aboutsummaryrefslogtreecommitdiffstats
path: root/package/network/config/qos-scripts/Makefile
Commit message (Expand)AuthorAgeFilesLines
* qos-scripts: add ifbN device before setting the link upPerry Melange2021-06-211-1/+1
* qos-scripts: fix interface resolvingJo-Philipp Wich2020-05-291-1/+1
* qos-scripts: fix uci callback handlingTony Ambardar2018-06-281-1/+1
* treewide: add license tagsFlorian Eckert2017-06-241-0/+1
* treewide: replace nbd@openwrt.org with nbd@nbd.nameFelix Fietkau2016-06-071-1/+1
* qos-scripts: bump versionFelix Fietkau2016-01-221-2/+2
* cosmetic: remove trailing whitespacesLuka Perkov2015-10-151-1/+1
* qos-scripts: drop obsolete depdendency on iptabes-mod-filter (#19506)Felix Fietkau2015-04-171-1/+1
* qos-scripts: bump PKG_REVISION and copyright yearJo-Philipp Wich2015-01-061-2/+2
* license info - revert r43155John Crispin2014-11-031-3/+0
* Add more license tags with SPDX identifiersJohn Crispin2014-11-031-0/+3
* add myself as a maintainer for a few more packagesFelix Fietkau2012-10-101-0/+2
* packages: sort network related packages into package/network/Felix Fietkau2012-10-101-0/+50
8' href='#n198'>198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
--  Operations synthesis.
--  Copyright (C) 2019 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Types; use Types;
with Types_Utils; use Types_Utils;
with Name_Table;

with Grt.Types; use Grt.Types;
with Grt.Vhdl_Types; use Grt.Vhdl_Types;
with Grt.To_Strings;

with Vhdl.Utils;
with Vhdl.Evaluation;
with Vhdl.Ieee.Std_Logic_1164; use Vhdl.Ieee.Std_Logic_1164;

with Elab.Memtype; use Elab.Memtype;
with Elab.Vhdl_Files;
with Elab.Vhdl_Expr; use Elab.Vhdl_Expr;
with Elab.Vhdl_Types;

with Netlists; use Netlists;

with Synth.Errors; use Synth.Errors;
with Synth.Source; use Synth.Source;
with Synth.Vhdl_Expr; use Synth.Vhdl_Expr;
with Synth.Ieee.Std_Logic_1164; use Synth.Ieee.Std_Logic_1164;
with Synth.Ieee.Numeric_Std; use Synth.Ieee.Numeric_Std;

package body Synth.Vhdl_Eval is
   --  As log2(3m) is directly referenced, the program must be linked with -lm
   --  (math library) on unix systems.
   pragma Linker_Options ("-lm");

   type Tf_Table_2d is array (Boolean, Boolean) of Boolean;

   Tf_2d_And : constant Tf_Table_2d :=
     (False => (others => False),
      True => (True => True, False => False));

   Tf_2d_Nand : constant Tf_Table_2d :=
     (False => (others => True),
      True => (True => False, False => True));

   Tf_2d_Or : constant Tf_Table_2d :=
     (False => (True => True, False => False),
      True => (True => True, False => True));

   Tf_2d_Nor : constant Tf_Table_2d :=
     (False => (True => False, False => True),
      True => (True => False, False => False));

   Tf_2d_Xor : constant Tf_Table_2d :=
     (False => (False => False, True => True),
      True  => (False => True,  True => False));

   Tf_2d_Xnor : constant Tf_Table_2d :=
     (False => (False => True, True => False),
      True  => (False => False,  True => True));

   function Create_Res_Bound (Prev : Type_Acc) return Type_Acc is
   begin
      if Prev.Abound.Dir = Dir_Downto
        and then Prev.Abound.Right = 0
      then
         --  Normalized range
         return Prev;
      end if;

      return Create_Vec_Type_By_Length (Prev.W, Prev.Arr_El);
   end Create_Res_Bound;

   function Eval_Vector_Dyadic (Left, Right : Memtyp;
                                Op : Table_2d;
                                Loc : Syn_Src) return Memtyp
   is
      Res : Memtyp;
   begin
      if Left.Typ.W /= Right.Typ.W then
         Error_Msg_Synth (+Loc, "length of operands mismatch");
         return Null_Memtyp;
      end if;

      Res := Create_Memory (Create_Res_Bound (Left.Typ));
      for I in 1 .. Uns32 (Vec_Length (Res.Typ)) loop
         declare
            Ls : constant Std_Ulogic := Read_Std_Logic (Left.Mem, I - 1);
            Rs : constant Std_Ulogic := Read_Std_Logic (Right.Mem, I - 1);
            V : constant Std_Ulogic := Op (Ls, Rs);
         begin
            Write_Std_Logic (Res.Mem, I - 1, V);
         end;
      end loop;

      return Res;
   end Eval_Vector_Dyadic;

   function Eval_Logic_Vector_Scalar (Vect, Scal : Memtyp;
                                      Op : Table_2d) return Memtyp
   is
      Res : Memtyp;
      Vs, Vv, Vr : Std_Ulogic;
   begin
      Res := Create_Memory (Create_Res_Bound (Vect.Typ));
      Vs := Read_Std_Logic (Scal.Mem, 0);
      for I in 1 .. Vect.Typ.Abound.Len loop
         Vv := Read_Std_Logic (Vect.Mem, I - 1);
         Vr := Op (Vs, Vv);
         Write_Std_Logic (Res.Mem, I - 1, Vr);
      end loop;
      return Res;
   end Eval_Logic_Vector_Scalar;

   function Eval_Logic_Scalar (Left, Right : Memtyp;
                               Op : Table_2d;
                               Neg : Boolean := False) return Memtyp
   is
      Res : Std_Ulogic;
   begin
      Res := Op (Read_Std_Logic (Left.Mem, 0), Read_Std_Logic (Right.Mem, 0));
      if Neg then
         Res := Not_Table (Res);
      end if;
      return Create_Memory_U8 (Std_Ulogic'Pos (Res), Left.Typ);
   end Eval_Logic_Scalar;

   function Eval_Vector_Match (Left, Right : Memtyp;
                               Neg : Boolean;
                               Loc : Syn_Src) return Memtyp
   is
      Res : Std_Ulogic;
   begin
      if Left.Typ.W /= Right.Typ.W then
         Error_Msg_Synth (+Loc, "length of operands mismatch");
         return Null_Memtyp;
      end if;

      Res := '1';
      for I in 1 .. Left.Typ.Abound.Len loop
         declare
            Ls : constant Std_Ulogic := Read_Std_Logic (Left.Mem, I - 1);
            Rs : constant Std_Ulogic := Read_Std_Logic (Right.Mem, I - 1);
         begin
            Res := And_Table (Res, Match_Eq_Table (Ls, Rs));
         end;
      end loop;

      if Neg then
         Res := Not_Table (Res);
      end if;
      return Create_Memory_U8 (Std_Ulogic'Pos (Res), Left.Typ.Arr_El);
   end Eval_Vector_Match;

   function Eval_TF_Vector_Dyadic (Left, Right : Memtyp;
                                   Op : Tf_Table_2d;
                                   Loc : Syn_Src) return Memtyp
   is
      Res : Memtyp;
      L, R : Boolean;
   begin
      if Left.Typ.Sz /= Right.Typ.Sz then
         Error_Msg_Synth (+Loc, "length mismatch");
         return Null_Memtyp;
      end if;

      Res := Create_Memory (Left.Typ);
      for I in 1 .. Left.Typ.Sz loop
         L := Boolean'Val (Read_U8 (Left.Mem + (I - 1)));
         R := Boolean'Val (Read_U8 (Right.Mem + (I - 1)));
         Write_U8 (Res.Mem + (I - 1), Boolean'Pos (Op (L, R)));
      end loop;
      return Res;
   end Eval_TF_Vector_Dyadic;

   function Eval_TF_Array_Element (El, Arr : Memtyp;
                                   Op : Tf_Table_2d) return Memtyp
   is
      Res : Memtyp;
      Ve, Va : Boolean;
   begin
      Res := Create_Memory (Arr.Typ);
      Ve := Boolean'Val (Read_U8 (El.Mem));
      for I in 1 .. Arr.Typ.Sz loop
         Va := Boolean'Val (Read_U8 (Arr.Mem + (I - 1)));
         Write_U8 (Res.Mem + (I - 1), Boolean'Pos (Op (Ve, Va)));
      end loop;
      return Res;
   end Eval_TF_Array_Element;

   function Compare (L, R : Memtyp) return Order_Type is
   begin
      case L.Typ.Kind is
         when Type_Bit
           | Type_Logic =>
            declare
               Lv : constant Ghdl_U8 := Read_U8 (L.Mem);
               Rv : constant Ghdl_U8 := Read_U8 (R.Mem);
            begin
               if Lv < Rv then
                  return Less;
               elsif Lv > Rv then
                  return Greater;
               else
                  return Equal;
               end if;
            end;
         when Type_Discrete =>
            pragma Assert (L.Typ.Sz = R.Typ.Sz);
            if L.Typ.Sz = 1 then
               declare
                  Lv : constant Ghdl_U8 := Read_U8 (L.Mem);
                  Rv : constant Ghdl_U8 := Read_U8 (R.Mem);
               begin
                  if Lv < Rv then
                     return Less;
                  elsif Lv > Rv then
                     return Greater;
                  else
                     return Equal;
                  end if;
               end;
            elsif L.Typ.Sz = 4 then
               declare
                  Lv : constant Ghdl_I32 := Read_I32 (L.Mem);
                  Rv : constant Ghdl_I32 := Read_I32 (R.Mem);
               begin
                  if Lv < Rv then
                     return Less;
                  elsif Lv > Rv then
                     return Greater;
                  else
                     return Equal;
                  end if;
               end;
            else
               raise Internal_Error;
            end if;
         when others =>
            raise Internal_Error;
      end case;
   end Compare;

   function Compare_Array (L, R : Memtyp) return Order_Type
   is
      Len : Uns32;
      Res : Order_Type;
   begin
      Len := Uns32'Min (L.Typ.Abound.Len, R.Typ.Abound.Len);
      for I in 1 .. Size_Type (Len) loop
         Res := Compare
           ((L.Typ.Arr_El, L.Mem + (I - 1) * L.Typ.Arr_El.Sz),
            (R.Typ.Arr_El, R.Mem + (I - 1) * R.Typ.Arr_El.Sz));
         if Res /= Equal then
            return Res;
         end if;
      end loop;
      if L.Typ.Abound.Len > Len then
         return Greater;
      end if;
      if R.Typ.Abound.Len > Len then
         return Less;
      end if;
      return Equal;
   end Compare_Array;

   --  Execute shift and rot.
   --  ZERO is the value to be used for '0' (for shifts).
   function Execute_Shift_Operator (Left : Memtyp;
                                    Count : Int64;
                                    Zero : Ghdl_U8;
                                    Op : Iir_Predefined_Shift_Functions)
                                   return Memtyp
   is
      Cnt : Uns32;
      Len : constant Uns32 := Left.Typ.Abound.Len;
      Dir_Left : Boolean;
      P : Size_Type;
      Res : Memtyp;
      E : Ghdl_U8;
   begin
      --  LRM93 7.2.3
      --  That is, if R is 0 or if L is a null array, the return value is L.
      if Count = 0 or else Len = 0 then
         return Left;
      end if;

      case Op is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Rol =>
            Dir_Left := True;
         when Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sra
           | Iir_Predefined_Array_Ror =>
            Dir_Left := False;
      end case;
      if Count < 0 then
         Cnt := Uns32 (-Count);
         Dir_Left := not Dir_Left;
      else
         Cnt := Uns32 (Count);
      end if;

      case Op is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl =>
            E := Zero;
         when Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               E := Read_U8 (Left.Mem + Size_Type (Len - 1));
            else
               E := Read_U8 (Left.Mem);
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            Cnt := Cnt mod Len;
            if not Dir_Left then
               Cnt := (Len - Cnt) mod Len;
            end if;
      end case;

      Res := Create_Memory (Left.Typ);
      P := 0;

      case Op is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               if Cnt < Len then
                  for I in Cnt .. Len - 1 loop
                     Write_U8 (Res.Mem + P,
                               Read_U8 (Left.Mem + Size_Type (I)));
                     P := P + 1;
                  end loop;
               else
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Write_U8 (Res.Mem + P, E);
                  P := P + 1;
               end loop;
            else
               if Cnt > Len then
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Write_U8 (Res.Mem + P, E);
                  P := P + 1;
               end loop;
               for I in Cnt .. Len - 1 loop
                  Write_U8 (Res.Mem + P,
                            Read_U8 (Left.Mem + Size_Type (I - Cnt)));
                  P := P + 1;
               end loop;
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            for I in 1 .. Len loop
               Write_U8 (Res.Mem + P,
                         Read_U8 (Left.Mem + Size_Type (Cnt)));
               P := P + 1;
               Cnt := Cnt + 1;
               if Cnt = Len then
                  Cnt := 0;
               end if;
            end loop;
      end case;
      return Res;
   end Execute_Shift_Operator;

   procedure Check_Integer_Overflow
     (Val : in out Int64; Typ : Type_Acc; Loc : Syn_Src) is
   begin
      pragma Assert (Typ.Kind = Type_Discrete);
      case Typ.Sz is
         when 4 =>
            if Val < -2**31 or Val >= 2**31 then
               Error_Msg_Synth (+Loc, "integer overflow");
               --  Just keep the lower 32bit (and sign extend).
               Val := Int64
                 (To_Int32 (Uns32 (To_Uns64 (Val) and 16#ffff_ffff#)));
            end if;
         when 8 =>
            null;
         when others =>
            raise Internal_Error;
      end case;
   end Check_Integer_Overflow;

   function Create_Memory_Boolean (V : Boolean) return Memtyp is
   begin
      return Create_Memory_U8 (Boolean'Pos (V), Boolean_Type);
   end Create_Memory_Boolean;

   function Eval_Static_Dyadic_Predefined (Imp : Node;
                                           Res_Typ : Type_Acc;
                                           Left : Memtyp;
                                           Right : Memtyp;
                                           Expr : Node) return Memtyp
   is
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
   begin
      case Def is
         when Iir_Predefined_Error =>
            return Null_Memtyp;

         when Iir_Predefined_Boolean_Xor
            | Iir_Predefined_Bit_Xor =>
            return Create_Memory_U8
              (Boolean'Pos (Boolean'Val (Read_Discrete (Left))
                              xor Boolean'Val (Read_Discrete (Right))),
               Res_Typ);

         when Iir_Predefined_Integer_Plus
           | Iir_Predefined_Physical_Plus =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) + Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Minus
            | Iir_Predefined_Physical_Minus =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) - Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Mul
           | Iir_Predefined_Physical_Integer_Mul
           | Iir_Predefined_Integer_Physical_Mul =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) * Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Div
           | Iir_Predefined_Physical_Physical_Div
           | Iir_Predefined_Physical_Integer_Div =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) / Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Mod =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) mod Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Rem =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) rem Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;

         when Iir_Predefined_Integer_Exp =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) ** Natural (Read_Discrete (Right)),
               Res_Typ);

         when Iir_Predefined_Integer_Less_Equal
            | Iir_Predefined_Physical_Less_Equal
            | Iir_Predefined_Enum_Less_Equal =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) <= Read_Discrete (Right));
         when Iir_Predefined_Integer_Less
            | Iir_Predefined_Physical_Less
            | Iir_Predefined_Enum_Less =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) < Read_Discrete (Right));
         when Iir_Predefined_Integer_Greater_Equal
            | Iir_Predefined_Physical_Greater_Equal
            | Iir_Predefined_Enum_Greater_Equal =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) >= Read_Discrete (Right));
         when Iir_Predefined_Integer_Greater
            | Iir_Predefined_Physical_Greater
            | Iir_Predefined_Enum_Greater =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) > Read_Discrete (Right));
         when Iir_Predefined_Integer_Equality
            | Iir_Predefined_Physical_Equality
            | Iir_Predefined_Enum_Equality
            | Iir_Predefined_Bit_Match_Equality =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) = Read_Discrete (Right));
         when Iir_Predefined_Integer_Inequality
            | Iir_Predefined_Physical_Inequality
            | Iir_Predefined_Enum_Inequality
            | Iir_Predefined_Bit_Match_Inequality =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) /= Read_Discrete (Right));

         when Iir_Predefined_Physical_Real_Mul =>
            return Create_Memory_Discrete
              (Int64 (Fp64 (Read_Discrete (Left)) * Read_Fp64 (Right)),
               Res_Typ);
         when Iir_Predefined_Real_Physical_Mul =>
            return Create_Memory_Discrete
              (Int64 (Read_Fp64 (Left) * Fp64 (Read_Discrete (Right))),
               Res_Typ);
         when Iir_Predefined_Physical_Real_Div =>
            return Create_Memory_Discrete
              (Int64 (Fp64 (Read_Discrete (Left)) / Read_Fp64 (Right)),
               Res_Typ);

         when Iir_Predefined_Floating_Less =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) < Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Less_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) <= Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) = Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) /= Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Greater =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) > Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Greater_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) >= Read_Fp64 (Right)),
               Boolean_Type);

         when Iir_Predefined_Floating_Plus =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) + Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Minus =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) - Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Mul =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) * Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Div =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) / Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Exp =>
            return Create_Memory_Fp64
              (Read_Fp64 (Left) ** Integer (Read_Discrete (Right)), Res_Typ);

         when Iir_Predefined_Array_Array_Concat =>
            declare
               L_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Left.Typ));
               R_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Right.Typ));
               Le_Typ : constant Type_Acc := Get_Array_Element (Left.Typ);
               Re_Typ : constant Type_Acc := Get_Array_Element (Right.Typ);
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Check_Matching_Bounds (Le_Typ, Re_Typ, Expr);
               Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
                 (Get_Uarray_Index (Res_Typ).Drange, L_Len + R_Len);
               Res_St := Create_Onedimensional_Array_Subtype
                 (Res_Typ, Bnd, Le_Typ);
               Res := Create_Memory (Res_St);
               if Left.Typ.Sz > 0 then
                  Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               end if;
               if Right.Typ.Sz > 0 then
                  Copy_Memory (Res.Mem + Left.Typ.Sz, Right.Mem, Right.Typ.Sz);
               end if;
               return Res;
            end;
         when Iir_Predefined_Element_Array_Concat =>
            declare
               Rlen : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Right.Typ));
               Re_Typ : constant Type_Acc := Get_Array_Element (Right.Typ);
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Check_Matching_Bounds (Left.Typ, Re_Typ, Expr);
               Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
                 (Get_Uarray_Index (Res_Typ).Drange, 1 + Rlen);
               Res_St := Create_Onedimensional_Array_Subtype
                 (Res_Typ, Bnd, Re_Typ);
               Res := Create_Memory (Res_St);
               Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               Copy_Memory (Res.Mem + Left.Typ.Sz,
                            Right.Mem, Right.Typ.Sz);
               return Res;
            end;
         when Iir_Predefined_Array_Element_Concat =>
            declare
               Llen : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Left.Typ));
               Le_Typ : constant Type_Acc := Get_Array_Element (Left.Typ);
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Check_Matching_Bounds (Le_Typ, Right.Typ, Expr);
               Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
                 (Get_Uarray_Index (Res_Typ).Drange, Llen + 1);
               Res_St := Create_Onedimensional_Array_Subtype
                 (Res_Typ, Bnd, Le_Typ);
               Res := Create_Memory (Res_St);
               Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               Copy_Memory (Res.Mem + Left.Typ.Sz,
                            Right.Mem, Right.Typ.Sz);
               return Res;
            end;
         when Iir_Predefined_Element_Element_Concat =>
            declare
               El_Typ : constant Type_Acc := Left.Typ;
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Check_Matching_Bounds (Left.Typ, Right.Typ, Expr);
               Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
                 (Get_Uarray_Index (Res_Typ).Drange, 2);
               Res_St := Create_Onedimensional_Array_Subtype
                 (Res_Typ, Bnd, El_Typ);
               Res := Create_Memory (Res_St);
               Copy_Memory (Res.Mem, Left.Mem, El_Typ.Sz);
               Copy_Memory (Res.Mem + El_Typ.Sz,
                            Right.Mem, El_Typ.Sz);
               return Res;
            end;

         when Iir_Predefined_Array_Equality
            | Iir_Predefined_Record_Equality
            | Iir_Predefined_Bit_Array_Match_Equality =>
            return Create_Memory_Boolean (Is_Equal (Left, Right));
         when Iir_Predefined_Array_Inequality
            | Iir_Predefined_Record_Inequality
            | Iir_Predefined_Bit_Array_Match_Inequality =>
            return Create_Memory_Boolean (not Is_Equal (Left, Right));

         when Iir_Predefined_Access_Equality =>
            return Create_Memory_Boolean
              (Read_Access (Left) = Read_Access (Right));
         when Iir_Predefined_Access_Inequality =>
            return Create_Memory_Boolean
              (Read_Access (Left) /= Read_Access (Right));

         when Iir_Predefined_Array_Less =>
            return Create_Memory_Boolean
              (Compare_Array (Left, Right) = Less);
         when Iir_Predefined_Array_Less_Equal =>
            return Create_Memory_Boolean
              (Compare_Array (Left, Right) <= Equal);
         when Iir_Predefined_Array_Greater =>
            return Create_Memory_Boolean
              (Compare_Array (Left, Right) = Greater);
         when Iir_Predefined_Array_Greater_Equal =>
            return Create_Memory_Boolean
              (Compare_Array (Left, Right) >= Equal);

         when Iir_Predefined_Array_Maximum =>
            --  IEEE 1076-2008 5.3.2.4 Predefined operations on array types
            if Compare_Array (Left, Right) = Less then
               return Right;
            else
               return Left;
            end if;
         when Iir_Predefined_Array_Minimum =>
            --  IEEE 1076-2008 5.3.2.4 Predefined operations on array types
            if Compare_Array (Left, Right) = Less then
               return Left;
            else
               return Right;
            end if;

         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right), 0, Def);

         when Iir_Predefined_TF_Array_And =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_And, Expr);
         when Iir_Predefined_TF_Array_Or =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Or, Expr);
         when Iir_Predefined_TF_Array_Xor =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Xor, Expr);
         when Iir_Predefined_TF_Array_Nand =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Nand, Expr);
         when Iir_Predefined_TF_Array_Nor =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Nor, Expr);
         when Iir_Predefined_TF_Array_Xnor =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Xnor, Expr);

         when Iir_Predefined_TF_Element_Array_Or =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Or);
         when Iir_Predefined_TF_Array_Element_Or =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Or);

         when Iir_Predefined_TF_Element_Array_Nor =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Nor);
         when Iir_Predefined_TF_Array_Element_Nor =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Nor);

         when Iir_Predefined_TF_Element_Array_And =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_And);
         when Iir_Predefined_TF_Array_Element_And =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_And);

         when Iir_Predefined_TF_Element_Array_Nand =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Nand);
         when Iir_Predefined_TF_Array_Element_Nand =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Nand);

         when Iir_Predefined_TF_Element_Array_Xor =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Xor);
         when Iir_Predefined_TF_Array_Element_Xor =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Xor);

         when Iir_Predefined_TF_Element_Array_Xnor =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Xnor);
         when Iir_Predefined_TF_Array_Element_Xnor =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Xnor);

         when Iir_Predefined_Ieee_1164_Vector_And
           | Iir_Predefined_Ieee_Numeric_Std_And_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_And_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, And_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Nand
           | Iir_Predefined_Ieee_Numeric_Std_Nand_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Nand_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Nand_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Or
           | Iir_Predefined_Ieee_Numeric_Std_Or_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Or_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Or_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Nor
           | Iir_Predefined_Ieee_Numeric_Std_Nor_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Nor_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Nor_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Xor
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Xor_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Xnor
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Xnor_Table, Expr);

         when Iir_Predefined_Ieee_1164_Scalar_And =>
            return Eval_Logic_Scalar (Left, Right, And_Table);
         when Iir_Predefined_Ieee_1164_Scalar_Or =>
            return Eval_Logic_Scalar (Left, Right, Or_Table);
         when Iir_Predefined_Ieee_1164_Scalar_Xor =>
            return Eval_Logic_Scalar (Left, Right, Xor_Table);

         when Iir_Predefined_Std_Ulogic_Match_Equality =>
            return Eval_Logic_Scalar (Left, Right, Match_Eq_Table);
         when Iir_Predefined_Std_Ulogic_Match_Inequality =>
            return Eval_Logic_Scalar (Left, Right, Match_Eq_Table, True);
         when Iir_Predefined_Std_Ulogic_Match_Greater =>
            return Eval_Logic_Scalar (Left, Right, Match_Gt_Table);
         when Iir_Predefined_Std_Ulogic_Match_Greater_Equal =>
            return Eval_Logic_Scalar (Left, Right, Match_Ge_Table);
         when Iir_Predefined_Std_Ulogic_Match_Less_Equal =>
            return Eval_Logic_Scalar (Left, Right, Match_Le_Table);
         when Iir_Predefined_Std_Ulogic_Match_Less =>
            return Eval_Logic_Scalar (Left, Right, Match_Lt_Table);

         when Iir_Predefined_Std_Ulogic_Array_Match_Equality =>
            return Eval_Vector_Match (Left, Right, False, Expr);
         when Iir_Predefined_Std_Ulogic_Array_Match_Inequality =>
            return Eval_Vector_Match (Left, Right, True, Expr);

         when Iir_Predefined_Ieee_1164_And_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_And_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_And_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, And_Table);
         when Iir_Predefined_Ieee_1164_Or_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Or_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Or_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Or_Table);
         when Iir_Predefined_Ieee_1164_Xor_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Xor_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Xor_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Xor_Table);
         when Iir_Predefined_Ieee_1164_Nand_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Nand_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Nand_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Nand_Table);
         when Iir_Predefined_Ieee_1164_Nor_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Nor_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Nor_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Nor_Table);
         when Iir_Predefined_Ieee_1164_Xnor_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Xnor_Table);

         when Iir_Predefined_Ieee_1164_And_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_And_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_And_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, And_Table);
         when Iir_Predefined_Ieee_1164_Or_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Or_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Or_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Or_Table);
         when Iir_Predefined_Ieee_1164_Xor_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Xor_Table);
         when Iir_Predefined_Ieee_1164_Nand_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Nand_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Nand_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Nand_Table);
         when Iir_Predefined_Ieee_1164_Nor_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Nor_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Nor_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Nor_Table);
         when Iir_Predefined_Ieee_1164_Xnor_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Xnor_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xnor_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Xnor_Table);

         when Iir_Predefined_Ieee_1164_Vector_Sll
            | Iir_Predefined_Ieee_Numeric_Std_Sla_Uns_Int =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right), Std_Ulogic'Pos('0'),
               Iir_Predefined_Array_Sll);
         when Iir_Predefined_Ieee_1164_Vector_Srl
            | Iir_Predefined_Ieee_Numeric_Std_Sra_Uns_Int =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right), Std_Ulogic'Pos('0'),
               Iir_Predefined_Array_Srl);
         when Iir_Predefined_Ieee_Numeric_Std_Sra_Sgn_Int =>
            declare
               Cnt : constant Int64 := Read_Discrete (Right);
            begin
               if Cnt >= 0 then
                  return Execute_Shift_Operator
                    (Left, Cnt, Std_Ulogic'Pos('0'), Iir_Predefined_Array_Sra);
               else
                  return Execute_Shift_Operator
                    (Left, -Cnt, Std_Ulogic'Pos('0'),
                     Iir_Predefined_Array_Sll);
               end if;
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Sla_Sgn_Int =>
            declare
               Cnt : Int64;
               Op : Iir_Predefined_Shift_Functions;
            begin
               Cnt := Read_Discrete (Right);
               if Cnt >= 0 then
                  Op := Iir_Predefined_Array_Sll;
               else
                  Cnt := -Cnt;
                  Op :=Iir_Predefined_Array_Sra;
               end if;
               return Execute_Shift_Operator
                 (Left, Cnt, Std_Ulogic'Pos('0'), Op);
            end;

         when Iir_Predefined_Ieee_1164_Vector_Rol
            | Iir_Predefined_Ieee_Numeric_Std_Rol_Uns_Int
            | Iir_Predefined_Ieee_Numeric_Std_Rol_Sgn_Int =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right), Std_Ulogic'Pos('0'),
               Iir_Predefined_Array_Rol);
         when Iir_Predefined_Ieee_1164_Vector_Ror
            | Iir_Predefined_Ieee_Numeric_Std_Ror_Uns_Int
            | Iir_Predefined_Ieee_Numeric_Std_Ror_Sgn_Int =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right),  Std_Ulogic'Pos('0'),
               Iir_Predefined_Array_Ror);

         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Ne_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, +Expr) /= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, +Expr) /= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Greater, +Expr) /= Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Gt_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Ge_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Less, +Expr) > Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Uns
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Slv
           | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Uns_Slv =>
            return Add_Uns_Uns (Left, Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Log
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Log =>
            return Add_Uns_Uns (Left, Log_To_Vec (Right, Left), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Log_Uns =>
            return Add_Uns_Uns (Log_To_Vec (Left, Right), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Nat
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Int =>
            return Add_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Nat_Uns =>
            return Add_Uns_Nat (Right, To_Uns64 (Read_Discrete (Left)), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Sgn =>
            return Add_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Int =>
            return Add_Sgn_Int (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Int_Sgn =>
            return Add_Sgn_Int (Right, Read_Discrete (Left), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Log =>
            return Add_Sgn_Sgn (Left, Log_To_Vec (Right, Left), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Log_Sgn =>
            return Add_Sgn_Sgn (Log_To_Vec (Left, Right), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Uns =>
            return Sub_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Nat =>
            return Sub_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Nat_Uns =>
            return Sub_Nat_Uns (To_Uns64 (Read_Discrete (Left)), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Log =>
            return Sub_Uns_Uns (Left, Log_To_Vec (Right, Left), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Log_Uns =>
            return Sub_Uns_Uns (Log_To_Vec (Left, Right), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Sgn =>
            return Sub_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Int =>
            return Sub_Sgn_Int (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Int_Sgn =>
            return Sub_Int_Sgn (Read_Discrete (Left), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Log =>
            return Sub_Sgn_Sgn (Left, Log_To_Vec (Right, Left), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Log_Sgn =>
            return Sub_Sgn_Sgn (Log_To_Vec (Left, Right), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Uns =>
            return Mul_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Nat_Uns =>
            return Mul_Nat_Uns (To_Uns64 (Read_Discrete (Left)), Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Nat =>
            return Mul_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Sgn =>
            return Mul_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Int =>
            return Mul_Sgn_Int (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Int_Sgn =>
            return Mul_Int_Sgn (Read_Discrete (Left), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Div_Uns_Uns =>
            return Div_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Uns_Nat =>
            return Div_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Nat_Uns =>
            return Div_Nat_Uns (To_Uns64 (Read_Discrete (Left)), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Div_Sgn_Sgn =>
            return Div_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Int_Sgn =>
            return Div_Int_Sgn (Read_Discrete (Left), Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Sgn_Int =>
            return Div_Sgn_Int (Left, Read_Discrete (Right), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Rem_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Mod_Uns_Uns =>
            return Rem_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Mod_Uns_Nat =>
            return Rem_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Nat_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Mod_Nat_Uns =>
            return Rem_Nat_Uns (To_Uns64 (Read_Discrete (Left)), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Rem_Sgn_Sgn =>
            return Rem_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Int_Sgn =>
            return Rem_Int_Sgn (Read_Discrete (Left), Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Sgn_Int =>
            return Rem_Sgn_Int (Left, Read_Discrete (Right), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mod_Sgn_Sgn =>
            return Mod_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mod_Int_Sgn =>
            return Mod_Int_Sgn (Read_Discrete (Left), Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mod_Sgn_Int =>
            return Mod_Sgn_Int (Left, Read_Discrete (Right), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Srl_Uns_Int
           |  Iir_Predefined_Ieee_Numeric_Std_Srl_Sgn_Int =>
            declare
               Amt : Int64;
            begin
               Amt := Read_Discrete (Right);
               if Amt >= 0 then
                  return Shift_Vec (Left, Uns32 (Amt), True, False);
               else
                  return Shift_Vec (Left, Uns32 (-Amt), False, False);
               end if;
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Sll_Uns_Int
           |  Iir_Predefined_Ieee_Numeric_Std_Sll_Sgn_Int =>
            declare
               Amt : Int64;
            begin
               Amt := Read_Discrete (Right);
               if Amt >= 0 then
                  return Shift_Vec (Left, Uns32 (Amt), False, False);
               else
                  return Shift_Vec (Left, Uns32 (-Amt), True, False);
               end if;
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Uns_Uns =>
            declare
               Res : Std_Ulogic;
            begin
               Res := Match_Eq_Vec_Vec (Left, Right, False, +Expr);
               return Create_Memory_U8 (Std_Ulogic'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Uns_Uns =>
            declare
               Res : Std_Ulogic;
            begin
               Res := Match_Eq_Vec_Vec (Left, Right, False, +Expr);
               Res := Not_Table (Res);
               return Create_Memory_U8 (Std_Ulogic'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Uns_Uns =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Lt, False, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Sgn_Sgn =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Lt, True, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Match_Le_Uns_Uns =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Le, False, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Match_Le_Sgn_Sgn =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Le, True, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Match_Gt_Uns_Uns =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Gt, False, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Match_Gt_Sgn_Sgn =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Gt, True, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Match_Ge_Uns_Uns =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Ge, False, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Match_Ge_Sgn_Sgn =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Ge, True, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Sgn_Sgn =>
            declare
               Res : Std_Ulogic;
            begin
               Res := Match_Eq_Vec_Vec (Left, Right, True, +Expr);
               return Create_Memory_U8 (Std_Ulogic'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Sgn_Sgn =>
            declare
               Res : Std_Ulogic;
            begin
               Res := Match_Eq_Vec_Vec (Left, Right, True, +Expr);
               Res := Not_Table (Res);
               return Create_Memory_U8 (Std_Ulogic'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Math_Real_Pow =>
            declare
               function Pow (L, R : Fp64) return Fp64;
               pragma Import (C, Pow);
            begin
               return Create_Memory_Fp64
                 (Pow (Read_Fp64 (Left), Read_Fp64 (Right)), Res_Typ);
            end;

         when others =>
            Error_Msg_Synth
              (+Expr, "eval_static_dyadic_predefined: unhandled "
                 & Iir_Predefined_Functions'Image (Def));
            return Null_Memtyp;
      end case;
   end Eval_Static_Dyadic_Predefined;

   function Eval_Vector_Monadic (Vec : Memtyp; Op : Table_1d) return Memtyp
   is
      Len : constant Iir_Index32 := Vec_Length (Vec.Typ);
      Res : Memtyp;
   begin
      Res := Create_Memory (Create_Res_Bound (Vec.Typ));
      for I in 1 .. Uns32 (Len) loop
         declare
            V : constant Std_Ulogic := Read_Std_Logic (Vec.Mem, I - 1);
         begin
            Write_Std_Logic (Res.Mem, I - 1, Op (V));
         end;
      end loop;
      return Res;
   end Eval_Vector_Monadic;

   function Eval_Vector_Reduce (Init : Std_Ulogic;
                                Vec : Memtyp;
                                Op : Table_2d;
                                Neg : Boolean) return Memtyp
   is
      El_Typ : constant Type_Acc := Vec.Typ.Arr_El;
      Res : Std_Ulogic;
   begin
      Res := Init;
      for I in 1 .. Uns32 (Vec_Length (Vec.Typ)) loop
         declare
            V : constant Std_Ulogic := Read_Std_Logic (Vec.Mem, I - 1);
         begin
            Res := Op (Res, V);
         end;
      end loop;

      if Neg then
         Res := Not_Table (Res);
      end if;

      return Create_Memory_U8 (Std_Ulogic'Pos (Res), El_Typ);
   end Eval_Vector_Reduce;

   function Eval_TF_Vector_Monadic (Vec : Memtyp) return Memtyp
   is
      Len : constant Iir_Index32 := Vec_Length (Vec.Typ);
      Res : Memtyp;
   begin
      Res := Create_Memory (Create_Res_Bound (Vec.Typ));
      for I in 1 .. Uns32 (Len) loop
         declare
            V : constant Boolean :=
              Boolean'Val (Read_U8 (Vec.Mem + Size_Type (I - 1)));
         begin
            Write_U8 (Res.Mem + Size_Type (I - 1), Boolean'Pos (not V));
         end;
      end loop;
      return Res;
   end Eval_TF_Vector_Monadic;

   function Eval_TF_Vector_Reduce (Init : Boolean;
                                   Neg : Boolean;
                                   Vec : Memtyp;
                                   Op : Tf_Table_2d) return Memtyp
   is
      El_Typ : constant Type_Acc := Vec.Typ.Arr_El;
      Res : Boolean;
   begin
      Res := Init;
      for I in 1 .. Size_Type (Vec.Typ.Abound.Len) loop
         declare
            V : constant Boolean := Boolean'Val (Read_U8 (Vec.Mem + (I - 1)));
         begin
            Res := Op (Res, V);
         end;
      end loop;

      return Create_Memory_U8 (Boolean'Pos (Res xor Neg), El_Typ);
   end Eval_TF_Vector_Reduce;

   function Eval_Vector_Maximum (Vec : Memtyp) return Memtyp
   is
      Etyp : constant Type_Acc := Vec.Typ.Arr_El;
      Len : constant Uns32 := Vec.Typ.Abound.Len;
   begin
      case Etyp.Kind is
         when Type_Logic
           | Type_Bit
           | Type_Discrete =>
            declare
               Res : Int64;
               V : Int64;
            begin
               case Etyp.Drange.Dir is
                  when Dir_To =>
                     Res := Etyp.Drange.Left;
                  when Dir_Downto =>
                     Res := Etyp.Drange.Right;
               end case;

               for I in 1 .. Len loop
                  V := Read_Discrete
                    (Vec.Mem + Size_Type (I - 1) * Etyp.Sz, Etyp);
                  if V > Res then
                     Res := V;
                  end if;
               end loop;
               return Create_Memory_Discrete (Res, Etyp);
            end;
         when Type_Float =>
            declare
               Res : Fp64;
               V : Fp64;
            begin
               case Etyp.Frange.Dir is
                  when Dir_To =>
                     Res := Etyp.Frange.Left;
                  when Dir_Downto =>
                     Res := Etyp.Frange.Right;
               end case;

               for I in 1 .. Len loop
                  V := Read_Fp64
                    (Vec.Mem + Size_Type (I - 1) * Etyp.Sz);
                  if V > Res then
                     Res := V;
                  end if;
               end loop;
               return Create_Memory_Fp64 (Res, Etyp);
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Eval_Vector_Maximum;

   function Eval_Vector_Minimum (Vec : Memtyp) return Memtyp
   is
      Etyp : constant Type_Acc := Vec.Typ.Arr_El;
      Len : constant Uns32 := Vec.Typ.Abound.Len;
   begin
      case Etyp.Kind is
         when Type_Logic
           | Type_Bit
           | Type_Discrete =>
            declare
               Res : Int64;
               V : Int64;
            begin
               case Etyp.Drange.Dir is
                  when Dir_To =>
                     Res := Etyp.Drange.Right;
                  when Dir_Downto =>
                     Res := Etyp.Drange.Left;
               end case;

               for I in 1 .. Len loop
                  V := Read_Discrete
                    (Vec.Mem + Size_Type (I - 1) * Etyp.Sz, Etyp);
                  if V < Res then
                     Res := V;
                  end if;
               end loop;
               return Create_Memory_Discrete (Res, Etyp);
            end;
         when Type_Float =>
            declare
               Res : Fp64;
               V : Fp64;
            begin
               case Etyp.Frange.Dir is
                  when Dir_To =>
                     Res := Etyp.Frange.Right;
                  when Dir_Downto =>
                     Res := Etyp.Frange.Left;
               end case;

               for I in 1 .. Len loop
                  V := Read_Fp64
                    (Vec.Mem + Size_Type (I - 1) * Etyp.Sz);
                  if V < Res then
                     Res := V;
                  end if;
               end loop;
               return Create_Memory_Fp64 (Res, Etyp);
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Eval_Vector_Minimum;

   function Eval_Static_Monadic_Predefined (Imp : Node;
                                             Operand : Memtyp;
                                             Expr : Node) return Memtyp
   is
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
   begin
      case Def is
         when Iir_Predefined_Boolean_Not
           | Iir_Predefined_Bit_Not =>
            return Create_Memory_U8 (1 - Read_U8 (Operand), Operand.Typ);

         when Iir_Predefined_Bit_Condition =>
            return Create_Memory_U8 (Read_U8 (Operand), Operand.Typ);

         when Iir_Predefined_Integer_Negation
           | Iir_Predefined_Physical_Negation =>
            return Create_Memory_Discrete
              (-Read_Discrete (Operand), Operand.Typ);
         when Iir_Predefined_Integer_Absolute
           | Iir_Predefined_Physical_Absolute =>
            return Create_Memory_Discrete
              (abs Read_Discrete (Operand), Operand.Typ);
         when Iir_Predefined_Integer_Identity
           | Iir_Predefined_Physical_Identity =>
            return Operand;

         when Iir_Predefined_Floating_Negation =>
            return Create_Memory_Fp64 (-Read_Fp64 (Operand), Operand.Typ);
         when Iir_Predefined_Floating_Identity =>
            return Operand;
         when Iir_Predefined_Floating_Absolute =>
            return Create_Memory_Fp64 (abs Read_Fp64 (Operand), Operand.Typ);

         when Iir_Predefined_Vector_Maximum =>
            return Eval_Vector_Maximum (Operand);
         when Iir_Predefined_Vector_Minimum =>
            return Eval_Vector_Minimum (Operand);

         when Iir_Predefined_TF_Array_Not =>
            return Eval_TF_Vector_Monadic (Operand);

         when Iir_Predefined_TF_Reduction_Or =>
            return Eval_TF_Vector_Reduce (False, False, Operand, Tf_2d_Or);
         when Iir_Predefined_TF_Reduction_And =>
            return Eval_TF_Vector_Reduce (True, False, Operand, Tf_2d_And);
         when Iir_Predefined_TF_Reduction_Xor =>
            return Eval_TF_Vector_Reduce (False, False, Operand, Tf_2d_Xor);
         when Iir_Predefined_TF_Reduction_Nor =>
            return Eval_TF_Vector_Reduce (False, True, Operand, Tf_2d_Or);
         when Iir_Predefined_TF_Reduction_Nand =>
            return Eval_TF_Vector_Reduce (True, True, Operand, Tf_2d_And);
         when Iir_Predefined_TF_Reduction_Xnor =>
            return Eval_TF_Vector_Reduce (False, True, Operand, Tf_2d_Xor);

         when Iir_Predefined_Ieee_1164_Condition_Operator =>
            --  Constant std_logic: need to convert.
            declare
               Val : Uns32;
               Zx : Uns32;
            begin
               From_Std_Logic (Int64 (Read_U8 (Operand)), Val, Zx);
               return Create_Memory_U8
                 (Boolean'Pos (Val = 1 and Zx = 0), Boolean_Type);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Neg_Sgn =>
            return Neg_Vec (Operand, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Abs_Sgn =>
            return Abs_Vec (Operand, +Expr);

         when Iir_Predefined_Ieee_1164_Vector_Not
           | Iir_Predefined_Ieee_Numeric_Std_Not_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Not_Sgn =>
            return Eval_Vector_Monadic (Operand, Not_Table);

         when Iir_Predefined_Ieee_1164_Scalar_Not =>
            return Create_Memory_U8
              (Std_Ulogic'Pos (Not_Table (Read_Std_Logic (Operand.Mem, 0))),
               Operand.Typ);

         when Iir_Predefined_Ieee_1164_And_Suv
            | Iir_Predefined_Ieee_Numeric_Std_And_Uns =>
            return Eval_Vector_Reduce ('1', Operand, And_Table, False);
         when Iir_Predefined_Ieee_1164_Nand_Suv =>
            return Eval_Vector_Reduce ('1', Operand, And_Table, True);

         when Iir_Predefined_Ieee_1164_Or_Suv
            | Iir_Predefined_Ieee_Numeric_Std_Or_Uns =>
            return Eval_Vector_Reduce ('0', Operand, Or_Table, False);
         when Iir_Predefined_Ieee_1164_Nor_Suv =>
            return Eval_Vector_Reduce ('0', Operand, Or_Table, True);

         when Iir_Predefined_Ieee_1164_Xor_Suv =>
            return Eval_Vector_Reduce ('0', Operand, Xor_Table, False);
         when Iir_Predefined_Ieee_1164_Xnor_Suv =>
            return Eval_Vector_Reduce ('0', Operand, Xor_Table, True);

         when others =>
            Error_Msg_Synth
              (+Expr, "eval_static_monadic_predefined: unhandled "
                 & Iir_Predefined_Functions'Image (Def));
            raise Internal_Error;
      end case;
   end Eval_Static_Monadic_Predefined;

   function Eval_To_Log_Vector (Arg : Uns64; Sz : Int64; Res_Type : Type_Acc)
                               return Memtyp
   is
      Len : constant Iir_Index32 := Iir_Index32 (Sz);
      El_Type : constant Type_Acc := Get_Array_Element (Res_Type);
      Res : Memtyp;
      Bnd : Type_Acc;
      B : Uns64;
   begin
      Bnd := Create_Vec_Type_By_Length (Width (Len), El_Type);
      Res := Create_Memory (Bnd);
      for I in 1 .. Len loop
         B := Shift_Right_Arithmetic (Arg, Natural (I - 1)) and 1;
         Write_Std_Logic (Res.Mem, Uns32 (Len - I),
                          Std_Ulogic'Val (Std_Logic_0_Pos + B));
      end loop;
      return Res;
   end Eval_To_Log_Vector;

   function Eval_To_Bit_Vector (Arg : Uns64; Sz : Int64; Res_Type : Type_Acc)
                               return Memtyp
   is
      Len : constant Size_Type := Size_Type (Sz);
      El_Type : constant Type_Acc := Get_Array_Element (Res_Type);
      Res : Memtyp;
      Bnd : Type_Acc;
      B : Uns64;
   begin
      Bnd := Create_Vec_Type_By_Length (Width (Sz), El_Type);
      Res := Create_Memory (Bnd);
      for I in 1 .. Len loop
         B := Shift_Right_Arithmetic (Arg, Natural (I - 1)) and 1;
         Write_U8 (Res.Mem + (Len - I), Ghdl_U8 (B));
      end loop;
      return Res;
   end Eval_To_Bit_Vector;

   function Eval_Unsigned_To_Integer (Arg : Memtyp; Loc : Node) return Int64
   is
      Res : Uns64;
      V : Std_Ulogic;
   begin
      Res := 0;
      for I in 1 .. Vec_Length (Arg.Typ) loop
         V := Std_Ulogic'Val (Read_U8 (Arg.Mem + Size_Type (I - 1)));
         case To_X01 (V) is
            when '0' =>
               Res := Res * 2;
            when '1' =>
               Res := Res * 2 + 1;
            when 'X' =>
               Warning_Msg_Synth
                 (+Loc, "metavalue detected, returning 0");
               Res := 0;
               exit;
         end case;
      end loop;
      return To_Int64 (Res);
   end Eval_Unsigned_To_Integer;

   function Eval_Signed_To_Integer (Arg : Memtyp; Loc : Node) return Int64
   is
      Len : constant Iir_Index32 := Vec_Length (Arg.Typ);
      Res : Uns64;
      E : Std_Ulogic;
   begin
      if Len = 0 then
         Warning_Msg_Synth
           (+Loc, "numeric_std.to_integer: null detected, returning 0");
         return 0;
      end if;

      E := Std_Ulogic'Val (Read_U8 (Arg.Mem));
      case To_X01 (E) is
         when '0' =>
            Res := 0;
         when '1' =>
            Res := not 0;
         when 'X' =>
            Warning_Msg_Synth (+Loc, "metavalue detected, returning 0");
            return 0;
      end case;
      for I in 2 .. Len loop
         E := Std_Ulogic'Val (Read_U8 (Arg.Mem + Size_Type (I - 1)));
         case To_X01 (E) is
            when '0' =>
               Res := Res * 2;
            when '1' =>
               Res := Res * 2 + 1;
            when 'X' =>
               Warning_Msg_Synth (+Loc, "metavalue detected, returning 0");
               return 0;
         end case;
      end loop;
      return To_Int64 (Res);
   end Eval_Signed_To_Integer;

   function Eval_Array_Char_To_String (Param : Memtyp;
                                       Res_Typ : Type_Acc;
                                       Imp : Node) return Memtyp
   is
      use Vhdl.Utils;
      use Name_Table;
      Len : constant Uns32 := Param.Typ.Abound.Len;
      Elt : constant Type_Acc := Param.Typ.Arr_El;
      Etype : constant Node := Get_Base_Type
        (Get_Element_Subtype
           (Get_Type (Get_Interface_Declaration_Chain (Imp))));
      pragma Assert (Get_Kind (Etype) = Iir_Kind_Enumeration_Type_Definition);
      Enums : constant Iir_Flist := Get_Enumeration_Literal_List (Etype);
      Lit : Node;
      Lit_Id : Name_Id;
      Bnd : Bound_Type;
      Res_St : Type_Acc;
      Res : Memtyp;
      V : Int64;
   begin
      Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
        (Res_Typ.Uarr_Idx.Drange, Iir_Index32 (Len));
      Res_St := Create_Onedimensional_Array_Subtype
        (Res_Typ, Bnd, Res_Typ.Uarr_El);
      Res := Create_Memory (Res_St);
      for I in 1 .. Len loop
         V := Read_Discrete (Param.Mem + Size_Type (I - 1) * Elt.Sz, Elt);
         Lit := Get_Nth_Element (Enums, Natural (V));
         Lit_Id := Get_Identifier (Lit);
         pragma Assert (Is_Character (Lit_Id));
         Write_U8 (Res.Mem + Size_Type (I - 1),
                   Character'Pos (Get_Character (Lit_Id)));
      end loop;
      return Res;
   end Eval_Array_Char_To_String;

   function String_To_Memtyp (Str : String; Styp : Type_Acc) return Memtyp
   is
      Len : constant Natural := Str'Length;
      Bnd : Bound_Type;
      Typ : Type_Acc;
      Res : Memtyp;
   begin
      Bnd := (Dir => Dir_To, Left => 1, Right => Int32 (Len),
              Len => Uns32 (Len));
      Typ := Create_Array_Type (Bnd, True, Styp.Uarr_El);

      Res := Create_Memory (Typ);
      for I in Str'Range loop
         Write_U8 (Res.Mem + Size_Type (I - Str'First),
                   Character'Pos (Str (I)));
      end loop;
      return Res;
   end String_To_Memtyp;

   function Eval_Enum_To_String (Param : Memtyp;
                                 Res_Typ : Type_Acc;
                                 Imp : Node) return Memtyp
   is
      use Vhdl.Utils;
      use Name_Table;
      Etype : constant Node := Get_Base_Type
        (Get_Type (Get_Interface_Declaration_Chain (Imp)));
      pragma Assert (Get_Kind (Etype) = Iir_Kind_Enumeration_Type_Definition);
      Enums : constant Iir_Flist := Get_Enumeration_Literal_List (Etype);
      Lit : Node;
      Lit_Id : Name_Id;
      V : Int64;
      C : String (1 .. 1);
   begin
      V := Read_Discrete (Param.Mem, Param.Typ);
      Lit := Get_Nth_Element (Enums, Natural (V));
      Lit_Id := Get_Identifier (Lit);
      if Is_Character (Lit_Id) then
         C (1) := Get_Character (Lit_Id);
         return String_To_Memtyp (C, Res_Typ);
      else
         return String_To_Memtyp (Image (Lit_Id), Res_Typ);
      end if;
   end Eval_Enum_To_String;

   Hex_Chars : constant array (Natural range 0 .. 15) of Character :=
     "0123456789ABCDEF";

   function Eval_Bit_Vector_To_String (Val : Memtyp;
                                       Res_Typ : Type_Acc;
                                       Log_Base : Natural) return Memtyp
   is
      Base : constant Natural := 2 ** Log_Base;
      Blen : constant Natural := Natural (Val.Typ.Abound.Len);
      Str : String (1 .. (Blen + Log_Base - 1) / Log_Base);
      Pos : Natural;
      V : Natural;
      N : Natural;
   begin
      V := 0;
      N := 1;
      Pos := Str'Last;
      for I in 1 .. Blen loop
         V := V + Natural (Read_U8 (Val.Mem + Size_Type (Blen - I))) * N;
         N := N * 2;
         if N = Base or else I = Blen then
            Str (Pos) := Hex_Chars (V);
            Pos := Pos - 1;
            N := 1;
            V := 0;
         end if;
      end loop;
      return String_To_Memtyp (Str, Res_Typ);
   end Eval_Bit_Vector_To_String;

   function Eval_Logic_Vector_To_String (Val : Memtyp;
                                         Res_Typ : Type_Acc;
                                         Log_Base : Natural) return Memtyp
   is
      Base : constant Natural := 2 ** Log_Base;
      Blen : constant Uns32 := Val.Typ.Abound.Len;
      Str : String (1 .. (Natural (Blen) + Log_Base - 1) / Log_Base);
      Pos : Natural;
      D : Std_Ulogic;
      V : Natural;
      N : Natural;
      Has_X, Has_Z, Has_D : Boolean;
   begin
      V := 0;
      N := 1;
      Has_X := False;
      Has_Z := False;
      Has_D := False;
      Pos := Str'Last;
      for I in 1 .. Blen loop
         D := Read_Std_Logic (Val.Mem, Blen - I);
         case D is
            when '0' | 'L' =>
               Has_D := True;
            when '1' | 'H' =>
               Has_D := True;
               V := V + N;
            when 'Z' | 'W' =>
               Has_Z := True;
            when 'X' | 'U' | '-' =>
               Has_X := True;
         end case;
         N := N * 2;
         if N = Base or else I = Blen then
            if Has_X or (Has_Z and Has_D) then
               Str (Pos) := 'X';
            elsif Has_Z then
               Str (Pos) := 'Z';
            else
               Str (Pos) := Hex_Chars (V);
            end if;
            Pos := Pos - 1;
            N := 1;
            V := 0;
            Has_X := False;
            Has_Z := False;
            Has_D := False;
         end if;
      end loop;
      return String_To_Memtyp (Str, Res_Typ);
   end Eval_Logic_Vector_To_String;

   function Eval_To_X01 (Val : Memtyp; Map : Table_1d) return Memtyp
   is
      Len : constant Uns32 := Val.Typ.Abound.Len;
      Res : Memtyp;
      B : Std_Ulogic;
   begin
      Res := Create_Memory (Create_Res_Bound (Val.Typ));
      for I in 1 .. Len loop
         B := Read_Std_Logic (Val.Mem, I - 1);
         B := Map (B);
         Write_Std_Logic (Res.Mem, I - 1, B);
      end loop;
      return Res;
   end Eval_To_X01;

   function Eval_Static_Predefined_Function_Call (Param1 : Valtyp;
                                                  Param2 : Valtyp;
                                                  Res_Typ : Type_Acc;
                                                  Expr : Node) return Memtyp
   is
      Imp  : constant Node := Get_Implementation (Expr);
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
   begin
      case Def is
         when Iir_Predefined_Physical_Minimum
           | Iir_Predefined_Integer_Minimum
           | Iir_Predefined_Enum_Minimum =>
            return Create_Memory_Discrete
              (Int64'Min (Read_Discrete (Param1), Read_Discrete (Param2)),
               Res_Typ);
         when Iir_Predefined_Floating_Maximum =>
            return Create_Memory_Fp64
              (Fp64'Max (Read_Fp64 (Param1), Read_Fp64 (Param2)), Res_Typ);
         when Iir_Predefined_Physical_Maximum
           | Iir_Predefined_Integer_Maximum
           | Iir_Predefined_Enum_Maximum =>
            return Create_Memory_Discrete
              (Int64'Max (Read_Discrete (Param1), Read_Discrete (Param2)),
               Res_Typ);
         when Iir_Predefined_Floating_Minimum =>
            return Create_Memory_Fp64
              (Fp64'Min (Read_Fp64 (Param1), Read_Fp64 (Param2)), Res_Typ);

         when Iir_Predefined_Now_Function =>
            return Create_Memory_Discrete
              (Int64 (Grt.Vhdl_Types.Current_Time), Res_Typ);

         when Iir_Predefined_Endfile =>
            declare
               Res : Boolean;
            begin
               Res := Elab.Vhdl_Files.Endfile (Param1.Val.File, Expr);
               return Create_Memory_U8 (Boolean'Pos (Res), Boolean_Type);
            end;

         when Iir_Predefined_Integer_To_String =>
            declare
               Str : String (1 .. 21);
               First : Natural;
            begin
               Grt.To_Strings.To_String
                 (Str, First, Ghdl_I64 (Read_Discrete (Param1)));
               return String_To_Memtyp (Str (First .. Str'Last), Res_Typ);
            end;
         when Iir_Predefined_Enum_To_String =>
            return Eval_Enum_To_String (Get_Memtyp (Param1), Res_Typ, Imp);
         when Iir_Predefined_Floating_To_String =>
            declare
               Str : String (1 .. 24);
               Last : Natural;
            begin
               Grt.To_Strings.To_String
                 (Str, Last, Ghdl_F64 (Read_Fp64 (Param1)));
               return String_To_Memtyp (Str (Str'First .. Last), Res_Typ);
            end;
         when Iir_Predefined_Real_To_String_Digits =>
            declare
               Str : Grt.To_Strings.String_Real_Format;
               Last : Natural;
               Val : Ghdl_F64;
               Dig : Ghdl_I32;
            begin
               Val := Ghdl_F64 (Read_Fp64 (Param1));
               Dig := Ghdl_I32 (Read_Discrete (Param2));
               Grt.To_Strings.To_String (Str, Last, Val, Dig);
               return String_To_Memtyp (Str (Str'First .. Last), Res_Typ);
            end;
         when Iir_Predefined_Real_To_String_Format =>
            declare
               Format : String (1 .. Natural (Param2.Typ.Abound.Len) + 1);
               Str : Grt.To_Strings.String_Real_Format;
               Last : Natural;
            begin
               --  Copy format
               for I in 1 .. Param2.Typ.Abound.Len loop
                  Format (Positive (I)) := Character'Val
                    (Read_U8 (Param2.Val.Mem + Size_Type (I - 1)));
               end loop;
               Format (Format'Last) := ASCII.NUL;
               Grt.To_Strings.To_String
                 (Str, Last, Ghdl_F64 (Read_Fp64 (Param1)),
                  To_Ghdl_C_String (Format'Address));
               return String_To_Memtyp (Str (Str'First .. Last), Res_Typ);
            end;

         when Iir_Predefined_Physical_To_String =>
            declare
               Phys_Type : constant Node :=
                 Get_Type (Get_Interface_Declaration_Chain (Imp));
               Id : constant Name_Id :=
                 Get_Identifier (Get_Primary_Unit (Phys_Type));
               Str : String (1 .. 21);
               First : Natural;
            begin
               Grt.To_Strings.To_String
                 (Str, First, Ghdl_I64 (Read_Discrete (Param1)));
               return String_To_Memtyp
                 (Str (First .. Str'Last) & ' ' & Name_Table.Image (Id),
                  Res_Typ);
            end;
         when Iir_Predefined_Time_To_String_Unit =>
            declare
               Time_Type : constant Node :=
                 Get_Type (Get_Interface_Declaration_Chain (Imp));
               Str : Grt.To_Strings.String_Time_Unit;
               First : Natural;
               Unit : Iir;
               Uval : Int64;
            begin
               Uval := Read_Discrete (Param2);
               Unit := Get_Unit_Chain (Time_Type);
               while Unit /= Null_Iir loop
                  exit when Vhdl.Evaluation.Get_Physical_Value (Unit) = Uval;
                  Unit := Get_Chain (Unit);
               end loop;
               if Unit = Null_Iir then
                  Error_Msg_Synth
                    (+Expr, "to_string for time called with wrong unit");
               end if;
               Grt.To_Strings.To_String (Str, First,
                                         Ghdl_I64 (Read_Discrete (Param1)),
                                         Ghdl_I64 (Uval));
               return String_To_Memtyp
                 (Str (First .. Str'Last) & ' '
                    & Name_Table.Image (Get_Identifier (Unit)),
                 Res_Typ);
            end;

         when Iir_Predefined_Array_Char_To_String =>
            return Eval_Array_Char_To_String
              (Get_Memtyp (Param1), Res_Typ, Imp);

         when Iir_Predefined_Bit_Vector_To_Hstring =>
            return Eval_Bit_Vector_To_String (Get_Memtyp (Param1), Res_Typ, 4);
         when Iir_Predefined_Bit_Vector_To_Ostring =>
            return Eval_Bit_Vector_To_String (Get_Memtyp (Param1), Res_Typ, 3);

         when Iir_Predefined_Std_Env_Resolution_Limit =>
            return Create_Memory_Discrete (1, Res_Typ);

         when Iir_Predefined_Ieee_Numeric_Bit_Touns_Nat_Nat_Uns =>
            return Eval_To_Bit_Vector
              (Uns64 (Read_Discrete (Param1)), Read_Discrete (Param2),
               Res_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Touns_Nat_Nat_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Unsigned_Int
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_To_Slv_Nat_Nat_Slv =>
            return Eval_To_Log_Vector
              (Uns64 (Read_Discrete (Param1)), Read_Discrete (Param2),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Touns_Nat_Uns_Uns =>
            return Eval_To_Log_Vector
              (Uns64 (Read_Discrete (Param1)), Int64 (Param2.Typ.Abound.Len),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Tosgn_Int_Nat_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Vector_Int =>
            return Eval_To_Log_Vector
              (To_Uns64 (Read_Discrete (Param1)), Read_Discrete (Param2),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Tosgn_Int_Sgn_Sgn =>
            return Eval_To_Log_Vector
              (To_Uns64 (Read_Discrete (Param1)),
               Int64 (Param2.Typ.Abound.Len),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Toint_Uns_Nat
            | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Integer_Uns
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Conv_Integer =>
            --  UNSIGNED to Natural.
            return Create_Memory_Discrete
              (Eval_Unsigned_To_Integer (Get_Memtyp (Param1), Expr), Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Toint_Sgn_Int =>
            --  SIGNED to Integer
            return Create_Memory_Discrete
              (Eval_Signed_To_Integer (Get_Memtyp (Param1), Expr), Res_Typ);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Integer_Int =>
            return Get_Memtyp (Param1);

         when Iir_Predefined_Ieee_Numeric_Std_Shf_Left_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Shf_Left_Sgn_Nat =>
            return Shift_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)),
               False, False);
         when Iir_Predefined_Ieee_Numeric_Std_Rot_Left_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Rot_Left_Sgn_Nat =>
            return Rotate_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)), False);
         when Iir_Predefined_Ieee_Numeric_Std_Rot_Right_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Rot_Right_Sgn_Nat =>
            return Rotate_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)), True);
         when Iir_Predefined_Ieee_Numeric_Std_Shf_Right_Uns_Nat =>
            return Shift_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)),
               True, False);
         when Iir_Predefined_Ieee_Numeric_Std_Shf_Right_Sgn_Nat =>
            return Shift_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)),
               True, True);

         when Iir_Predefined_Ieee_Numeric_Std_Resize_Sgn_Nat =>
            return Resize_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)), True);
         when Iir_Predefined_Ieee_Numeric_Std_Resize_Sgn_Sgn =>
            return Resize_Vec
              (Get_Memtyp (Param1), Param2.Typ.Abound.Len, True);
         when Iir_Predefined_Ieee_Numeric_Std_Resize_Uns_Nat =>
            return Resize_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)), False);
         when Iir_Predefined_Ieee_Numeric_Std_Resize_Uns_Uns =>
            return Resize_Vec
              (Get_Memtyp (Param1), Param2.Typ.Abound.Len, False);

         when Iir_Predefined_Ieee_1164_To_Stdulogic =>
            declare
               B : Std_Ulogic;
            begin
               B := Read_Bit_To_Std_Logic (Param1.Val.Mem, 0);
               return Create_Memory_U8 (Std_Ulogic'Pos (B), Res_Typ);
            end;

         when Iir_Predefined_Ieee_1164_To_X01_Log =>
            declare
               B : Std_Ulogic;
            begin
               B := Read_Std_Logic (Param1.Val.Mem, 0);
               B := To_X01 (B);
               return Create_Memory_U8 (Std_Ulogic'Pos (B), Res_Typ);
            end;
         when Iir_Predefined_Ieee_1164_To_X01_Slv
            | Iir_Predefined_Ieee_Numeric_Std_To_X01_Uns
            | Iir_Predefined_Ieee_Numeric_Std_To_X01_Sgn =>
            return Eval_To_X01 (Get_Memtyp (Param1), Map_X01);
         when Iir_Predefined_Ieee_Numeric_Std_To_X01Z_Uns
            | Iir_Predefined_Ieee_Numeric_Std_To_X01Z_Sgn =>
            return Eval_To_X01 (Get_Memtyp (Param1), Map_X01Z);
         when Iir_Predefined_Ieee_Numeric_Std_To_UX01_Uns
            | Iir_Predefined_Ieee_Numeric_Std_To_UX01_Sgn =>
            return Eval_To_X01 (Get_Memtyp (Param1), Map_UX01);

         when Iir_Predefined_Ieee_1164_To_Stdlogicvector_Bv
            | Iir_Predefined_Ieee_1164_To_Stdulogicvector_Bv =>
            declare
               El_Type : constant Type_Acc := Get_Array_Element (Res_Typ);
               Res : Memtyp;
               Bnd : Type_Acc;
               B : Std_Ulogic;
            begin
               Bnd := Create_Vec_Type_By_Length
                 (Uns32 (Vec_Length (Param1.Typ)), El_Type);
               Res := Create_Memory (Bnd);
               for I in 1 .. Uns32 (Vec_Length (Param1.Typ)) loop
                  B := Read_Bit_To_Std_Logic (Param1.Val.Mem, I - 1);
                  Write_Std_Logic (Res.Mem, I - 1, B);
               end loop;
               return Res;
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Match_Log =>
            return Create_Memory_Boolean
              (Match_Eq_Table (Read_Std_Logic (Param1.Val.Mem, 0),
                               Read_Std_Logic (Param2.Val.Mem, 0)) = '1');

         when Iir_Predefined_Ieee_Numeric_Std_Match_Suv
            | Iir_Predefined_Ieee_Numeric_Std_Match_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Match_Sgn =>
            return Create_Memory_Boolean
              (Match_Vec (Get_Memtyp (Param1), Get_Memtyp (Param2), +Expr));

         when Iir_Predefined_Ieee_1164_To_Bit =>
            declare
               V : Std_Ulogic;
               X : Bit;
               R : Bit;
            begin
               V := Read_Std_Logic (Param1.Val.Mem, 0);
               X := Read_Bit (Param2.Val.Mem, 0);
               R := To_Bit (V, X);
               return Create_Memory_U8 (Bit'Pos(R), Res_Typ);
            end;
         when Iir_Predefined_Ieee_1164_To_Bitvector =>
            declare
               El_Type : constant Type_Acc := Get_Array_Element (Res_Typ);
               Res     : Memtyp;
               Bnd     : Type_Acc;
               S       : Std_Ulogic;
               X       : Bit;
               R       : Bit;
            begin
               X := Read_Bit (Param2.Val.Mem, 0);
               Bnd := Create_Vec_Type_By_Length
                 (Uns32 (Vec_Length (Param1.Typ)), El_Type);
               Res := Create_Memory (Bnd);
               for I in 1 .. Uns32 (Vec_Length (Param1.Typ)) loop
                  S := Read_Std_Logic (Param1.Val.Mem, I - 1);
                  R := To_Bit (S, X);
                  Write_Bit (Res.Mem, I - 1, R);
               end loop;
               return Res;
            end;

         when Iir_Predefined_Ieee_1164_Scalar_Is_X =>
            declare
               B : Std_Ulogic;
            begin
               B := Read_Std_Logic (Param1.Val.Mem, 0);
               B := To_X01 (B);
               return Create_Memory_Boolean (B = 'X');
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Is_X_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Is_X_Sgn =>
            declare
               Len : constant Uns32 := Param1.Typ.Abound.Len;
               Res : Boolean;
               B : Std_Ulogic;
            begin
               Res := False;
               for I in 1 .. Len loop
                  B := Read_Std_Logic (Param1.Val.Mem, I - 1);
                  if To_X01 (B) = 'X' then
                     Res := True;
                     exit;
                  end if;
               end loop;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_1164_To_Stdlogicvector_Suv
           | Iir_Predefined_Ieee_1164_To_Stdulogicvector_Slv =>
            --  TODO
            return (Param1.Typ, Param1.Val.Mem);

         when Iir_Predefined_Ieee_1164_To_Hstring =>
            return Eval_Logic_Vector_To_String
              (Get_Memtyp (Param1), Res_Typ, 4);
         when Iir_Predefined_Ieee_1164_To_Ostring =>
            return Eval_Logic_Vector_To_String
              (Get_Memtyp (Param1), Res_Typ, 3);

         when Iir_Predefined_Ieee_Numeric_Std_Max_Uns_Uns =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           False, True);
         when Iir_Predefined_Ieee_Numeric_Std_Min_Uns_Uns =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           False, False);
         when Iir_Predefined_Ieee_Numeric_Std_Max_Sgn_Sgn =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           True, True);
         when Iir_Predefined_Ieee_Numeric_Std_Min_Sgn_Sgn =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           True, False);

         when Iir_Predefined_Ieee_Numeric_Std_Find_Rightmost_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Find_Rightmost_Sgn =>
            return Create_Memory_Discrete
              (Int64 (Find_Rightmost (Get_Memtyp (Param1),
                                      Get_Memtyp (Param2))),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Find_Leftmost_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Find_Leftmost_Sgn =>
            return Create_Memory_Discrete
              (Int64 (Find_Leftmost (Get_Memtyp (Param1),
                                     Get_Memtyp (Param2))),
               Res_Typ);

         when Iir_Predefined_Ieee_Math_Real_Log2 =>
            declare
               function Log2 (Arg : Fp64) return Fp64;
               pragma Import (C, Log2);
            begin
               return Create_Memory_Fp64 (Log2 (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Ceil =>
            declare
               function Ceil (Arg : Fp64) return Fp64;
               pragma Import (C, Ceil);
            begin
               return Create_Memory_Fp64 (Ceil (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Floor =>
            declare
               function Floor (Arg : Fp64) return Fp64;
               pragma Import (C, Floor);
            begin
               return Create_Memory_Fp64 (Floor (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Round =>
            declare
               function Round (Arg : Fp64) return Fp64;
               pragma Import (C, Round);
            begin
               return Create_Memory_Fp64 (Round (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Sin =>
            declare
               function Sin (Arg : Fp64) return Fp64;
               pragma Import (C, Sin);
            begin
               return Create_Memory_Fp64 (Sin (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Cos =>
            declare
               function Cos (Arg : Fp64) return Fp64;
               pragma Import (C, Cos);
            begin
               return Create_Memory_Fp64 (Cos (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Arctan =>
            declare
               function Atan (Arg : Fp64) return Fp64;
               pragma Import (C, Atan);
            begin
               return Create_Memory_Fp64 (Atan (Read_Fp64 (Param1)), Res_Typ);
            end;
         when others =>
            null;
      end case;
      Error_Msg_Synth (+Expr, "unhandled (static) function: "
                         & Iir_Predefined_Functions'Image (Def));
      return Null_Memtyp;
   end Eval_Static_Predefined_Function_Call;
end Synth.Vhdl_Eval;