diff --git a/techlibs/xilinx/abc_xc7.box b/techlibs/xilinx/abc_xc7.box
index aebb8b975..daaa4d16f 100644
--- a/techlibs/xilinx/abc_xc7.box
+++ b/techlibs/xilinx/abc_xc7.box
@@ -52,36 +52,46 @@ $__ABC_ASYNC 1000 0 2 1
# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251
# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277
-# Inputs: C CE D R \$pastQ
+# Inputs: C CE D R \$currQ
# Outputs: Q
FDRE 1001 1 5 1
0 151 0 446 0
-# Inputs: C CE D R \$pastQ
+# Inputs: C CE D R \$currQ
# Outputs: Q
FDRE_1 1002 1 5 1
0 151 0 446 0
-# Inputs: C CE CLR D \$pastQ
+# Inputs: C CE CLR D \$currQ
# Outputs: Q
FDCE 1003 1 5 1
0 151 806 0 0
-# Inputs: C CE CLR D \$pastQ
+# Inputs: C CE CLR D \$currQ
# Outputs: Q
FDCE_1 1004 1 5 1
0 151 806 0 0
-# Inputs: C CE D PRE \$pastQ
+# Inputs: C CE D PRE \$currQ
# Outputs: Q
FDPE 1005 1 5 1
0 151 0 806 0
-# Inputs: C CE D PRE \$pastQ
+# Inputs: C CE D PRE \$currQ
# Outputs: Q
FDPE_1 1006 1 5 1
0 151 0 806 0
+# Inputs: C CE D S \$currQ
+# Outputs: Q
+FDSE 1007 1 5 1
+0 151 0 446 0
+
+# Inputs: C CE D S \$currQ
+# Outputs: Q
+FDSE_1 1008 1 5 1
+0 151 0 446 0
+
# SLICEM/A6LUT
# Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
# Necessary since RAMD* and SRL* have both combinatorial (i.e.
diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v
index ef4340d10..ee9d48684 100644
--- a/techlibs/xilinx/cells_sim.v
+++ b/techlibs/xilinx/cells_sim.v
@@ -240,6 +240,7 @@ endmodule
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
+(* abc_box_id=1001, lib_whitebox, abc9_flop *)
module FDRE (
(* abc_arrival=303 *)
output reg Q,
@@ -257,35 +258,72 @@ module FDRE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `\$currQ' wire.
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
- 1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 1'b0: always @(posedge C) Q <= \$nextQ ;
+ 1'b1: always @(negedge C) Q <= \$nextQ ;
endcase endgenerate
+`endif
endmodule
-module FDSE (
+(* abc_box_id=1002, lib_whitebox, abc9_flop *)
+module FDRE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
- (* invertible_pin = "IS_C_INVERTED" *)
input C,
- input CE,
- (* invertible_pin = "IS_D_INVERTED" *)
- input D,
- (* invertible_pin = "IS_S_INVERTED" *)
- input S
+ input CE, D, R
);
- parameter [0:0] INIT = 1'b1;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_S_INVERTED = 1'b0;
+ parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- endcase endgenerate
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `\$currQ' wire.
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ always @(negedge C) Q <= \$nextQ ;
+`endif
endmodule
+(* abc_box_id=1003, lib_whitebox, abc9_flop *)
module FDCE (
(* abc_arrival=303 *)
output reg Q,
@@ -303,14 +341,78 @@ module FDCE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `\$currQ' wire.
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC_ASYNC box by abc_map.v
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
- 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
endcase endgenerate
+`endif
endmodule
+(* abc_box_id=1004, lib_whitebox, abc9_flop *)
+module FDCE_1 (
+ (* abc_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ input C,
+ input CE, D, CLR
+);
+ parameter [0:0] INIT = 1'b0;
+ initial Q <= INIT;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `\$currQ' wire.
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC_ASYNC box by abc_map.v
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ always @(negedge C, posedge CLR) if (CLR == !IS_CLR_INVERTED) Q <= 1'b0; else Q <= \$nextQ ;
+`endif
+endmodule
+
+(* abc_box_id=1005, lib_whitebox, abc9_flop *)
module FDPE (
(* abc_arrival=303 *)
output reg Q,
@@ -328,60 +430,158 @@ module FDPE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `\$currQ' wire.
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC_ASYNC box by abc_map.v
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
- 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
endcase endgenerate
+`endif
endmodule
-module FDRE_1 (
- (* abc_arrival=303 *)
- output reg Q,
- (* clkbuf_sink *)
- input C,
- input CE, D, R
-);
- parameter [0:0] INIT = 1'b0;
- initial Q <= INIT;
- always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
-endmodule
-
-module FDSE_1 (
+(* abc_box_id=1006, lib_whitebox, abc9_flop *)
+module FDPE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
- input CE, D, S
+ input CE, D, PRE
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `\$currQ' wire.
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC_ASYNC box by abc_map.v
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
+`endif
endmodule
-module FDCE_1 (
+(* abc_box_id=1007, lib_whitebox, abc9_flop *)
+module FDSE (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
input C,
- input CE, D, CLR
+ input CE,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D,
+ (* invertible_pin = "IS_S_INVERTED" *)
+ input S
);
- parameter [0:0] INIT = 1'b0;
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
- always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `\$currQ' wire.
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ generate case (|IS_C_INVERTED)
+ 1'b0: always @(posedge C) Q <= \$nextQ ;
+ 1'b1: always @(negedge C) Q <= \$nextQ ;
+ endcase endgenerate
+`endif
endmodule
-module FDPE_1 (
+(* abc_box_id=1008, lib_whitebox, abc9_flop *)
+module FDSE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
- input CE, D, PRE
+ input CE, D, S
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `\$currQ' wire.
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ always @(negedge C) Q <= \$nextQ ;
+`endif
endmodule
module RAM32X1D (
diff --git a/techlibs/xilinx/synth_xilinx.cc b/techlibs/xilinx/synth_xilinx.cc
index 888b5ed7b..f5143ca82 100644
--- a/techlibs/xilinx/synth_xilinx.cc
+++ b/techlibs/xilinx/synth_xilinx.cc
@@ -276,9 +276,9 @@ struct SynthXilinxPass : public ScriptPass
if (check_label("begin")) {
if (vpr)
- run("read_verilog -lib -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
+ run("read_verilog -lib -D_ABC -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
else
- run("read_verilog -lib +/xilinx/cells_sim.v");
+ run("read_verilog -lib -D_ABC +/xilinx/cells_sim.v");
if (help_mode)
run("read_verilog -lib +/xilinx/{family}_cells_xtra.v");