diff options
author | Miodrag Milanovic <mmicko@gmail.com> | 2020-07-23 08:58:19 +0200 |
---|---|---|
committer | Miodrag Milanovic <mmicko@gmail.com> | 2020-07-23 08:58:19 +0200 |
commit | 444e535f000fd7b53dadf6726d5cd29ac34cc75f (patch) | |
tree | 1ac675d8f0381de320849294fa70c946f631e7f6 /3rdparty/pybind11/tests/test_numpy_vectorize.cpp | |
parent | e6991ad5dc79f6118838f091cc05f10d3377eb4a (diff) | |
download | nextpnr-444e535f000fd7b53dadf6726d5cd29ac34cc75f.tar.gz nextpnr-444e535f000fd7b53dadf6726d5cd29ac34cc75f.tar.bz2 nextpnr-444e535f000fd7b53dadf6726d5cd29ac34cc75f.zip |
Add pybind11 2.5 source
Diffstat (limited to '3rdparty/pybind11/tests/test_numpy_vectorize.cpp')
-rw-r--r-- | 3rdparty/pybind11/tests/test_numpy_vectorize.cpp | 89 |
1 files changed, 89 insertions, 0 deletions
diff --git a/3rdparty/pybind11/tests/test_numpy_vectorize.cpp b/3rdparty/pybind11/tests/test_numpy_vectorize.cpp new file mode 100644 index 00000000..a875a74b --- /dev/null +++ b/3rdparty/pybind11/tests/test_numpy_vectorize.cpp @@ -0,0 +1,89 @@ +/* + tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array + arguments + + Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> + + All rights reserved. Use of this source code is governed by a + BSD-style license that can be found in the LICENSE file. +*/ + +#include "pybind11_tests.h" +#include <pybind11/numpy.h> + +double my_func(int x, float y, double z) { + py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); + return (float) x*y*z; +} + +TEST_SUBMODULE(numpy_vectorize, m) { + try { py::module::import("numpy"); } + catch (...) { return; } + + // test_vectorize, test_docs, test_array_collapse + // Vectorize all arguments of a function (though non-vector arguments are also allowed) + m.def("vectorized_func", py::vectorize(my_func)); + + // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) + m.def("vectorized_func2", + [](py::array_t<int> x, py::array_t<float> y, float z) { + return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); + } + ); + + // Vectorize a complex-valued function + m.def("vectorized_func3", py::vectorize( + [](std::complex<double> c) { return c * std::complex<double>(2.f); } + )); + + // test_type_selection + // Numpy function which only accepts specific data types + m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; }); + m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; }); + m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; }); + + + // test_passthrough_arguments + // Passthrough test: references and non-pod types should be automatically passed through (in the + // function definition below, only `b`, `d`, and `g` are vectorized): + struct NonPODClass { + NonPODClass(int v) : value{v} {} + int value; + }; + py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>()); + m.def("vec_passthrough", py::vectorize( + [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) { + return *a + b + c.at(0) + d + e + f.value + g; + } + )); + + // test_method_vectorization + struct VectorizeTestClass { + VectorizeTestClass(int v) : value{v} {}; + float method(int x, float y) { return y + (float) (x + value); } + int value = 0; + }; + py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass"); + vtc .def(py::init<int>()) + .def_readwrite("value", &VectorizeTestClass::value); + + // Automatic vectorizing of methods + vtc.def("method", py::vectorize(&VectorizeTestClass::method)); + + // test_trivial_broadcasting + // Internal optimization test for whether the input is trivially broadcastable: + py::enum_<py::detail::broadcast_trivial>(m, "trivial") + .value("f_trivial", py::detail::broadcast_trivial::f_trivial) + .value("c_trivial", py::detail::broadcast_trivial::c_trivial) + .value("non_trivial", py::detail::broadcast_trivial::non_trivial); + m.def("vectorized_is_trivial", []( + py::array_t<int, py::array::forcecast> arg1, + py::array_t<float, py::array::forcecast> arg2, + py::array_t<double, py::array::forcecast> arg3 + ) { + ssize_t ndim; + std::vector<ssize_t> shape; + std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }}; + return py::detail::broadcast(buffers, ndim, shape); + }); +} |