aboutsummaryrefslogtreecommitdiffstats
path: root/fpga_interchange/arch.h
blob: 0fb4f4627afb12260db28562a025fec82bdff667 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdint.h>
#include <errno.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <linux/cp210x.h>

/*
 * bit 0: 1	left  leg NPN base
 * bit 1: 2	left  leg PNP base
 * bit 2: 4	right leg PNP base
 * bit 3: 8	right leg NPN base
 */

#define LEFT_NPN_OFF	0
#define LEFT_NPN_ON	1
#define LEFT_PNP_OFF	2
#define LEFT_PNP_ON	0

#define LEFT_LOW	(LEFT_NPN_ON | LEFT_PNP_OFF)
#define LEFT_HI		(LEFT_NPN_OFF | LEFT_PNP_ON)
#define LEFT_OFF	(LEFT_NPN_OFF | LEFT_PNP_OFF)

#define RIGHT_NPN_OFF	0
#define RIGHT_NPN_ON	8
#define RIGHT_PNP_OFF	4
#define RIGHT_PNP_ON	0


#define RIGHT_LOW	(RIGHT_NPN_ON | RIGHT_PNP_OFF)
#define RIGHT_HI	(RIGHT_NPN_OFF | RIGHT_PNP_ON)
#define RIGHT_OFF	(RIGHT_NPN_OFF | RIGHT_PNP_OFF)

#define FORWARDS	(RIGHT_LOW | LEFT_HI)
#define BACKWARDS	(RIGHT_HI | LEFT_LOW)
#define OFF		(RIGHT_OFF| LEFT_OFF)

#define TIMEOUT 	750000         /*75ms */
#define RUN_IN 		50
#define RELEASE_TENSION	10

int
drive_motor (int fd, int dir)
{
  int i;

  if (dir > 0)
    {
      printf (" Motor forwards\n");
      i = FORWARDS;
    }
  else if (dir < 0)
    {
      printf (" Motor backwards\n");
      i = BACKWARDS;
    }
  else
    {
      printf (" Motor off\n");
      i = OFF;
    }


  return ioctl (fd, CPIOC_GPIOSET, &i);
}

int
sensor_led_power (int fd, int on)
{
  int i = TIOCM_DTR;

  printf (" Rotation sensor power %s\n", on ? "on" : "off");

  return ioctl (fd, on ? TIOCMBIS : TIOCMBIC, &i);
}


static int
count_steps (int fd, int count)
{
  struct timeval tv, tv_changed, tv_diff;
  int cts, old_cts = -1;
  int counted = 0;

  printf (" Counting %d steps", count);

  gettimeofday (&tv_changed, NULL);

  while (count)
    {
      ioctl (fd, TIOCMGET, &cts);
      cts &= TIOCM_CTS;

      if (cts != old_cts)
        {
          if (cts)
            {
              counted++;
              count--;
              printf (".");
              fflush (stdout);
            }
          gettimeofday (&tv_changed, NULL);
          old_cts = cts;
        }
      gettimeofday (&tv, NULL);
      timersub (&tv, &tv_changed, &tv_diff);

      if (tv_diff.tv_sec || (tv_diff.tv_usec > TIMEOUT))
        break;

    }

  printf ("%d steps\n", counted);
  return counted;
}




static int
drive_motor_home (int fd)
{
  int ret;
  sensor_led_power (fd, 1);
  drive_motor (fd, -1);
  ret = count_steps (fd, -1);
  drive_motor (fd, 0);
  ret -= count_steps (fd, -1);
  sensor_led_power (fd, 0);
  return ret;
}

static int
drive_motor_count (int fd, int dir, int steps)
{
  int ret;
  sensor_led_power (fd, 1);
  drive_motor (fd, dir);
  ret = count_steps (fd, steps);
  drive_motor (fd, 0);
  ret += count_steps (fd, -1);
  sensor_led_power (fd, 0);
  return ret;
}

int
main (int argc, char *argv[])
{
  int overshoot, guard, pos, wanted, delta;

  int fd = open (argv[1], O_RDWR);

  if (fd < 0)
    return -1;


  pos = drive_motor_home (fd);

  printf ("Motor was %d steps from home\n", pos);


  if (argc == 2)
    {
      pos = drive_motor_count (fd, 1, RELEASE_TENSION);

      printf ("Motor now %d steps from home\n", pos);
      return 0;
    }

  pos = drive_motor_count (fd, 1, RUN_IN);

  overshoot = pos - RUN_IN;     /*overshot */

  wanted = atoi (argv[2]);

  delta = wanted - pos;
  printf ("Now at %d want %d, delta %d\n", pos, wanted, delta);

  guard = overshoot * 3;

  if ((delta > -guard) && (delta < guard))
    {
      printf ("Too close\n");
      pos += drive_motor_count (fd, 1, RUN_IN);
      delta = wanted - pos;
      printf ("Now at %d want %d, delta %d\n", pos, wanted, delta);
    }


  if (delta < 0)
    {
      pos -= drive_motor_count (fd, -1, (-delta) - overshoot);
    }
  else if (delta > 0)
    {
      pos += drive_motor_count (fd, 1, delta - overshoot);
    }

  printf ("Wanted %d steps, got %d steps\n", wanted, pos);

  return 0;
}
> 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2018  Claire Xenia Wolf <claire@yosyshq.com>
 *  Copyright (C) 2018-19  gatecat <gatecat@ds0.me>
 *  Copyright (C) 2021  Symbiflow Authors
 *
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#ifndef FPGA_INTERCHANGE_ARCH_H
#define FPGA_INTERCHANGE_ARCH_H

#include <boost/iostreams/device/mapped_file.hpp>
#include <iostream>
#include <regex>

#include "PhysicalNetlist.capnp.h"
#include "arch_api.h"
#include "constraints.h"
#include "nextpnr_types.h"
#include "relptr.h"

#include "arch_iterators.h"
#include "cell_parameters.h"
#include "chipdb.h"
#include "dedicated_interconnect.h"
#include "lookahead.h"
#include "pseudo_pip_model.h"
#include "site_lut_mapping_cache.h"
#include "site_router.h"
#include "site_routing_cache.h"

NEXTPNR_NAMESPACE_BEGIN

struct ArchArgs
{
    std::string chipdb;
    std::string package;
    bool rebuild_lookahead;
    bool dont_write_lookahead;
    bool disable_lut_mapping_cache;
};

struct ArchRanges
{
    using ArchArgsT = ArchArgs;
    // Bels
    using AllBelsRangeT = BelRange;
    using TileBelsRangeT = BelRange;
    using BelAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
    using BelPinsRangeT = IdStringRange;
    using CellBelPinRangeT = const std::vector<IdString> &;
    // Wires
    using AllWiresRangeT = WireRange;
    using DownhillPipRangeT = DownhillPipRange;
    using UphillPipRangeT = UphillPipRange;
    using WireBelPinRangeT = BelPinRange;
    using WireAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
    // Pips
    using AllPipsRangeT = AllPipRange;
    using PipAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
    // Groups
    using AllGroupsRangeT = std::vector<GroupId>;
    using GroupBelsRangeT = std::vector<BelId>;
    using GroupWiresRangeT = std::vector<WireId>;
    using GroupPipsRangeT = std::vector<PipId>;
    using GroupGroupsRangeT = std::vector<GroupId>;
    // Decals
    using DecalGfxRangeT = std::vector<GraphicElement>;
    // Placement validity
    using CellTypeRangeT = const IdStringRange;
    using BelBucketRangeT = const BelBucketRange;
    using BucketBelRangeT = FilteredBelRange;
};

static constexpr size_t kMaxState = 8;

struct TileStatus
{
    std::vector<ExclusiveStateGroup<kMaxState>> tags;
    std::vector<CellInfo *> boundcells;
    std::vector<SiteRouter> sites;
    PseudoPipModel pseudo_pip_model;
};

struct Cluster
{
    uint32_t index;
    CellInfo *root;
    std::vector<CellInfo *> cluster_nodes;
    dict<IdString, IdString> cell_cluster_node_map;
    dict<IdString, std::vector<std::pair<IdString, CellInfo *>>> cluster_node_cells;
};

struct Arch : ArchAPI<ArchRanges>
{
    boost::iostreams::mapped_file_source blob_file;
    const ChipInfoPOD *chip_info;
    int32_t package_index;

    // Guard initialization of "by_name" maps if accessed from multiple
    // threads on a "const Context *".
    mutable std::mutex by_name_mutex;
    mutable dict<IdString, int> tile_by_name;
    mutable dict<IdString, std::pair<int, int>> site_by_name;

    dict<WireId, NetInfo *> wire_to_net;
    dict<PipId, NetInfo *> pip_to_net;

    DedicatedInterconnect dedicated_interconnect;
    dict<int32_t, TileStatus> tileStatus;
    PseudoPipData pseudo_pip_data;

    ArchArgs args;
    Arch(ArchArgs args);
    virtual ~Arch();
    void init();

    std::string getChipName() const final;

    IdString archId() const final { return id(chip_info->name.get()); }
    ArchArgs archArgs() const final { return args; }
    IdString archArgsToId(ArchArgs args) const final;

    // -------------------------------------------------

    uint32_t get_tile_index(int x, int y) const { return (y * chip_info->width + x); }
    uint32_t get_tile_index(Loc loc) const { return get_tile_index(loc.x, loc.y); }
    template <typename TileIndex, typename CoordIndex>
    void get_tile_x_y(TileIndex tile_index, CoordIndex *x, CoordIndex *y) const
    {
        *x = tile_index % chip_info->width;
        *y = tile_index / chip_info->width;
    }

    template <typename TileIndex> void get_tile_loc(TileIndex tile_index, Loc *loc) const
    {
        get_tile_x_y(tile_index, &loc->x, &loc->y);
    }

    int getGridDimX() const final { return chip_info->width; }
    int getGridDimY() const final { return chip_info->height; }
    int getTileBelDimZ(int x, int y) const final
    {
        return chip_info->tile_types[chip_info->tiles[get_tile_index(x, y)].type].bel_data.size();
    }
    int getTilePipDimZ(int x, int y) const final
    {
        return chip_info->tile_types[chip_info->tiles[get_tile_index(x, y)].type].site_types.size();
    }
    char getNameDelimiter() const final { return '/'; }

    std::string get_part() const;

    // -------------------------------------------------

    void setup_byname() const;

    BelId getBelByName(IdStringList name) const final;

    IdStringList getBelName(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        const SiteInstInfoPOD &site = get_site_inst(bel);
        std::array<IdString, 2> ids{id(site.name.get()), IdString(bel_info(chip_info, bel).name)};
        return IdStringList(ids);
    }

    uint32_t getBelChecksum(BelId bel) const final { return bel.index; }

    void map_cell_pins(CellInfo *cell, int32_t mapping, bool bind_constants);
    void map_port_pins(BelId bel, CellInfo *cell) const;

    TileStatus &get_tile_status(int32_t tile)
    {
        auto result = tileStatus.emplace(tile, TileStatus());
        if (result.second) {
            auto &tile_type = chip_info->tile_types[chip_info->tiles[tile].type];
            result.first->second.boundcells.resize(tile_type.bel_data.size(), nullptr);
            result.first->second.tags.resize(default_tags.size());

            result.first->second.sites.reserve(tile_type.site_types.size());
            for (size_t i = 0; i < tile_type.site_types.size(); ++i) {
                result.first->second.sites.push_back(SiteRouter(i));
            }

            result.first->second.pseudo_pip_model.init(getCtx(), tile);
        }

        return result.first->second;
    }

    const SiteRouter &get_site_status(const TileStatus &tile_status, const BelInfoPOD &bel_data) const
    {
        return tile_status.sites.at(bel_data.site);
    }

    SiteRouter &get_site_status(TileStatus &tile_status, const BelInfoPOD &bel_data)
    {
        return tile_status.sites.at(bel_data.site);
    }

    BelId get_vcc_bel() const
    {
        auto &constants = *chip_info->constants;
        BelId bel;
        bel.tile = constants.vcc_bel_tile;
        bel.index = constants.vcc_bel_index;
        return bel;
    }

    BelId get_gnd_bel() const
    {
        auto &constants = *chip_info->constants;
        BelId bel;
        bel.tile = constants.gnd_bel_tile;
        bel.index = constants.gnd_bel_index;
        return bel;
    }

    PhysicalNetlist::PhysNetlist::NetType get_net_type(NetInfo *net) const
    {
        NPNR_ASSERT(net != nullptr);
        IdString gnd_cell_name(chip_info->constants->gnd_cell_name);
        IdString gnd_cell_port(chip_info->constants->gnd_cell_port);

        IdString vcc_cell_name(chip_info->constants->vcc_cell_name);
        IdString vcc_cell_port(chip_info->constants->vcc_cell_port);
        if (net->driver.cell->type == gnd_cell_name && net->driver.port == gnd_cell_port) {
            return PhysicalNetlist::PhysNetlist::NetType::GND;
        } else if (net->driver.cell->type == vcc_cell_name && net->driver.port == vcc_cell_port) {
            return PhysicalNetlist::PhysNetlist::NetType::VCC;
        } else {
            return PhysicalNetlist::PhysNetlist::NetType::SIGNAL;
        }
    }

    void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) final
    {
        NPNR_ASSERT(bel != BelId());

        TileStatus &tile_status = get_tile_status(bel.tile);
        NPNR_ASSERT(tile_status.boundcells[bel.index] == nullptr);

        const auto &bel_data = bel_info(chip_info, bel);
        NPNR_ASSERT(bel_data.category == BEL_CATEGORY_LOGIC);

        if (io_port_types.count(cell->type) == 0) {
            int32_t mapping = bel_info(chip_info, bel).pin_map[get_cell_type_index(cell->type)];
            if (mapping < 0) {
                report_invalid_bel(bel, cell);
            }
            NPNR_ASSERT(mapping >= 0);

            if (cell->cell_mapping != mapping) {
                map_cell_pins(cell, mapping, /*bind_constants=*/false);
            }
            constraints.bindBel(tile_status.tags.data(), get_cell_constraints(bel, cell->type));

            // Clean previous cell placement in tile
            if (cell->bel != BelId()) {
                TileStatus &prev_tile_status = get_tile_status(cell->bel.tile);
                NPNR_ASSERT(prev_tile_status.boundcells[cell->bel.index] != nullptr);

                const auto &prev_bel_data = bel_info(chip_info, cell->bel);
                NPNR_ASSERT(prev_bel_data.category == BEL_CATEGORY_LOGIC);

                get_site_status(prev_tile_status, prev_bel_data).unbindBel(cell);
                prev_tile_status.boundcells[cell->bel.index] = nullptr;

                constraints.unbindBel(prev_tile_status.tags.data(), get_cell_constraints(cell->bel, cell->type));
            }
        } else {
            map_port_pins(bel, cell);
            // FIXME: Probably need to actually constraint io port cell/bel,
            // but the current BBA emission doesn't support that.  This only
            // really matters if the placer can choose IO port locations.
        }

        get_site_status(tile_status, bel_data).bindBel(cell);

        tile_status.boundcells[bel.index] = cell;

        cell->bel = bel;
        cell->belStrength = strength;

        refreshUiBel(bel);
    }

    void unbindBel(BelId bel) final
    {
        NPNR_ASSERT(bel != BelId());

        TileStatus &tile_status = get_tile_status(bel.tile);
        NPNR_ASSERT(tile_status.boundcells[bel.index] != nullptr);

        CellInfo *cell = tile_status.boundcells[bel.index];
        tile_status.boundcells[bel.index] = nullptr;

        cell->bel = BelId();
        cell->belStrength = STRENGTH_NONE;

        // FIXME: Probably need to actually constraint io port cell/bel,
        // but the current BBA emission doesn't support that.  This only
        // really matters if the placer can choose IO port locations.
        if (io_port_types.count(cell->type) == 0) {
            constraints.unbindBel(tile_status.tags.data(), get_cell_constraints(bel, cell->type));
        }

        const auto &bel_data = bel_info(chip_info, bel);
        get_site_status(tile_status, bel_data).unbindBel(cell);

        refreshUiBel(bel);
    }

    bool checkBelAvail(BelId bel) const final
    {
        // FIXME: This could consult the constraint system to see if this BEL
        // is blocked (e.g. site type is wrong).
        return getBoundBelCell(bel) == nullptr;
    }

    CellInfo *getBoundBelCell(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        auto iter = tileStatus.find(bel.tile);
        if (iter == tileStatus.end()) {
            return nullptr;
        } else {
            return iter->second.boundcells[bel.index];
        }
    }

    CellInfo *getConflictingBelCell(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        // FIXME: This could consult the constraint system to see why this BEL
        // is blocked.
        return getBoundBelCell(bel);
    }

    BelRange getBels() const final
    {
        BelRange range;
        range.b.cursor_tile = 0;
        range.b.cursor_index = -1;
        range.b.chip = chip_info;
        ++range.b; //-1 and then ++ deals with the case of no Bels in the first tile
        range.e.cursor_tile = chip_info->width * chip_info->height;
        range.e.cursor_index = 0;
        range.e.chip = chip_info;
        return range;
    }

    Loc getBelLocation(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        Loc loc;
        get_tile_x_y(bel.tile, &loc.x, &loc.y);
        loc.z = bel.index;
        return loc;
    }

    BelId getBelByLocation(Loc loc) const final;
    BelRange getBelsByTile(int x, int y) const final;

    bool getBelGlobalBuf(BelId bel) const final
    {
        auto &bel_data = bel_info(chip_info, bel);
        IdString bel_name(bel_data.name);

        // Note: Check profiles and see if this should be something other than
        // a linear scan.  Expectation is that for most arches, this will be
        // fast enough.
        for (int32_t global_bel : chip_info->cell_map->global_buffers) {
            IdString global_bel_name(global_bel);
            if (bel_name == global_bel_name) {
                return true;
            }
        }

        return false;
    }

    bool getBelHidden(BelId bel) const final { return bel_info(chip_info, bel).category != BEL_CATEGORY_LOGIC; }

    IdString getBelType(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());
        return IdString(bel_info(chip_info, bel).type);
    }

    std::vector<std::pair<IdString, std::string>> getBelAttrs(BelId bel) const final;

    int get_bel_pin_index(BelId bel, IdString pin) const
    {
        NPNR_ASSERT(bel != BelId());
        int num_bel_wires = bel_info(chip_info, bel).num_bel_wires;
        const int32_t *ports = bel_info(chip_info, bel).ports.get();
        for (int i = 0; i < num_bel_wires; i++) {
            if (ports[i] == pin.index) {
                return i;
            }
        }

        return -1;
    }

    WireId getBelPinWire(BelId bel, IdString pin) const final;
    PortType getBelPinType(BelId bel, IdString pin) const final;

    IdStringRange getBelPins(BelId bel) const final
    {
        NPNR_ASSERT(bel != BelId());

        int num_bel_wires = bel_info(chip_info, bel).num_bel_wires;
        const int32_t *ports = bel_info(chip_info, bel).ports.get();

        IdStringRange str_range;
        str_range.b.cursor = &ports[0];
        str_range.e.cursor = &ports[num_bel_wires];

        return str_range;
    }

    const std::vector<IdString> &getBelPinsForCellPin(const CellInfo *cell_info, IdString pin) const final;

    // -------------------------------------------------

    WireId getWireByName(IdStringList name) const final;

    const TileWireInfoPOD &wire_info(WireId wire) const
    {
        if (wire.tile == -1) {
            const TileWireRefPOD &wr = chip_info->nodes[wire.index].tile_wires[0];
            return chip_info->tile_types[chip_info->tiles[wr.tile].type].wire_data[wr.index];
        } else {
            return loc_info(chip_info, wire).wire_data[wire.index];
        }
    }

    IdStringList getWireName(WireId wire) const final
    {
        NPNR_ASSERT(wire != WireId());
        if (wire.tile != -1) {
            const auto &tile_type = loc_info(chip_info, wire);
            if (tile_type.wire_data[wire.index].site != -1) {
                const SiteInstInfoPOD &site = get_site_inst(wire);
                std::array<IdString, 2> ids{id(site.name.get()), IdString(tile_type.wire_data[wire.index].name)};
                return IdStringList(ids);
            }
        }

        int32_t tile = wire.tile == -1 ? chip_info->nodes[wire.index].tile_wires[0].tile : wire.tile;
        IdString tile_name = id(chip_info->tiles[tile].name.get());
        std::array<IdString, 2> ids{tile_name, IdString(wire_info(wire).name)};
        return IdStringList(ids);
    }

    IdString getWireType(WireId wire) const final;
    std::vector<std::pair<IdString, std::string>> getWireAttrs(WireId wire) const final;

    uint32_t getWireChecksum(WireId wire) const final { return wire.index; }

    void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) final;

    void unbindWire(WireId wire) final
    {
        NPNR_ASSERT(wire != WireId());
        unassign_wire(wire);
        refreshUiWire(wire);
    }

    bool checkWireAvail(WireId wire) const final
    {
        NPNR_ASSERT(wire != WireId());
        auto w2n = wire_to_net.find(wire);
        return w2n == wire_to_net.end() || w2n->second == nullptr;
    }

    NetInfo *getBoundWireNet(WireId wire) const final
    {
        NPNR_ASSERT(wire != WireId());
        auto w2n = wire_to_net.find(wire);
        return w2n == wire_to_net.end() ? nullptr : w2n->second;
    }

    WireId getConflictingWireWire(WireId wire) const final { return wire; }

    NetInfo *getConflictingWireNet(WireId wire) const final
    {
        NPNR_ASSERT(wire != WireId());
        auto w2n = wire_to_net.find(wire);
        return w2n == wire_to_net.end() ? nullptr : w2n->second;
    }

    DelayQuad getWireDelay(WireId wire) const final { return DelayQuad(0); }

    TileWireRange get_tile_wire_range(WireId wire) const
    {
        TileWireRange range;
        range.b.chip = chip_info;
        range.b.baseWire = wire;
        range.b.cursor = -1;
        ++range.b;

        range.e.chip = chip_info;
        range.e.baseWire = wire;
        if (wire.tile == -1) {
            range.e.cursor = chip_info->nodes[wire.index].tile_wires.size();
        } else {
            range.e.cursor = 1;
        }
        return range;
    }

    BelPinRange getWireBelPins(WireId wire) const final
    {
        BelPinRange range;
        NPNR_ASSERT(wire != WireId());

        TileWireRange twr = get_tile_wire_range(wire);
        range.b.chip = chip_info;
        range.b.twi = twr.b;
        range.b.twi_end = twr.e;
        range.b.cursor = -1;
        ++range.b;

        range.e.chip = chip_info;
        range.e.twi = twr.e;
        range.e.twi_end = twr.e;
        range.e.cursor = 0;
        return range;
    }

    WireRange getWires() const final
    {
        WireRange range;
        range.b.chip = chip_info;
        range.b.cursor_tile = -1;
        range.b.cursor_index = 0;
        range.e.chip = chip_info;
        range.e.cursor_tile = chip_info->tiles.size();
        range.e.cursor_index = 0;
        return range;
    }

    bool is_site_wire(WireId wire) const;
    WireCategory get_wire_category(WireId wire) const;

    // -------------------------------------------------

    PipId getPipByName(IdStringList name) const final;
    IdStringList getPipName(PipId pip) const final;
    IdString getPipType(PipId pip) const final;
    std::vector<std::pair<IdString, std::string>> getPipAttrs(PipId pip) const final;

    void assign_net_to_wire(WireId wire, NetInfo *net, const char *src, bool require_empty);

    void assign_pip_pseudo_wires(PipId pip, NetInfo *net)
    {
        NPNR_ASSERT(net != nullptr);
        WireId wire;
        wire.tile = pip.tile;
        const PipInfoPOD &pip_data = pip_info(chip_info, pip);
        for (int32_t wire_index : pip_data.pseudo_cell_wires) {
            wire.index = wire_index;
            if (getBoundWireNet(wire) != net)
                assign_net_to_wire(wire, net, "pseudo", /*require_empty=*/true);
        }

        if (pip_data.pseudo_cell_wires.size() > 0) {
            get_tile_status(pip.tile).pseudo_pip_model.bindPip(getCtx(), pip);
        }
    }

    void remove_pip_pseudo_wires(PipId pip, NetInfo *net);

    void unassign_wire(WireId wire);

    void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) final;

    void unbindPip(PipId pip) final;

    bool checkPipAvail(PipId pip) const final;
    bool checkPipAvailForNet(PipId pip, NetInfo *net) const final;

    NetInfo *getBoundPipNet(PipId pip) const final
    {
        NPNR_ASSERT(pip != PipId());
        auto p2n = pip_to_net.find(pip);
        return p2n == pip_to_net.end() ? nullptr : p2n->second;
    }

    WireId getConflictingPipWire(PipId pip) const final
    {
        // FIXME: This doesn't account for pseudo pips.
        return getPipDstWire(pip);
    }

    NetInfo *getConflictingPipNet(PipId pip) const final
    {
        // FIXME: This doesn't account for pseudo pips.
        auto p2n = pip_to_net.find(pip);
        return p2n == pip_to_net.end() ? nullptr : p2n->second;
    }

    AllPipRange getPips() const final
    {
        AllPipRange range;
        range.b.cursor_tile = 0;
        range.b.cursor_index = -1;
        range.b.chip = chip_info;
        ++range.b; //-1 and then ++ deals with the case of no wries in the first tile
        range.e.cursor_tile = chip_info->width * chip_info->height;
        range.e.cursor_index = 0;
        range.e.chip = chip_info;
        return range;
    }

    Loc getPipLocation(PipId pip) const final
    {
        Loc loc;
        get_tile_loc(pip.tile, &loc);
        loc.z = 0;
        return loc;
    }

    uint32_t getPipChecksum(PipId pip) const final { return pip.index; }

    WireId getPipSrcWire(PipId pip) const final NPNR_ALWAYS_INLINE
    {
        return canonical_wire(chip_info, pip.tile, loc_info(chip_info, pip).pip_data[pip.index].src_index);
    }

    WireId getPipDstWire(PipId pip) const final NPNR_ALWAYS_INLINE
    {
        return canonical_wire(chip_info, pip.tile, loc_info(chip_info, pip).pip_data[pip.index].dst_index);
    }

    DelayQuad getPipDelay(PipId pip) const final;

    DownhillPipRange getPipsDownhill(WireId wire) const final
    {
        DownhillPipRange range;
        NPNR_ASSERT(wire != WireId());
        TileWireRange twr = get_tile_wire_range(wire);
        range.b.chip = chip_info;
        range.b.twi = twr.b;
        range.b.twi_end = twr.e;
        range.b.cursor = -1;
        ++range.b;
        range.e.chip = chip_info;
        range.e.twi = twr.e;
        range.e.twi_end = twr.e;
        range.e.cursor = 0;
        return range;
    }

    UphillPipRange getPipsUphill(WireId wire) const final
    {
        UphillPipRange range;
        NPNR_ASSERT(wire != WireId());
        TileWireRange twr = get_tile_wire_range(wire);
        range.b.chip = chip_info;
        range.b.twi = twr.b;
        range.b.twi_end = twr.e;
        range.b.cursor = -1;
        ++range.b;
        range.e.chip = chip_info;
        range.e.twi = twr.e;
        range.e.twi_end = twr.e;
        range.e.cursor = 0;
        return range;
    }

    // -------------------------------------------------

    // FIXME: Use groups to get access to sites.
    GroupId getGroupByName(IdStringList name) const final { return GroupId(); }
    IdStringList getGroupName(GroupId group) const final { return IdStringList(); }
    std::vector<GroupId> getGroups() const final { return {}; }
    std::vector<BelId> getGroupBels(GroupId group) const final { return {}; }
    std::vector<WireId> getGroupWires(GroupId group) const final { return {}; }
    std::vector<PipId> getGroupPips(GroupId group) const final { return {}; }
    std::vector<GroupId> getGroupGroups(GroupId group) const final { return {}; }

    // -------------------------------------------------
    delay_t estimateDelay(WireId src, WireId dst) const final;
    delay_t predictDelay(const NetInfo *net_info, const PortRef &sink) const final;
    ArcBounds getRouteBoundingBox(WireId src, WireId dst) const final;
    delay_t getDelayEpsilon() const final { return 20; }
    delay_t getRipupDelayPenalty() const final { return 120; }
    float getDelayNS(delay_t v) const final { return v * 0.001; }
    delay_t getDelayFromNS(float ns) const final { return delay_t(ns * 1000); }
    uint32_t getDelayChecksum(delay_t v) const final { return v; }
    bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const final;

    // -------------------------------------------------

    void place_iobufs(WireId pad_wire, NetInfo *net,
                      const dict<CellInfo *, IdString, hash_ptr_ops> &tightly_attached_bels,
                      pool<CellInfo *, hash_ptr_ops> *placed_cells);

    void pack_ports();

    // Clusters
    void pack_cluster();
    void prepare_cluster(const ClusterPOD *cluster, uint32_t index);
    dict<ClusterId, Cluster> clusters;

    // User constraints
    void place_constraints();

    void decode_lut_cells();

    const GlobalCellPOD *global_cell_info(IdString cell_type) const;
    void place_globals();
    void route_globals();

    bool pack() final;
    bool place() final;
    bool route() final;
    // -------------------------------------------------

    std::vector<GraphicElement> getDecalGraphics(DecalId decal) const final;

    DecalXY getBelDecal(BelId bel) const final;
    DecalXY getWireDecal(WireId wire) const final;
    DecalXY getPipDecal(PipId pip) const final;
    DecalXY getGroupDecal(GroupId group) const final;

    // -------------------------------------------------

    // Get the delay through a cell from one port to another, returning false
    // if no path exists. This only considers combinational delays, as required by the Arch API
    bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const final;
    // Get the port class, also setting clockInfoCount to the number of TimingClockingInfos associated with a port
    TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const final;
    // Get the TimingClockingInfo of a port
    TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const final;

    // -------------------------------------------------

    const BelBucketRange getBelBuckets() const final
    {
        BelBucketRange bel_bucket_range;
        bel_bucket_range.b.cursor.cursor = chip_info->bel_buckets.begin();
        bel_bucket_range.e.cursor.cursor = chip_info->bel_buckets.end();
        return bel_bucket_range;
    }

    BelBucketId getBelBucketForBel(BelId bel) const final
    {
        BelBucketId bel_bucket;
        bel_bucket.name = IdString(bel_info(chip_info, bel).bel_bucket);
        return bel_bucket;
    }

    const IdStringRange getCellTypes() const final
    {
        const CellMapPOD &cell_map = *chip_info->cell_map;

        IdStringRange id_range;
        id_range.b.cursor = cell_map.cell_names.begin();
        id_range.e.cursor = cell_map.cell_names.end();

        return id_range;
    }

    IdString getBelBucketName(BelBucketId bucket) const final { return bucket.name; }

    BelBucketId getBelBucketByName(IdString name) const final
    {
        for (BelBucketId bel_bucket : getBelBuckets()) {
            if (bel_bucket.name == name) {
                return bel_bucket;
            }
        }

        NPNR_ASSERT_FALSE("Failed to find BEL bucket for name.");
        return BelBucketId();
    }

    size_t get_cell_type_index(IdString cell_type) const;

    BelBucketId getBelBucketForCellType(IdString cell_type) const final
    {
        if (io_port_types.count(cell_type)) {
            BelBucketId bucket;
            bucket.name = id("IOPORTS");
            return bucket;
        }

        BelBucketId bucket;
        const CellMapPOD &cell_map = *chip_info->cell_map;
        bucket.name = IdString(cell_map.cell_bel_buckets[get_cell_type_index(cell_type)]);
        return bucket;
    }

    FilteredBelRange getBelsInBucket(BelBucketId bucket) const final
    {
        BelRange range = getBels();
        FilteredBelRange filtered_range(range.begin(), range.end(),
                                        [this, bucket](BelId bel) { return getBelBucketForBel(bel) == bucket; });

        return filtered_range;
    }

    bool isValidBelForCellType(IdString cell_type, BelId bel) const final
    {
        if (io_port_types.count(cell_type)) {
            return pads.count(bel) > 0;
        }

        const auto &bel_data = bel_info(chip_info, bel);
        if (bel_data.category != BEL_CATEGORY_LOGIC) {
            return false;
        }

        auto cell_type_index = get_cell_type_index(cell_type);
        return bel_data.pin_map[cell_type_index] != -1;
    }

    bool is_cell_valid_constraints(const CellInfo *cell, const TileStatus &tile_status, bool explain) const
    {
        if (io_port_types.count(cell->type)) {
            return true;
        }

        BelId bel = cell->bel;
        NPNR_ASSERT(bel != BelId());

        return constraints.isValidBelForCellType(getCtx(), get_constraint_prototype(bel), tile_status.tags.data(),
                                                 get_cell_constraints(bel, cell->type),
                                                 id(chip_info->tiles[bel.tile].name.get()), cell->name, bel, explain);
    }

    // Return true whether all Bels at a given location are valid
    bool isBelLocationValid(BelId bel) const final
    {
        auto iter = tileStatus.find(bel.tile);
        if (iter == tileStatus.end()) {
            return true;
        }
        const TileStatus &tile_status = iter->second;
        const CellInfo *cell = tile_status.boundcells[bel.index];

        if (cell != nullptr) {
            if (!dedicated_interconnect.isBelLocationValid(bel, cell))
                return false;

            if (io_port_types.count(cell->type)) {
                // FIXME: Probably need to actually constraint io port cell/bel,
                // but the current BBA emission doesn't support that.  This only
                // really matters if the placer can choose IO port locations.
                return true;
            }

            if (!is_cell_valid_constraints(cell, tile_status, explain_constraints)) {
                return false;
            }
        }

        // Still check site status if cell is nullptr; as other bels in the site could be illegal (for example when
        // dedicated paths can no longer be used after ripping up a cell)
        auto &bel_data = bel_info(chip_info, bel);
        bool site_status = get_site_status(tile_status, bel_data).checkSiteRouting(getCtx(), tile_status);

        return site_status;
    }

    CellInfo *getClusterRootCell(ClusterId cluster) const override;
    ArcBounds getClusterBounds(ClusterId cluster) const override;
    Loc getClusterOffset(const CellInfo *cell) const override;
    bool isClusterStrict(const CellInfo *cell) const override;
    bool getClusterPlacement(ClusterId cluster, BelId root_bel,
                             std::vector<std::pair<CellInfo *, BelId>> &placement) const override;

    IdString get_bel_tiletype(BelId bel) const { return IdString(loc_info(chip_info, bel).name); }

    dict<WireId, Loc> sink_locs, source_locs;
    // -------------------------------------------------
    void assignArchInfo() final {}

    // -------------------------------------------------

    static const std::string defaultPlacer;
    static const std::vector<std::string> availablePlacers;

    static const std::string defaultRouter;
    static const std::vector<std::string> availableRouters;

    // -------------------------------------------------
    void read_logical_netlist(const std::string &filename);
    void write_physical_netlist(const std::string &filename) const;
    void parse_xdc(const std::string &filename);

    pool<IdString> io_port_types;
    pool<BelId> pads;

    bool is_site_port(PipId pip) const
    {
        const PipInfoPOD &pip_data = pip_info(chip_info, pip);
        if (pip_data.site == -1) {
            return false;
        }

        BelId bel;
        bel.tile = pip.tile;
        bel.index = pip_data.bel;

        const BelInfoPOD &bel_data = bel_info(chip_info, bel);

        return bel_data.category == BEL_CATEGORY_SITE_PORT;
    }

    // Is the driver and all users of this net located within the same site?
    //
    // Returns false if any element of the net is not placed.
    bool is_net_within_site(const NetInfo &net) const;

    using ArchConstraints = Constraints<kMaxState>;
    ArchConstraints constraints;
    std::vector<ArchConstraints::TagState> default_tags;
    bool explain_constraints;

    struct StateRange
    {
        const int32_t *b;
        const int32_t *e;

        const int32_t *begin() const { return b; }
        const int32_t *end() const { return e; }
    };

    struct Constraint : ArchConstraints::Constraint<StateRange>
    {
        const CellConstraintPOD *constraint;
        Constraint(const CellConstraintPOD *constraint) : constraint(constraint) {}

        size_t tag() const final { return constraint->tag; }

        ArchConstraints::ConstraintType constraint_type() const final
        {
            return Constraints<kMaxState>::ConstraintType(constraint->constraint_type);
        }

        ArchConstraints::ConstraintStateType state() const final
        {
            NPNR_ASSERT(constraint_type() == Constraints<kMaxState>::CONSTRAINT_TAG_IMPLIES);
            NPNR_ASSERT(constraint->states.size() == 1);
            return constraint->states[0];
        }

        StateRange states() const final
        {
            StateRange range;
            range.b = constraint->states.get();
            range.e = range.b + constraint->states.size();

            return range;
        }
    };

    struct ConstraintIterator
    {
        const CellConstraintPOD *constraint;
        ConstraintIterator() {}

        ConstraintIterator operator++()
        {
            ++constraint;
            return *this;
        }

        bool operator!=(const ConstraintIterator &other) const { return constraint != other.constraint; }

        bool operator==(const ConstraintIterator &other) const { return constraint == other.constraint; }

        Constraint operator*() const { return Constraint(constraint); }
    };

    struct ConstraintRange
    {
        ConstraintIterator b, e;

        ConstraintIterator begin() const { return b; }
        ConstraintIterator end() const { return e; }
    };

    uint32_t get_constraint_prototype(BelId bel) const { return chip_info->tiles[bel.tile].type; }

    ConstraintRange get_cell_constraints(BelId bel, IdString cell_type) const
    {
        const auto &bel_data = bel_info(chip_info, bel);
        NPNR_ASSERT(bel_data.category == BEL_CATEGORY_LOGIC);

        int32_t mapping = bel_data.pin_map[get_cell_type_index(cell_type)];
        NPNR_ASSERT(mapping >= 0);

        auto &cell_bel_map = chip_info->cell_map->cell_bel_map[mapping];
        ConstraintRange range;
        range.b.constraint = cell_bel_map.constraints.get();
        range.e.constraint = range.b.constraint + cell_bel_map.constraints.size();

        return range;
    }

    const char *get_site_name(int32_t tile, size_t site) const
    {
        return site_inst_info(chip_info, tile, site).name.get();
    }

    const char *get_site_name(BelId bel) const
    {
        auto &bel_data = bel_info(chip_info, bel);
        return get_site_name(bel.tile, bel_data.site);
    }

    const SiteInstInfoPOD &get_site_inst(BelId bel) const
    {
        auto &bel_data = bel_info(chip_info, bel);
        return site_inst_info(chip_info, bel.tile, bel_data.site);
    }

    const SiteInstInfoPOD &get_site_inst(WireId wire) const
    {
        auto &wire_data = wire_info(wire);
        NPNR_ASSERT(wire_data.site != -1);
        return site_inst_info(chip_info, wire.tile, wire_data.site);
    }

    const SiteInstInfoPOD &get_site_inst(PipId pip) const
    {
        auto &pip_data = pip_info(chip_info, pip);
        return site_inst_info(chip_info, pip.tile, pip_data.site);
    }

    // Is this bel synthetic (e.g. added during import process)?
    //
    // This is generally used for constant networks, but can also be used for
    // static partitions.
    bool is_bel_synthetic(BelId bel) const
    {
        const BelInfoPOD &bel_data = bel_info(chip_info, bel);

        return bel_data.synthetic != 0;
    }

    // Is this pip synthetic (e.g. added during import process)?
    //
    // This is generally used for constant networks, but can also be used for
    // static partitions.
    bool is_pip_synthetic(PipId pip) const
    {
        auto &pip_data = pip_info(chip_info, pip);
        if (pip_data.site == -1) {
            return pip_data.extra_data == -1;
        } else {
            BelId bel;
            bel.tile = pip.tile;
            bel.index = pip_data.bel;
            return is_bel_synthetic(bel);
        }
    }

    bool is_same_site(WireId wire_a, WireId wire_b) const
    {
        if (wire_a.tile == -1) {
            return false;
        }

        if (wire_a.tile != wire_b.tile) {
            return false;
        }

        auto &wire_a_data = wire_info(wire_a);
        auto &wire_b_data = wire_info(wire_b);

        return wire_a_data.site == wire_b_data.site && wire_a_data.site != -1;
    }

    bool is_wire_in_site(WireId wire) const
    {
        if (wire.tile == -1) {
            return false;
        }

        auto &wire_data = wire_info(wire);
        return wire_data.site != -1;
    }

    // Does this pip always invert its signal?
    bool is_inverting(PipId pip) const;

    // Can this pip optional invert its signal?
    bool can_invert(PipId pip) const;

    void merge_constant_nets();
    void report_invalid_bel(BelId bel, CellInfo *cell) const;

    std::vector<IdString> no_pins;
    IdString gnd_cell_pin;
    IdString vcc_cell_pin;
    std::vector<std::vector<LutElement>> lut_elements;
    dict<IdString, const LutCellPOD *> lut_cells;

    // Of the LUT cells, which is used for wires?
    // Note: May be null in arch's without wire LUT types.  Assumption is
    // that these arch's don't need wire LUT's because the LUT share is simple
    // enough to avoid it.
    const LutCellPOD *wire_lut;

    std::regex raw_bin_constant;
    std::regex verilog_bin_constant;
    std::regex verilog_hex_constant;
    void read_lut_equation(DynamicBitarray<> *equation, const Property &equation_parameter) const;

    IdString id_GND;
    IdString id_VCC;
    Lookahead lookahead;
    mutable RouteNodeStorage node_storage;
    mutable SiteRoutingCache site_routing_cache;
    mutable SiteLutMappingCache site_lut_mapping_cache;
    bool disallow_site_routing;
    CellParameters cell_parameters;

    std::string chipdb_hash;
    std::string get_chipdb_hash() const;

    // Masking moves BEL pins from cell_bel_pins to masked_cell_bel_pins for
    // the purposes routing.  The idea is that masked BEL pins are already
    // handled during site routing, and they shouldn't be visible to the
    // router.
    void mask_bel_pins_on_site_wire(NetInfo *net, WireId wire);

    // This removes pips and wires bound by the site router, and unmasks all
    // BEL pins masked during site routing.
    void remove_site_routing();

    // This unmasks any BEL pins that were masked when site routing was bound.
    void unmask_bel_pins();

    void explain_bel_status(BelId bel) const;

    const DefaultCellConnsPOD *get_default_conns(IdString cell_type) const;
    void pack_default_conns();

    dict<IdString, std::vector<CellInfo *>> macro_to_cells;
    void expand_macros();
};

NEXTPNR_NAMESPACE_END

#endif /* FPGA_INTERCHANGE_ARCH_H */