From 444e535f000fd7b53dadf6726d5cd29ac34cc75f Mon Sep 17 00:00:00 2001 From: Miodrag Milanovic Date: Thu, 23 Jul 2020 08:58:19 +0200 Subject: Add pybind11 2.5 source --- 3rdparty/pybind11/tests/test_numpy_vectorize.cpp | 89 ++++++++++++++++++++++++ 1 file changed, 89 insertions(+) create mode 100644 3rdparty/pybind11/tests/test_numpy_vectorize.cpp (limited to '3rdparty/pybind11/tests/test_numpy_vectorize.cpp') diff --git a/3rdparty/pybind11/tests/test_numpy_vectorize.cpp b/3rdparty/pybind11/tests/test_numpy_vectorize.cpp new file mode 100644 index 00000000..a875a74b --- /dev/null +++ b/3rdparty/pybind11/tests/test_numpy_vectorize.cpp @@ -0,0 +1,89 @@ +/* + tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array + arguments + + Copyright (c) 2016 Wenzel Jakob + + All rights reserved. Use of this source code is governed by a + BSD-style license that can be found in the LICENSE file. +*/ + +#include "pybind11_tests.h" +#include + +double my_func(int x, float y, double z) { + py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); + return (float) x*y*z; +} + +TEST_SUBMODULE(numpy_vectorize, m) { + try { py::module::import("numpy"); } + catch (...) { return; } + + // test_vectorize, test_docs, test_array_collapse + // Vectorize all arguments of a function (though non-vector arguments are also allowed) + m.def("vectorized_func", py::vectorize(my_func)); + + // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) + m.def("vectorized_func2", + [](py::array_t x, py::array_t y, float z) { + return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); + } + ); + + // Vectorize a complex-valued function + m.def("vectorized_func3", py::vectorize( + [](std::complex c) { return c * std::complex(2.f); } + )); + + // test_type_selection + // Numpy function which only accepts specific data types + m.def("selective_func", [](py::array_t) { return "Int branch taken."; }); + m.def("selective_func", [](py::array_t) { return "Float branch taken."; }); + m.def("selective_func", [](py::array_t, py::array::c_style>) { return "Complex float branch taken."; }); + + + // test_passthrough_arguments + // Passthrough test: references and non-pod types should be automatically passed through (in the + // function definition below, only `b`, `d`, and `g` are vectorized): + struct NonPODClass { + NonPODClass(int v) : value{v} {} + int value; + }; + py::class_(m, "NonPODClass").def(py::init()); + m.def("vec_passthrough", py::vectorize( + [](double *a, double b, py::array_t c, const int &d, int &e, NonPODClass f, const double g) { + return *a + b + c.at(0) + d + e + f.value + g; + } + )); + + // test_method_vectorization + struct VectorizeTestClass { + VectorizeTestClass(int v) : value{v} {}; + float method(int x, float y) { return y + (float) (x + value); } + int value = 0; + }; + py::class_ vtc(m, "VectorizeTestClass"); + vtc .def(py::init()) + .def_readwrite("value", &VectorizeTestClass::value); + + // Automatic vectorizing of methods + vtc.def("method", py::vectorize(&VectorizeTestClass::method)); + + // test_trivial_broadcasting + // Internal optimization test for whether the input is trivially broadcastable: + py::enum_(m, "trivial") + .value("f_trivial", py::detail::broadcast_trivial::f_trivial) + .value("c_trivial", py::detail::broadcast_trivial::c_trivial) + .value("non_trivial", py::detail::broadcast_trivial::non_trivial); + m.def("vectorized_is_trivial", []( + py::array_t arg1, + py::array_t arg2, + py::array_t arg3 + ) { + ssize_t ndim; + std::vector shape; + std::array buffers {{ arg1.request(), arg2.request(), arg3.request() }}; + return py::detail::broadcast(buffers, ndim, shape); + }); +} -- cgit v1.2.3