aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/atheros/files/drivers/mtd/devices/spiflash.c
blob: 7bfc252efeda9f2ecd8c2e6c81a64ddbbc5dd5bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
 * MTD driver for the SPI Flash Memory support.
 *
 * Copyright (c) 2005-2006 Atheros Communications Inc.
 * Copyright (C) 2006-2007 FON Technology, SL.
 * Copyright (C) 2006-2007 Imre Kaloz <kaloz@openwrt.org>
 * Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org>
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

/*===========================================================================
** !!!!  VERY IMPORTANT NOTICE !!!!  FLASH DATA STORED IN LITTLE ENDIAN FORMAT
**
** This module contains the Serial Flash access routines for the Atheros SOC.
** The Atheros SOC integrates a SPI flash controller that is used to access
** serial flash parts. The SPI flash controller executes in "Little Endian"
** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be
** BYTESWAPPED! The SPI Flash controller hardware by default performs READ
** ONLY byteswapping when accessed via the SPI Flash Alias memory region
** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the
** flash sectors is stored in "Little Endian" format.
**
** The spiflash_write() routine performs byteswapping on all write
** operations.
**===========================================================================*/

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/squashfs_fs.h>
#include <linux/root_dev.h>
#include <linux/delay.h>
#include <asm/delay.h>
#include <asm/io.h>
#include "spiflash.h"

#ifndef __BIG_ENDIAN
#error This driver currently only works with big endian CPU.
#endif

#define MAX_PARTS 32

#define SPIFLASH "spiflash: "

#define MIN(a,b)        ((a) < (b) ? (a) : (b))

#define busy_wait(condition, wait) \
	do { \
		while (condition) { \
			spin_unlock_bh(&spidata->mutex); \
			if (wait > 1) \
				msleep(wait); \
			else if ((wait == 1) && need_resched()) \
				schedule(); \
			else \
				udelay(1); \
			spin_lock_bh(&spidata->mutex); \
		} \
	} while (0)
		

static __u32 spiflash_regread32(int reg);
static void spiflash_regwrite32(int reg, __u32 data);
static __u32 spiflash_sendcmd (int op, u32 addr);

int __init spiflash_init (void);
void __exit spiflash_exit (void);
static int spiflash_probe_chip (void);
static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr);
static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf);
static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf);

/* Flash configuration table */
struct flashconfig {
    __u32 byte_cnt;
    __u32 sector_cnt;
    __u32 sector_size;
    __u32 cs_addrmask;
} flashconfig_tbl[MAX_FLASH] =
    {
        { 0, 0, 0, 0},
        { STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0},
        { STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0},
        { STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0},
        { STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0},
        { STM_16MB_BYTE_COUNT, STM_16MB_SECTOR_COUNT, STM_16MB_SECTOR_SIZE, 0x0}
    };

/* Mapping of generic opcodes to STM serial flash opcodes */
#define SPI_WRITE_ENABLE    0
#define SPI_WRITE_DISABLE   1
#define SPI_RD_STATUS       2
#define SPI_WR_STATUS       3
#define SPI_RD_DATA         4
#define SPI_FAST_RD_DATA    5
#define SPI_PAGE_PROGRAM    6
#define SPI_SECTOR_ERASE    7
#define SPI_BULK_ERASE      8
#define SPI_DEEP_PWRDOWN    9
#define SPI_RD_SIG          10
#define SPI_MAX_OPCODES     11

struct opcodes {
    __u16 code;
    __s8 tx_cnt;
    __s8 rx_cnt;
} stm_opcodes[] = {
        {STM_OP_WR_ENABLE, 1, 0},
        {STM_OP_WR_DISABLE, 1, 0},
        {STM_OP_RD_STATUS, 1, 1},
        {STM_OP_WR_STATUS, 1, 0},
        {STM_OP_RD_DATA, 4, 4},
        {STM_OP_FAST_RD_DATA, 5, 0},
        {STM_OP_PAGE_PGRM, 8, 0},
        {STM_OP_SECTOR_ERASE, 4, 0},
        {STM_OP_BULK_ERASE, 1, 0},
        {STM_OP_DEEP_PWRDOWN, 1, 0},
        {STM_OP_RD_SIG, 4, 1},
};

/* Driver private data structure */
struct spiflash_data {
	struct 	mtd_info       *mtd;	
	struct 	mtd_partition  *parsed_parts;     /* parsed partitions */
	void 	*readaddr; /* memory mapped data for read  */
	void 	*mmraddr;  /* memory mapped register space */
	wait_queue_head_t wq;
	spinlock_t mutex;
	int state;
};
enum {
	FL_READY,
	FL_READING,
	FL_ERASING,
	FL_WRITING
};

static struct spiflash_data *spidata;

extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts);

/***************************************************************************************************/

static __u32
spiflash_regread32(int reg)
{
	volatile __u32 *data = (__u32 *)(spidata->mmraddr + reg);

	return (*data);
}

static void 
spiflash_regwrite32(int reg, __u32 data)
{
	volatile __u32 *addr = (__u32 *)(spidata->mmraddr + reg);

	*addr = data;
	return;
}


static __u32 
spiflash_sendcmd (int op, u32 addr)
{
	 u32 reg;
	 u32 mask;
	struct opcodes *ptr_opcode;

	ptr_opcode = &stm_opcodes[op];
	busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
	spiflash_regwrite32(SPI_FLASH_OPCODE, ((u32) ptr_opcode->code) | (addr << 8));

	reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt |
        	(ptr_opcode->rx_cnt << 4) | SPI_CTL_START;

	spiflash_regwrite32(SPI_FLASH_CTL, reg);
	busy_wait(spiflash_regread32(SPI_FLASH_CTL) & SPI_CTL_BUSY, 0);
 
	if (!ptr_opcode->rx_cnt)
		return 0;

	reg = (__u32) spiflash_regread32(SPI_FLASH_DATA);

	switch (ptr_opcode->rx_cnt) {
	case 1:
			mask = 0x000000ff;
			break;
	case 2:
			mask = 0x0000ffff;
			break;
	case 3:
			mask = 0x00ffffff;
			break;
	default:
			mask = 0xffffffff;
			break;
	}
	reg &= mask;

	return reg;
}



/* Probe SPI flash device
 * Function returns 0 for failure.
 * and flashconfig_tbl array index for success.
 */
static int 
spiflash_probe_chip (void)
{
	__u32 sig;
   	int flash_size;
	
   	/* Read the signature on the flash device */
	spin_lock_bh(&spidata->mutex);
   	sig = spiflash_sendcmd(SPI_RD_SIG, 0);
	spin_unlock_bh(&spidata->mutex);

   	switch (sig) {
   	case STM_8MBIT_SIGNATURE:
            	flash_size = FLASH_1MB;
        	break;
        case STM_16MBIT_SIGNATURE:
            	flash_size = FLASH_2MB;
            	break;
        case STM_32MBIT_SIGNATURE:
            	flash_size = FLASH_4MB;
            	break;
        case STM_64MBIT_SIGNATURE:
            	flash_size = FLASH_8MB;
            	break;
        case STM_128MBIT_SIGNATURE:
            	flash_size = FLASH_16MB;
            	break;
        default:
	    	printk (KERN_WARNING SPIFLASH "Read of flash device signature failed!\n");
            	return (0);
   	}

   	return (flash_size);
}


/* wait until the flash chip is ready and grab a lock */
static int spiflash_wait_ready(int state)
{
	DECLARE_WAITQUEUE(wait, current);

retry:
	spin_lock_bh(&spidata->mutex);
	if (spidata->state != FL_READY) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&spidata->wq, &wait);
		spin_unlock_bh(&spidata->mutex);
		schedule();
		remove_wait_queue(&spidata->wq, &wait);
		
		if(signal_pending(current))
			return 0;

		goto retry;
	}
	spidata->state = state;

	return 1;
}

static inline void spiflash_done(void)
{
	spidata->state = FL_READY;
	spin_unlock_bh(&spidata->mutex);
	wake_up(&spidata->wq);
}

static int 
spiflash_erase (struct mtd_info *mtd,struct erase_info *instr)
{
	struct opcodes *ptr_opcode;
	u32 temp, reg;

   	/* sanity checks */
   	if (instr->addr + instr->len > mtd->size) return (-EINVAL);

	if (!spiflash_wait_ready(FL_ERASING))
		return -EINTR;

	spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
	busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0);
	reg = spiflash_regread32(SPI_FLASH_CTL);

	ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE];
	temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code);
	spiflash_regwrite32(SPI_FLASH_OPCODE, temp);

	reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START;
	spiflash_regwrite32(SPI_FLASH_CTL, reg);

	/* this will take some time */
	spin_unlock_bh(&spidata->mutex);
	msleep(800);
	spin_lock_bh(&spidata->mutex);
	
	busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 20);
	spiflash_done();

   	instr->state = MTD_ERASE_DONE;
   	if (instr->callback) instr->callback (instr);

   	return 0;
}

static int 
spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf)
{
	u8 *read_addr;
	
   	/* sanity checks */
   	if (!len) return (0);
   	if (from + len > mtd->size) return (-EINVAL);
	
   	/* we always read len bytes */
   	*retlen = len;

	if (!spiflash_wait_ready(FL_READING))
		return -EINTR;
	read_addr = (u8 *)(spidata->readaddr + from);
	memcpy(buf, read_addr, len);
	spiflash_done();

   	return 0;
}

static int 
spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
{
	u32 opcode, bytes_left;

   	*retlen = 0;

   	/* sanity checks */
   	if (!len) return (0);
   	if (to + len > mtd->size) return (-EINVAL);
	
	opcode = stm_opcodes[SPI_PAGE_PROGRAM].code;
	bytes_left = len;
	
	do {
		u32 xact_len, reg, page_offset, spi_data = 0;

		xact_len = MIN(bytes_left, sizeof(__u32));

		/* 32-bit writes cannot span across a page boundary
		 * (256 bytes). This types of writes require two page
		 * program operations to handle it correctly. The STM part
		 * will write the overflow data to the beginning of the
		 * current page as opposed to the subsequent page.
		 */
		page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len;

		if (page_offset > STM_PAGE_SIZE) {
			xact_len -= (page_offset - STM_PAGE_SIZE);
		}

		if (!spiflash_wait_ready(FL_WRITING))
			return -EINTR;

		spiflash_sendcmd(SPI_WRITE_ENABLE, 0);
		switch (xact_len) {
			case 1:
			 	spi_data = (u32) ((u8) *buf);
				break;
			case 2:
				spi_data = (buf[1] << 8) | buf[0];
				break;
			case 3:
				spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0];
				break;
			case 4:
				spi_data = (buf[3] << 24) | (buf[2] << 16) | 
							(buf[1] << 8) | buf[0];
				break;
			default:
				spi_data = 0;
				break;
		}

		spiflash_regwrite32(SPI_FLASH_DATA, spi_data);
		opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8);
		spiflash_regwrite32(SPI_FLASH_OPCODE, opcode);

		reg = spiflash_regread32(SPI_FLASH_CTL);
		reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START;
		spiflash_regwrite32(SPI_FLASH_CTL, reg);

		/* give the chip some time before we start busy waiting */
		spin_unlock_bh(&spidata->mutex);
		schedule();
		spin_lock_bh(&spidata->mutex);

		busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 0);
		spiflash_done();

		bytes_left -= xact_len;
		to += xact_len;
		buf += xact_len;

   		*retlen += xact_len;
	} while (bytes_left != 0);

   	return 0;
}


#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL };
#endif


static int spiflash_probe(struct platform_device *pdev)
{
   	int result = -1;
   	int index, num_parts;
	struct mtd_info *mtd;

	spidata->mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE);
	spin_lock_init(&spidata->mutex);
	init_waitqueue_head(&spidata->wq);
	spidata->state = FL_READY;
	
	if (!spidata->mmraddr) {
  		printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
		kfree(spidata);
		spidata = NULL;
	}

   	mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
   	if (!mtd) {
		kfree(spidata);
		return -ENXIO;
	}
	
   	if (!(index = spiflash_probe_chip())) {
    	printk (KERN_WARNING SPIFLASH "Found no serial flash device\n");
		goto error;
   	}

	spidata->readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt);
	if (!spidata->readaddr) {
		printk (KERN_WARNING SPIFLASH "Failed to map flash device\n");
		goto error;
	}

   	mtd->name = "spiflash";
   	mtd->type = MTD_NORFLASH;
   	mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE);
   	mtd->size = flashconfig_tbl[index].byte_cnt;
   	mtd->erasesize = flashconfig_tbl[index].sector_size;
	mtd->writesize = 1;
   	mtd->numeraseregions = 0;
   	mtd->eraseregions = NULL;
   	mtd->erase = spiflash_erase;
   	mtd->read = spiflash_read;
   	mtd->write = spiflash_write;
	mtd->owner = THIS_MODULE;

   	/* parse redboot partitions */
	num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0);
	if (!num_parts)
		goto error;

	result = add_mtd_partitions(mtd, spidata->parsed_parts, num_parts);
	spidata->mtd = mtd;
	
   	return (result);
	
error:
	kfree(mtd);
	kfree(spidata);
	return -ENXIO;
}

static int spiflash_remove (struct platform_device *pdev)
{
	del_mtd_partitions (spidata->mtd);
	kfree(spidata->mtd);
	return 0;
}

struct platform_driver spiflash_driver = {
	.driver.name = "spiflash",
	.probe = spiflash_probe,
	.remove = spiflash_remove,
};

int __init 
spiflash_init (void)
{
   	spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL);
  	if (!spidata)
		return (-ENXIO);

	spin_lock_init(&spidata->mutex);
	platform_driver_register(&spiflash_driver);

	return 0;
}

void __exit 
spiflash_exit (void)
{
	kfree(spidata);
}

module_init (spiflash_init);
module_exit (spiflash_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("OpenWrt.org, Atheros Communications Inc");
MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");