diff options
Diffstat (limited to 'target/linux/mediatek/patches-5.15/120-12-v5.19-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch')
-rw-r--r-- | target/linux/mediatek/patches-5.15/120-12-v5.19-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch | 1537 |
1 files changed, 1537 insertions, 0 deletions
diff --git a/target/linux/mediatek/patches-5.15/120-12-v5.19-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch b/target/linux/mediatek/patches-5.15/120-12-v5.19-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch new file mode 100644 index 0000000000..b77b4ad4c4 --- /dev/null +++ b/target/linux/mediatek/patches-5.15/120-12-v5.19-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch @@ -0,0 +1,1537 @@ +From 8170bafa8936e9fbfdce992932a63bd20eca3bc3 Mon Sep 17 00:00:00 2001 +From: Chuanhong Guo <gch981213@gmail.com> +Date: Sat, 2 Apr 2022 10:16:11 +0800 +Subject: [PATCH v6 2/5] spi: add driver for MTK SPI NAND Flash Interface + +This driver implements support for the SPI-NAND mode of MTK NAND Flash +Interface as a SPI-MEM controller with pipelined ECC capability. + +Signed-off-by: Chuanhong Guo <gch981213@gmail.com> +Tested-by: Daniel Golle <daniel@makrotopia.org> +--- +Change since v1: + fix CI warnings + +Changes since v2: + use streamed DMA api to avoid an extra memory copy during read + make ECC engine config a per-nand context + take user-requested ECC strength into account + +Change since v3: none +Changes since v4: + fix missing OOB write + print page format with dev_dbg + replace uint*_t copied from vendor driver with u* + +Changes since v5: + add missing nfi mode register configuration in probe + fix an off-by-one bug in mtk_snand_mac_io + + drivers/spi/Kconfig | 10 + + drivers/spi/Makefile | 1 + + drivers/spi/spi-mtk-snfi.c | 1470 ++++++++++++++++++++++++++++++++++++ + 3 files changed, 1481 insertions(+) + create mode 100644 drivers/spi/spi-mtk-snfi.c + +--- a/drivers/spi/Kconfig ++++ b/drivers/spi/Kconfig +@@ -530,6 +530,16 @@ config SPI_MTK_NOR + SPI interface as well as several SPI NOR specific instructions + via SPI MEM interface. + ++config SPI_MTK_SNFI ++ tristate "MediaTek SPI NAND Flash Interface" ++ depends on ARCH_MEDIATEK || COMPILE_TEST ++ depends on MTD_NAND_ECC_MEDIATEK ++ help ++ This enables support for SPI-NAND mode on the MediaTek NAND ++ Flash Interface found on MediaTek ARM SoCs. This controller ++ is implemented as a SPI-MEM controller with pipelined ECC ++ capcability. ++ + config SPI_NPCM_FIU + tristate "Nuvoton NPCM FLASH Interface Unit" + depends on ARCH_NPCM || COMPILE_TEST +--- a/drivers/spi/Makefile ++++ b/drivers/spi/Makefile +@@ -71,6 +71,7 @@ obj-$(CONFIG_SPI_MPC52xx) += spi-mpc52x + obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o + obj-$(CONFIG_SPI_MT7621) += spi-mt7621.o + obj-$(CONFIG_SPI_MTK_NOR) += spi-mtk-nor.o ++obj-$(CONFIG_SPI_MTK_SNFI) += spi-mtk-snfi.o + obj-$(CONFIG_SPI_MXIC) += spi-mxic.o + obj-$(CONFIG_SPI_MXS) += spi-mxs.o + obj-$(CONFIG_SPI_NPCM_FIU) += spi-npcm-fiu.o +--- /dev/null ++++ b/drivers/spi/spi-mtk-snfi.c +@@ -0,0 +1,1470 @@ ++// SPDX-License-Identifier: GPL-2.0 ++// ++// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface ++// ++// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com> ++// ++// This driver is based on the SPI-NAND mtd driver from Mediatek SDK: ++// ++// Copyright (C) 2020 MediaTek Inc. ++// Author: Weijie Gao <weijie.gao@mediatek.com> ++// ++// This controller organize the page data as several interleaved sectors ++// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size) ++// +---------+------+------+---------+------+------+-----+ ++// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... | ++// +---------+------+------+---------+------+------+-----+ ++// With auto-format turned on, DMA only returns this part: ++// +---------+---------+-----+ ++// | Sector1 | Sector2 | ... | ++// +---------+---------+-----+ ++// The FDM data will be filled to the registers, and ECC parity data isn't ++// accessible. ++// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA ++// in it's original order shown in the first table. ECC can't be turned on when ++// auto-format is off. ++// ++// However, Linux SPI-NAND driver expects the data returned as: ++// +------+-----+ ++// | Page | OOB | ++// +------+-----+ ++// where the page data is continuously stored instead of interleaved. ++// So we assume all instructions matching the page_op template between ECC ++// prepare_io_req and finish_io_req are for page cache r/w. ++// Here's how this spi-mem driver operates when reading: ++// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off). ++// 2. Perform page ops and let the controller fill the DMA bounce buffer with ++// de-interleaved sector data and set FDM registers. ++// 3. Return the data as: ++// +---------+---------+-----+------+------+-----+ ++// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... | ++// +---------+---------+-----+------+------+-----+ ++// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair, ++// read the data with auto-format off into the bounce buffer and copy ++// needed data to the buffer specified in the request. ++// ++// Write requests operates in a similar manner. ++// As a limitation of this strategy, we won't be able to access any ECC parity ++// data at all in Linux. ++// ++// Here's the bad block mark situation on MTK chips: ++// In older chips like mt7622, MTK uses the first FDM byte in the first sector ++// as the bad block mark. After de-interleaving, this byte appears at [pagesize] ++// in the returned data, which is the BBM position expected by kernel. However, ++// the conventional bad block mark is the first byte of the OOB, which is part ++// of the last sector data in the interleaved layout. Instead of fixing their ++// hardware, MTK decided to address this inconsistency in software. On these ++// later chips, the BootROM expects the following: ++// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at ++// (page_size - (nsectors - 1) * spare_size) in the DMA buffer. ++// 2. The original byte stored at that position in the DMA buffer will be stored ++// as the first byte of the FDM section in the last sector. ++// We can't disagree with the BootROM, so after de-interleaving, we need to ++// perform the following swaps in read: ++// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size], ++// which is the expected BBM position by kernel. ++// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to ++// [page_size - (nsectors - 1) * spare_size] ++// Similarly, when writing, we need to perform swaps in the other direction. ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/mutex.h> ++#include <linux/clk.h> ++#include <linux/interrupt.h> ++#include <linux/dma-mapping.h> ++#include <linux/iopoll.h> ++#include <linux/of_platform.h> ++#include <linux/mtd/nand-ecc-mtk.h> ++#include <linux/spi/spi.h> ++#include <linux/spi/spi-mem.h> ++#include <linux/mtd/nand.h> ++ ++// NFI registers ++#define NFI_CNFG 0x000 ++#define CNFG_OP_MODE_S 12 ++#define CNFG_OP_MODE_CUST 6 ++#define CNFG_OP_MODE_PROGRAM 3 ++#define CNFG_AUTO_FMT_EN BIT(9) ++#define CNFG_HW_ECC_EN BIT(8) ++#define CNFG_DMA_BURST_EN BIT(2) ++#define CNFG_READ_MODE BIT(1) ++#define CNFG_DMA_MODE BIT(0) ++ ++#define NFI_PAGEFMT 0x0004 ++#define NFI_SPARE_SIZE_LS_S 16 ++#define NFI_FDM_ECC_NUM_S 12 ++#define NFI_FDM_NUM_S 8 ++#define NFI_SPARE_SIZE_S 4 ++#define NFI_SEC_SEL_512 BIT(2) ++#define NFI_PAGE_SIZE_S 0 ++#define NFI_PAGE_SIZE_512_2K 0 ++#define NFI_PAGE_SIZE_2K_4K 1 ++#define NFI_PAGE_SIZE_4K_8K 2 ++#define NFI_PAGE_SIZE_8K_16K 3 ++ ++#define NFI_CON 0x008 ++#define CON_SEC_NUM_S 12 ++#define CON_BWR BIT(9) ++#define CON_BRD BIT(8) ++#define CON_NFI_RST BIT(1) ++#define CON_FIFO_FLUSH BIT(0) ++ ++#define NFI_INTR_EN 0x010 ++#define NFI_INTR_STA 0x014 ++#define NFI_IRQ_INTR_EN BIT(31) ++#define NFI_IRQ_CUS_READ BIT(8) ++#define NFI_IRQ_CUS_PG BIT(7) ++ ++#define NFI_CMD 0x020 ++#define NFI_CMD_DUMMY_READ 0x00 ++#define NFI_CMD_DUMMY_WRITE 0x80 ++ ++#define NFI_STRDATA 0x040 ++#define STR_DATA BIT(0) ++ ++#define NFI_STA 0x060 ++#define NFI_NAND_FSM GENMASK(28, 24) ++#define NFI_FSM GENMASK(19, 16) ++#define READ_EMPTY BIT(12) ++ ++#define NFI_FIFOSTA 0x064 ++#define FIFO_WR_REMAIN_S 8 ++#define FIFO_RD_REMAIN_S 0 ++ ++#define NFI_ADDRCNTR 0x070 ++#define SEC_CNTR GENMASK(16, 12) ++#define SEC_CNTR_S 12 ++#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) ++ ++#define NFI_STRADDR 0x080 ++ ++#define NFI_BYTELEN 0x084 ++#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) ++ ++#define NFI_FDM0L 0x0a0 ++#define NFI_FDM0M 0x0a4 ++#define NFI_FDML(n) (NFI_FDM0L + (n)*8) ++#define NFI_FDMM(n) (NFI_FDM0M + (n)*8) ++ ++#define NFI_DEBUG_CON1 0x220 ++#define WBUF_EN BIT(2) ++ ++#define NFI_MASTERSTA 0x224 ++#define MAS_ADDR GENMASK(11, 9) ++#define MAS_RD GENMASK(8, 6) ++#define MAS_WR GENMASK(5, 3) ++#define MAS_RDDLY GENMASK(2, 0) ++#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY) ++ ++// SNFI registers ++#define SNF_MAC_CTL 0x500 ++#define MAC_XIO_SEL BIT(4) ++#define SF_MAC_EN BIT(3) ++#define SF_TRIG BIT(2) ++#define WIP_READY BIT(1) ++#define WIP BIT(0) ++ ++#define SNF_MAC_OUTL 0x504 ++#define SNF_MAC_INL 0x508 ++ ++#define SNF_RD_CTL2 0x510 ++#define DATA_READ_DUMMY_S 8 ++#define DATA_READ_MAX_DUMMY 0xf ++#define DATA_READ_CMD_S 0 ++ ++#define SNF_RD_CTL3 0x514 ++ ++#define SNF_PG_CTL1 0x524 ++#define PG_LOAD_CMD_S 8 ++ ++#define SNF_PG_CTL2 0x528 ++ ++#define SNF_MISC_CTL 0x538 ++#define SW_RST BIT(28) ++#define FIFO_RD_LTC_S 25 ++#define PG_LOAD_X4_EN BIT(20) ++#define DATA_READ_MODE_S 16 ++#define DATA_READ_MODE GENMASK(18, 16) ++#define DATA_READ_MODE_X1 0 ++#define DATA_READ_MODE_X2 1 ++#define DATA_READ_MODE_X4 2 ++#define DATA_READ_MODE_DUAL 5 ++#define DATA_READ_MODE_QUAD 6 ++#define PG_LOAD_CUSTOM_EN BIT(7) ++#define DATARD_CUSTOM_EN BIT(6) ++#define CS_DESELECT_CYC_S 0 ++ ++#define SNF_MISC_CTL2 0x53c ++#define PROGRAM_LOAD_BYTE_NUM_S 16 ++#define READ_DATA_BYTE_NUM_S 11 ++ ++#define SNF_DLY_CTL3 0x548 ++#define SFCK_SAM_DLY_S 0 ++ ++#define SNF_STA_CTL1 0x550 ++#define CUS_PG_DONE BIT(28) ++#define CUS_READ_DONE BIT(27) ++#define SPI_STATE_S 0 ++#define SPI_STATE GENMASK(3, 0) ++ ++#define SNF_CFG 0x55c ++#define SPI_MODE BIT(0) ++ ++#define SNF_GPRAM 0x800 ++#define SNF_GPRAM_SIZE 0xa0 ++ ++#define SNFI_POLL_INTERVAL 1000000 ++ ++static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 }; ++ ++struct mtk_snand_caps { ++ u16 sector_size; ++ u16 max_sectors; ++ u16 fdm_size; ++ u16 fdm_ecc_size; ++ u16 fifo_size; ++ ++ bool bbm_swap; ++ bool empty_page_check; ++ u32 mastersta_mask; ++ ++ const u8 *spare_sizes; ++ u32 num_spare_size; ++}; ++ ++static const struct mtk_snand_caps mt7622_snand_caps = { ++ .sector_size = 512, ++ .max_sectors = 8, ++ .fdm_size = 8, ++ .fdm_ecc_size = 1, ++ .fifo_size = 32, ++ .bbm_swap = false, ++ .empty_page_check = false, ++ .mastersta_mask = NFI_MASTERSTA_MASK_7622, ++ .spare_sizes = mt7622_spare_sizes, ++ .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) ++}; ++ ++static const struct mtk_snand_caps mt7629_snand_caps = { ++ .sector_size = 512, ++ .max_sectors = 8, ++ .fdm_size = 8, ++ .fdm_ecc_size = 1, ++ .fifo_size = 32, ++ .bbm_swap = true, ++ .empty_page_check = false, ++ .mastersta_mask = NFI_MASTERSTA_MASK_7622, ++ .spare_sizes = mt7622_spare_sizes, ++ .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) ++}; ++ ++struct mtk_snand_conf { ++ size_t page_size; ++ size_t oob_size; ++ u8 nsectors; ++ u8 spare_size; ++}; ++ ++struct mtk_snand { ++ struct spi_controller *ctlr; ++ struct device *dev; ++ struct clk *nfi_clk; ++ struct clk *pad_clk; ++ void __iomem *nfi_base; ++ int irq; ++ struct completion op_done; ++ const struct mtk_snand_caps *caps; ++ struct mtk_ecc_config *ecc_cfg; ++ struct mtk_ecc *ecc; ++ struct mtk_snand_conf nfi_cfg; ++ struct mtk_ecc_stats ecc_stats; ++ struct nand_ecc_engine ecc_eng; ++ bool autofmt; ++ u8 *buf; ++ size_t buf_len; ++}; ++ ++static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand) ++{ ++ struct nand_ecc_engine *eng = nand->ecc.engine; ++ ++ return container_of(eng, struct mtk_snand, ecc_eng); ++} ++ ++static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size) ++{ ++ if (snf->buf_len >= size) ++ return 0; ++ kfree(snf->buf); ++ snf->buf = kmalloc(size, GFP_KERNEL); ++ if (!snf->buf) ++ return -ENOMEM; ++ snf->buf_len = size; ++ memset(snf->buf, 0xff, snf->buf_len); ++ return 0; ++} ++ ++static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg) ++{ ++ return readl(snf->nfi_base + reg); ++} ++ ++static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val) ++{ ++ writel(val, snf->nfi_base + reg); ++} ++ ++static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val) ++{ ++ writew(val, snf->nfi_base + reg); ++} ++ ++static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set) ++{ ++ u32 val; ++ ++ val = readl(snf->nfi_base + reg); ++ val &= ~clr; ++ val |= set; ++ writel(val, snf->nfi_base + reg); ++} ++ ++static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len) ++{ ++ u32 i, val = 0, es = sizeof(u32); ++ ++ for (i = reg; i < reg + len; i++) { ++ if (i == reg || i % es == 0) ++ val = nfi_read32(snf, i & ~(es - 1)); ++ ++ *data++ = (u8)(val >> (8 * (i % es))); ++ } ++} ++ ++static int mtk_nfi_reset(struct mtk_snand *snf) ++{ ++ u32 val, fifo_mask; ++ int ret; ++ ++ nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); ++ ++ ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, ++ !(val & snf->caps->mastersta_mask), 0, ++ SNFI_POLL_INTERVAL); ++ if (ret) { ++ dev_err(snf->dev, "NFI master is still busy after reset\n"); ++ return ret; ++ } ++ ++ ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val, ++ !(val & (NFI_FSM | NFI_NAND_FSM)), 0, ++ SNFI_POLL_INTERVAL); ++ if (ret) { ++ dev_err(snf->dev, "Failed to reset NFI\n"); ++ return ret; ++ } ++ ++ fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) | ++ ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S); ++ ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val, ++ !(val & fifo_mask), 0, SNFI_POLL_INTERVAL); ++ if (ret) { ++ dev_err(snf->dev, "NFI FIFOs are not empty\n"); ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int mtk_snand_mac_reset(struct mtk_snand *snf) ++{ ++ int ret; ++ u32 val; ++ ++ nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST); ++ ++ ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val, ++ !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL); ++ if (ret) ++ dev_err(snf->dev, "Failed to reset SNFI MAC\n"); ++ ++ nfi_write32(snf, SNF_MISC_CTL, ++ (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S)); ++ ++ return ret; ++} ++ ++static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen) ++{ ++ int ret; ++ u32 val; ++ ++ nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN); ++ nfi_write32(snf, SNF_MAC_OUTL, outlen); ++ nfi_write32(snf, SNF_MAC_INL, inlen); ++ ++ nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG); ++ ++ ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, ++ val & WIP_READY, 0, SNFI_POLL_INTERVAL); ++ if (ret) { ++ dev_err(snf->dev, "Timed out waiting for WIP_READY\n"); ++ goto cleanup; ++ } ++ ++ ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP), ++ 0, SNFI_POLL_INTERVAL); ++ if (ret) ++ dev_err(snf->dev, "Timed out waiting for WIP cleared\n"); ++ ++cleanup: ++ nfi_write32(snf, SNF_MAC_CTL, 0); ++ ++ return ret; ++} ++ ++static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op) ++{ ++ u32 rx_len = 0; ++ u32 reg_offs = 0; ++ u32 val = 0; ++ const u8 *tx_buf = NULL; ++ u8 *rx_buf = NULL; ++ int i, ret; ++ u8 b; ++ ++ if (op->data.dir == SPI_MEM_DATA_IN) { ++ rx_len = op->data.nbytes; ++ rx_buf = op->data.buf.in; ++ } else { ++ tx_buf = op->data.buf.out; ++ } ++ ++ mtk_snand_mac_reset(snf); ++ ++ for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) { ++ b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff; ++ val |= b << (8 * (reg_offs % 4)); ++ if (reg_offs % 4 == 3) { ++ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); ++ val = 0; ++ } ++ } ++ ++ for (i = 0; i < op->addr.nbytes; i++, reg_offs++) { ++ b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff; ++ val |= b << (8 * (reg_offs % 4)); ++ if (reg_offs % 4 == 3) { ++ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); ++ val = 0; ++ } ++ } ++ ++ for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) { ++ if (reg_offs % 4 == 3) { ++ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); ++ val = 0; ++ } ++ } ++ ++ if (op->data.dir == SPI_MEM_DATA_OUT) { ++ for (i = 0; i < op->data.nbytes; i++, reg_offs++) { ++ val |= tx_buf[i] << (8 * (reg_offs % 4)); ++ if (reg_offs % 4 == 3) { ++ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); ++ val = 0; ++ } ++ } ++ } ++ ++ if (reg_offs % 4) ++ nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val); ++ ++ for (i = 0; i < reg_offs; i += 4) ++ dev_dbg(snf->dev, "%d: %08X", i, ++ nfi_read32(snf, SNF_GPRAM + i)); ++ ++ dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len); ++ ++ ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len); ++ if (ret) ++ return ret; ++ ++ if (!rx_len) ++ return 0; ++ ++ nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len); ++ return 0; ++} ++ ++static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size, ++ u32 oob_size) ++{ ++ int spare_idx = -1; ++ u32 spare_size, spare_size_shift, pagesize_idx; ++ u32 sector_size_512; ++ u8 nsectors; ++ int i; ++ ++ // skip if it's already configured as required. ++ if (snf->nfi_cfg.page_size == page_size && ++ snf->nfi_cfg.oob_size == oob_size) ++ return 0; ++ ++ nsectors = page_size / snf->caps->sector_size; ++ if (nsectors > snf->caps->max_sectors) { ++ dev_err(snf->dev, "too many sectors required.\n"); ++ goto err; ++ } ++ ++ if (snf->caps->sector_size == 512) { ++ sector_size_512 = NFI_SEC_SEL_512; ++ spare_size_shift = NFI_SPARE_SIZE_S; ++ } else { ++ sector_size_512 = 0; ++ spare_size_shift = NFI_SPARE_SIZE_LS_S; ++ } ++ ++ switch (page_size) { ++ case SZ_512: ++ pagesize_idx = NFI_PAGE_SIZE_512_2K; ++ break; ++ case SZ_2K: ++ if (snf->caps->sector_size == 512) ++ pagesize_idx = NFI_PAGE_SIZE_2K_4K; ++ else ++ pagesize_idx = NFI_PAGE_SIZE_512_2K; ++ break; ++ case SZ_4K: ++ if (snf->caps->sector_size == 512) ++ pagesize_idx = NFI_PAGE_SIZE_4K_8K; ++ else ++ pagesize_idx = NFI_PAGE_SIZE_2K_4K; ++ break; ++ case SZ_8K: ++ if (snf->caps->sector_size == 512) ++ pagesize_idx = NFI_PAGE_SIZE_8K_16K; ++ else ++ pagesize_idx = NFI_PAGE_SIZE_4K_8K; ++ break; ++ case SZ_16K: ++ pagesize_idx = NFI_PAGE_SIZE_8K_16K; ++ break; ++ default: ++ dev_err(snf->dev, "unsupported page size.\n"); ++ goto err; ++ } ++ ++ spare_size = oob_size / nsectors; ++ // If we're using the 1KB sector size, HW will automatically double the ++ // spare size. We should only use half of the value in this case. ++ if (snf->caps->sector_size == 1024) ++ spare_size /= 2; ++ ++ for (i = snf->caps->num_spare_size - 1; i >= 0; i--) { ++ if (snf->caps->spare_sizes[i] <= spare_size) { ++ spare_size = snf->caps->spare_sizes[i]; ++ if (snf->caps->sector_size == 1024) ++ spare_size *= 2; ++ spare_idx = i; ++ break; ++ } ++ } ++ ++ if (spare_idx < 0) { ++ dev_err(snf->dev, "unsupported spare size: %u\n", spare_size); ++ goto err; ++ } ++ ++ nfi_write32(snf, NFI_PAGEFMT, ++ (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) | ++ (snf->caps->fdm_size << NFI_FDM_NUM_S) | ++ (spare_idx << spare_size_shift) | ++ (pagesize_idx << NFI_PAGE_SIZE_S) | ++ sector_size_512); ++ ++ snf->nfi_cfg.page_size = page_size; ++ snf->nfi_cfg.oob_size = oob_size; ++ snf->nfi_cfg.nsectors = nsectors; ++ snf->nfi_cfg.spare_size = spare_size; ++ ++ dev_dbg(snf->dev, "page format: (%u + %u) * %u\n", ++ snf->caps->sector_size, spare_size, nsectors); ++ return snand_prepare_bouncebuf(snf, page_size + oob_size); ++err: ++ dev_err(snf->dev, "page size %u + %u is not supported\n", page_size, ++ oob_size); ++ return -EOPNOTSUPP; ++} ++ ++static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section, ++ struct mtd_oob_region *oobecc) ++{ ++ // ECC area is not accessible ++ return -ERANGE; ++} ++ ++static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section, ++ struct mtd_oob_region *oobfree) ++{ ++ struct nand_device *nand = mtd_to_nanddev(mtd); ++ struct mtk_snand *ms = nand_to_mtk_snand(nand); ++ ++ if (section >= ms->nfi_cfg.nsectors) ++ return -ERANGE; ++ ++ oobfree->length = ms->caps->fdm_size - 1; ++ oobfree->offset = section * ms->caps->fdm_size + 1; ++ return 0; ++} ++ ++static const struct mtd_ooblayout_ops mtk_snand_ooblayout = { ++ .ecc = mtk_snand_ooblayout_ecc, ++ .free = mtk_snand_ooblayout_free, ++}; ++ ++static int mtk_snand_ecc_init_ctx(struct nand_device *nand) ++{ ++ struct mtk_snand *snf = nand_to_mtk_snand(nand); ++ struct nand_ecc_props *conf = &nand->ecc.ctx.conf; ++ struct nand_ecc_props *reqs = &nand->ecc.requirements; ++ struct nand_ecc_props *user = &nand->ecc.user_conf; ++ struct mtd_info *mtd = nanddev_to_mtd(nand); ++ int step_size = 0, strength = 0, desired_correction = 0, steps; ++ bool ecc_user = false; ++ int ret; ++ u32 parity_bits, max_ecc_bytes; ++ struct mtk_ecc_config *ecc_cfg; ++ ++ ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, ++ nand->memorg.oobsize); ++ if (ret) ++ return ret; ++ ++ ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); ++ if (!ecc_cfg) ++ return -ENOMEM; ++ ++ nand->ecc.ctx.priv = ecc_cfg; ++ ++ if (user->step_size && user->strength) { ++ step_size = user->step_size; ++ strength = user->strength; ++ ecc_user = true; ++ } else if (reqs->step_size && reqs->strength) { ++ step_size = reqs->step_size; ++ strength = reqs->strength; ++ } ++ ++ if (step_size && strength) { ++ steps = mtd->writesize / step_size; ++ desired_correction = steps * strength; ++ strength = desired_correction / snf->nfi_cfg.nsectors; ++ } ++ ++ ecc_cfg->mode = ECC_NFI_MODE; ++ ecc_cfg->sectors = snf->nfi_cfg.nsectors; ++ ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size; ++ ++ // calculate the max possible strength under current page format ++ parity_bits = mtk_ecc_get_parity_bits(snf->ecc); ++ max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size; ++ ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits; ++ mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength); ++ ++ // if there's a user requested strength, find the minimum strength that ++ // meets the requirement. Otherwise use the maximum strength which is ++ // expected by BootROM. ++ if (ecc_user && strength) { ++ u32 s_next = ecc_cfg->strength - 1; ++ ++ while (1) { ++ mtk_ecc_adjust_strength(snf->ecc, &s_next); ++ if (s_next >= ecc_cfg->strength) ++ break; ++ if (s_next < strength) ++ break; ++ s_next = ecc_cfg->strength - 1; ++ } ++ } ++ ++ mtd_set_ooblayout(mtd, &mtk_snand_ooblayout); ++ ++ conf->step_size = snf->caps->sector_size; ++ conf->strength = ecc_cfg->strength; ++ ++ if (ecc_cfg->strength < strength) ++ dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n", ++ strength); ++ dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n", ++ ecc_cfg->strength, snf->caps->sector_size); ++ ++ return 0; ++} ++ ++static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand) ++{ ++ struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); ++ ++ kfree(ecc_cfg); ++} ++ ++static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand, ++ struct nand_page_io_req *req) ++{ ++ struct mtk_snand *snf = nand_to_mtk_snand(nand); ++ struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); ++ int ret; ++ ++ ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, ++ nand->memorg.oobsize); ++ if (ret) ++ return ret; ++ snf->autofmt = true; ++ snf->ecc_cfg = ecc_cfg; ++ return 0; ++} ++ ++static int mtk_snand_ecc_finish_io_req(struct nand_device *nand, ++ struct nand_page_io_req *req) ++{ ++ struct mtk_snand *snf = nand_to_mtk_snand(nand); ++ struct mtd_info *mtd = nanddev_to_mtd(nand); ++ ++ snf->ecc_cfg = NULL; ++ snf->autofmt = false; ++ if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ)) ++ return 0; ++ ++ if (snf->ecc_stats.failed) ++ mtd->ecc_stats.failed += snf->ecc_stats.failed; ++ mtd->ecc_stats.corrected += snf->ecc_stats.corrected; ++ return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips; ++} ++ ++static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = { ++ .init_ctx = mtk_snand_ecc_init_ctx, ++ .cleanup_ctx = mtk_snand_ecc_cleanup_ctx, ++ .prepare_io_req = mtk_snand_ecc_prepare_io_req, ++ .finish_io_req = mtk_snand_ecc_finish_io_req, ++}; ++ ++static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf) ++{ ++ u32 vall, valm; ++ u8 *oobptr = buf; ++ int i, j; ++ ++ for (i = 0; i < snf->nfi_cfg.nsectors; i++) { ++ vall = nfi_read32(snf, NFI_FDML(i)); ++ valm = nfi_read32(snf, NFI_FDMM(i)); ++ ++ for (j = 0; j < snf->caps->fdm_size; j++) ++ oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); ++ ++ oobptr += snf->caps->fdm_size; ++ } ++} ++ ++static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf) ++{ ++ u32 fdm_size = snf->caps->fdm_size; ++ const u8 *oobptr = buf; ++ u32 vall, valm; ++ int i, j; ++ ++ for (i = 0; i < snf->nfi_cfg.nsectors; i++) { ++ vall = 0; ++ valm = 0; ++ ++ for (j = 0; j < 8; j++) { ++ if (j < 4) ++ vall |= (j < fdm_size ? oobptr[j] : 0xff) ++ << (j * 8); ++ else ++ valm |= (j < fdm_size ? oobptr[j] : 0xff) ++ << ((j - 4) * 8); ++ } ++ ++ nfi_write32(snf, NFI_FDML(i), vall); ++ nfi_write32(snf, NFI_FDMM(i), valm); ++ ++ oobptr += fdm_size; ++ } ++} ++ ++static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf) ++{ ++ u32 buf_bbm_pos, fdm_bbm_pos; ++ ++ if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) ++ return; ++ ++ // swap [pagesize] byte on nand with the first fdm byte ++ // in the last sector. ++ buf_bbm_pos = snf->nfi_cfg.page_size - ++ (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size; ++ fdm_bbm_pos = snf->nfi_cfg.page_size + ++ (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; ++ ++ swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]); ++} ++ ++static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf) ++{ ++ u32 fdm_bbm_pos1, fdm_bbm_pos2; ++ ++ if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) ++ return; ++ ++ // swap the first fdm byte in the first and the last sector. ++ fdm_bbm_pos1 = snf->nfi_cfg.page_size; ++ fdm_bbm_pos2 = snf->nfi_cfg.page_size + ++ (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; ++ swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]); ++} ++ ++static int mtk_snand_read_page_cache(struct mtk_snand *snf, ++ const struct spi_mem_op *op) ++{ ++ u8 *buf = snf->buf; ++ u8 *buf_fdm = buf + snf->nfi_cfg.page_size; ++ // the address part to be sent by the controller ++ u32 op_addr = op->addr.val; ++ // where to start copying data from bounce buffer ++ u32 rd_offset = 0; ++ u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth); ++ u32 op_mode = 0; ++ u32 dma_len = snf->buf_len; ++ int ret = 0; ++ u32 rd_mode, rd_bytes, val; ++ dma_addr_t buf_dma; ++ ++ if (snf->autofmt) { ++ u32 last_bit; ++ u32 mask; ++ ++ dma_len = snf->nfi_cfg.page_size; ++ op_mode = CNFG_AUTO_FMT_EN; ++ if (op->data.ecc) ++ op_mode |= CNFG_HW_ECC_EN; ++ // extract the plane bit: ++ // Find the highest bit set in (pagesize+oobsize). ++ // Bits higher than that in op->addr are kept and sent over SPI ++ // Lower bits are used as an offset for copying data from DMA ++ // bounce buffer. ++ last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); ++ mask = (1 << last_bit) - 1; ++ rd_offset = op_addr & mask; ++ op_addr &= ~mask; ++ ++ // check if we can dma to the caller memory ++ if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size) ++ buf = op->data.buf.in; ++ } ++ mtk_snand_mac_reset(snf); ++ mtk_nfi_reset(snf); ++ ++ // command and dummy cycles ++ nfi_write32(snf, SNF_RD_CTL2, ++ (dummy_clk << DATA_READ_DUMMY_S) | ++ (op->cmd.opcode << DATA_READ_CMD_S)); ++ ++ // read address ++ nfi_write32(snf, SNF_RD_CTL3, op_addr); ++ ++ // Set read op_mode ++ if (op->data.buswidth == 4) ++ rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD : ++ DATA_READ_MODE_X4; ++ else if (op->data.buswidth == 2) ++ rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL : ++ DATA_READ_MODE_X2; ++ else ++ rd_mode = DATA_READ_MODE_X1; ++ rd_mode <<= DATA_READ_MODE_S; ++ nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE, ++ rd_mode | DATARD_CUSTOM_EN); ++ ++ // Set bytes to read ++ rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * ++ snf->nfi_cfg.nsectors; ++ nfi_write32(snf, SNF_MISC_CTL2, ++ (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes); ++ ++ // NFI read prepare ++ nfi_write16(snf, NFI_CNFG, ++ (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN | ++ CNFG_READ_MODE | CNFG_DMA_MODE | op_mode); ++ ++ nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); ++ ++ buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE); ++ if (dma_mapping_error(snf->dev, buf_dma)) { ++ dev_err(snf->dev, "DMA mapping failed.\n"); ++ goto cleanup; ++ } ++ nfi_write32(snf, NFI_STRADDR, buf_dma); ++ if (op->data.ecc) { ++ snf->ecc_cfg->op = ECC_DECODE; ++ ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); ++ if (ret) ++ goto cleanup_dma; ++ } ++ // Prepare for custom read interrupt ++ nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ); ++ reinit_completion(&snf->op_done); ++ ++ // Trigger NFI into custom mode ++ nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ); ++ ++ // Start DMA read ++ nfi_rmw32(snf, NFI_CON, 0, CON_BRD); ++ nfi_write16(snf, NFI_STRDATA, STR_DATA); ++ ++ if (!wait_for_completion_timeout( ++ &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { ++ dev_err(snf->dev, "DMA timed out for reading from cache.\n"); ++ ret = -ETIMEDOUT; ++ goto cleanup; ++ } ++ ++ // Wait for BUS_SEC_CNTR returning expected value ++ ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val, ++ BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, ++ SNFI_POLL_INTERVAL); ++ if (ret) { ++ dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n"); ++ goto cleanup2; ++ } ++ ++ // Wait for bus becoming idle ++ ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, ++ !(val & snf->caps->mastersta_mask), 0, ++ SNFI_POLL_INTERVAL); ++ if (ret) { ++ dev_err(snf->dev, "Timed out waiting for bus becoming idle\n"); ++ goto cleanup2; ++ } ++ ++ if (op->data.ecc) { ++ ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE); ++ if (ret) { ++ dev_err(snf->dev, "wait ecc done timeout\n"); ++ goto cleanup2; ++ } ++ // save status before disabling ecc ++ mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats, ++ snf->nfi_cfg.nsectors); ++ } ++ ++ dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); ++ ++ if (snf->autofmt) { ++ mtk_snand_read_fdm(snf, buf_fdm); ++ if (snf->caps->bbm_swap) { ++ mtk_snand_bm_swap(snf, buf); ++ mtk_snand_fdm_bm_swap(snf); ++ } ++ } ++ ++ // copy data back ++ if (nfi_read32(snf, NFI_STA) & READ_EMPTY) { ++ memset(op->data.buf.in, 0xff, op->data.nbytes); ++ snf->ecc_stats.bitflips = 0; ++ snf->ecc_stats.failed = 0; ++ snf->ecc_stats.corrected = 0; ++ } else { ++ if (buf == op->data.buf.in) { ++ u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size; ++ u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size; ++ ++ if (req_left) ++ memcpy(op->data.buf.in + snf->nfi_cfg.page_size, ++ buf_fdm, ++ cap_len < req_left ? cap_len : req_left); ++ } else if (rd_offset < snf->buf_len) { ++ u32 cap_len = snf->buf_len - rd_offset; ++ ++ if (op->data.nbytes < cap_len) ++ cap_len = op->data.nbytes; ++ memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len); ++ } ++ } ++cleanup2: ++ if (op->data.ecc) ++ mtk_ecc_disable(snf->ecc); ++cleanup_dma: ++ // unmap dma only if any error happens. (otherwise it's done before ++ // data copying) ++ if (ret) ++ dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); ++cleanup: ++ // Stop read ++ nfi_write32(snf, NFI_CON, 0); ++ nfi_write16(snf, NFI_CNFG, 0); ++ ++ // Clear SNF done flag ++ nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE); ++ nfi_write32(snf, SNF_STA_CTL1, 0); ++ ++ // Disable interrupt ++ nfi_read32(snf, NFI_INTR_STA); ++ nfi_write32(snf, NFI_INTR_EN, 0); ++ ++ nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0); ++ return ret; ++} ++ ++static int mtk_snand_write_page_cache(struct mtk_snand *snf, ++ const struct spi_mem_op *op) ++{ ++ // the address part to be sent by the controller ++ u32 op_addr = op->addr.val; ++ // where to start copying data from bounce buffer ++ u32 wr_offset = 0; ++ u32 op_mode = 0; ++ int ret = 0; ++ u32 wr_mode = 0; ++ u32 dma_len = snf->buf_len; ++ u32 wr_bytes, val; ++ size_t cap_len; ++ dma_addr_t buf_dma; ++ ++ if (snf->autofmt) { ++ u32 last_bit; ++ u32 mask; ++ ++ dma_len = snf->nfi_cfg.page_size; ++ op_mode = CNFG_AUTO_FMT_EN; ++ if (op->data.ecc) ++ op_mode |= CNFG_HW_ECC_EN; ++ ++ last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); ++ mask = (1 << last_bit) - 1; ++ wr_offset = op_addr & mask; ++ op_addr &= ~mask; ++ } ++ mtk_snand_mac_reset(snf); ++ mtk_nfi_reset(snf); ++ ++ if (wr_offset) ++ memset(snf->buf, 0xff, wr_offset); ++ ++ cap_len = snf->buf_len - wr_offset; ++ if (op->data.nbytes < cap_len) ++ cap_len = op->data.nbytes; ++ memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len); ++ if (snf->autofmt) { ++ if (snf->caps->bbm_swap) { ++ mtk_snand_fdm_bm_swap(snf); ++ mtk_snand_bm_swap(snf, snf->buf); ++ } ++ mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size); ++ } ++ ++ // Command ++ nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S)); ++ ++ // write address ++ nfi_write32(snf, SNF_PG_CTL2, op_addr); ++ ++ // Set read op_mode ++ if (op->data.buswidth == 4) ++ wr_mode = PG_LOAD_X4_EN; ++ ++ nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN, ++ wr_mode | PG_LOAD_CUSTOM_EN); ++ ++ // Set bytes to write ++ wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * ++ snf->nfi_cfg.nsectors; ++ nfi_write32(snf, SNF_MISC_CTL2, ++ (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes); ++ ++ // NFI write prepare ++ nfi_write16(snf, NFI_CNFG, ++ (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) | ++ CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode); ++ ++ nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); ++ buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE); ++ if (dma_mapping_error(snf->dev, buf_dma)) { ++ dev_err(snf->dev, "DMA mapping failed.\n"); ++ goto cleanup; ++ } ++ nfi_write32(snf, NFI_STRADDR, buf_dma); ++ if (op->data.ecc) { ++ snf->ecc_cfg->op = ECC_ENCODE; ++ ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); ++ if (ret) ++ goto cleanup_dma; ++ } ++ // Prepare for custom write interrupt ++ nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG); ++ reinit_completion(&snf->op_done); ++ ; ++ ++ // Trigger NFI into custom mode ++ nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE); ++ ++ // Start DMA write ++ nfi_rmw32(snf, NFI_CON, 0, CON_BWR); ++ nfi_write16(snf, NFI_STRDATA, STR_DATA); ++ ++ if (!wait_for_completion_timeout( ++ &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { ++ dev_err(snf->dev, "DMA timed out for program load.\n"); ++ ret = -ETIMEDOUT; ++ goto cleanup_ecc; ++ } ++ ++ // Wait for NFI_SEC_CNTR returning expected value ++ ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val, ++ NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, ++ SNFI_POLL_INTERVAL); ++ if (ret) ++ dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n"); ++ ++cleanup_ecc: ++ if (op->data.ecc) ++ mtk_ecc_disable(snf->ecc); ++cleanup_dma: ++ dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE); ++cleanup: ++ // Stop write ++ nfi_write32(snf, NFI_CON, 0); ++ nfi_write16(snf, NFI_CNFG, 0); ++ ++ // Clear SNF done flag ++ nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE); ++ nfi_write32(snf, SNF_STA_CTL1, 0); ++ ++ // Disable interrupt ++ nfi_read32(snf, NFI_INTR_STA); ++ nfi_write32(snf, NFI_INTR_EN, 0); ++ ++ nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0); ++ ++ return ret; ++} ++ ++/** ++ * mtk_snand_is_page_ops() - check if the op is a controller supported page op. ++ * @op spi-mem op to check ++ * ++ * Check whether op can be executed with read_from_cache or program_load ++ * mode in the controller. ++ * This controller can execute typical Read From Cache and Program Load ++ * instructions found on SPI-NAND with 2-byte address. ++ * DTR and cmd buswidth & nbytes should be checked before calling this. ++ * ++ * Return: true if the op matches the instruction template ++ */ ++static bool mtk_snand_is_page_ops(const struct spi_mem_op *op) ++{ ++ if (op->addr.nbytes != 2) ++ return false; ++ ++ if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && ++ op->addr.buswidth != 4) ++ return false; ++ ++ // match read from page instructions ++ if (op->data.dir == SPI_MEM_DATA_IN) { ++ // check dummy cycle first ++ if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth > ++ DATA_READ_MAX_DUMMY) ++ return false; ++ // quad io / quad out ++ if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) && ++ op->data.buswidth == 4) ++ return true; ++ ++ // dual io / dual out ++ if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) && ++ op->data.buswidth == 2) ++ return true; ++ ++ // standard spi ++ if (op->addr.buswidth == 1 && op->data.buswidth == 1) ++ return true; ++ } else if (op->data.dir == SPI_MEM_DATA_OUT) { ++ // check dummy cycle first ++ if (op->dummy.nbytes) ++ return false; ++ // program load quad out ++ if (op->addr.buswidth == 1 && op->data.buswidth == 4) ++ return true; ++ // standard spi ++ if (op->addr.buswidth == 1 && op->data.buswidth == 1) ++ return true; ++ } ++ return false; ++} ++ ++static bool mtk_snand_supports_op(struct spi_mem *mem, ++ const struct spi_mem_op *op) ++{ ++ if (!spi_mem_default_supports_op(mem, op)) ++ return false; ++ if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) ++ return false; ++ if (mtk_snand_is_page_ops(op)) ++ return true; ++ return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) && ++ (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) && ++ (op->data.nbytes == 0 || op->data.buswidth == 1)); ++} ++ ++static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) ++{ ++ struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); ++ // page ops transfer size must be exactly ((sector_size + spare_size) * ++ // nsectors). Limit the op size if the caller requests more than that. ++ // exec_op will read more than needed and discard the leftover if the ++ // caller requests less data. ++ if (mtk_snand_is_page_ops(op)) { ++ size_t l; ++ // skip adjust_op_size for page ops ++ if (ms->autofmt) ++ return 0; ++ l = ms->caps->sector_size + ms->nfi_cfg.spare_size; ++ l *= ms->nfi_cfg.nsectors; ++ if (op->data.nbytes > l) ++ op->data.nbytes = l; ++ } else { ++ size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; ++ ++ if (hl >= SNF_GPRAM_SIZE) ++ return -EOPNOTSUPP; ++ if (op->data.nbytes > SNF_GPRAM_SIZE - hl) ++ op->data.nbytes = SNF_GPRAM_SIZE - hl; ++ } ++ return 0; ++} ++ ++static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) ++{ ++ struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); ++ ++ dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, ++ op->addr.val, op->addr.buswidth, op->addr.nbytes, ++ op->data.buswidth, op->data.nbytes); ++ if (mtk_snand_is_page_ops(op)) { ++ if (op->data.dir == SPI_MEM_DATA_IN) ++ return mtk_snand_read_page_cache(ms, op); ++ else ++ return mtk_snand_write_page_cache(ms, op); ++ } else { ++ return mtk_snand_mac_io(ms, op); ++ } ++} ++ ++static const struct spi_controller_mem_ops mtk_snand_mem_ops = { ++ .adjust_op_size = mtk_snand_adjust_op_size, ++ .supports_op = mtk_snand_supports_op, ++ .exec_op = mtk_snand_exec_op, ++}; ++ ++static const struct spi_controller_mem_caps mtk_snand_mem_caps = { ++ .ecc = true, ++}; ++ ++static irqreturn_t mtk_snand_irq(int irq, void *id) ++{ ++ struct mtk_snand *snf = id; ++ u32 sta, ien; ++ ++ sta = nfi_read32(snf, NFI_INTR_STA); ++ ien = nfi_read32(snf, NFI_INTR_EN); ++ ++ if (!(sta & ien)) ++ return IRQ_NONE; ++ ++ nfi_write32(snf, NFI_INTR_EN, 0); ++ complete(&snf->op_done); ++ return IRQ_HANDLED; ++} ++ ++static const struct of_device_id mtk_snand_ids[] = { ++ { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps }, ++ { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps }, ++ {}, ++}; ++ ++MODULE_DEVICE_TABLE(of, mtk_snand_ids); ++ ++static int mtk_snand_enable_clk(struct mtk_snand *ms) ++{ ++ int ret; ++ ++ ret = clk_prepare_enable(ms->nfi_clk); ++ if (ret) { ++ dev_err(ms->dev, "unable to enable nfi clk\n"); ++ return ret; ++ } ++ ret = clk_prepare_enable(ms->pad_clk); ++ if (ret) { ++ dev_err(ms->dev, "unable to enable pad clk\n"); ++ goto err1; ++ } ++ return 0; ++err1: ++ clk_disable_unprepare(ms->nfi_clk); ++ return ret; ++} ++ ++static void mtk_snand_disable_clk(struct mtk_snand *ms) ++{ ++ clk_disable_unprepare(ms->pad_clk); ++ clk_disable_unprepare(ms->nfi_clk); ++} ++ ++static int mtk_snand_probe(struct platform_device *pdev) ++{ ++ struct device_node *np = pdev->dev.of_node; ++ const struct of_device_id *dev_id; ++ struct spi_controller *ctlr; ++ struct mtk_snand *ms; ++ int ret; ++ ++ dev_id = of_match_node(mtk_snand_ids, np); ++ if (!dev_id) ++ return -EINVAL; ++ ++ ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms)); ++ if (!ctlr) ++ return -ENOMEM; ++ platform_set_drvdata(pdev, ctlr); ++ ++ ms = spi_controller_get_devdata(ctlr); ++ ++ ms->ctlr = ctlr; ++ ms->caps = dev_id->data; ++ ++ ms->ecc = of_mtk_ecc_get(np); ++ if (IS_ERR(ms->ecc)) ++ return PTR_ERR(ms->ecc); ++ else if (!ms->ecc) ++ return -ENODEV; ++ ++ ms->nfi_base = devm_platform_ioremap_resource(pdev, 0); ++ if (IS_ERR(ms->nfi_base)) { ++ ret = PTR_ERR(ms->nfi_base); ++ goto release_ecc; ++ } ++ ++ ms->dev = &pdev->dev; ++ ++ ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk"); ++ if (IS_ERR(ms->nfi_clk)) { ++ ret = PTR_ERR(ms->nfi_clk); ++ dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret); ++ goto release_ecc; ++ } ++ ++ ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk"); ++ if (IS_ERR(ms->pad_clk)) { ++ ret = PTR_ERR(ms->pad_clk); ++ dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret); ++ goto release_ecc; ++ } ++ ++ ret = mtk_snand_enable_clk(ms); ++ if (ret) ++ goto release_ecc; ++ ++ init_completion(&ms->op_done); ++ ++ ms->irq = platform_get_irq(pdev, 0); ++ if (ms->irq < 0) { ++ ret = ms->irq; ++ goto disable_clk; ++ } ++ ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0, ++ "mtk-snand", ms); ++ if (ret) { ++ dev_err(ms->dev, "failed to request snfi irq\n"); ++ goto disable_clk; ++ } ++ ++ ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32)); ++ if (ret) { ++ dev_err(ms->dev, "failed to set dma mask\n"); ++ goto disable_clk; ++ } ++ ++ // switch to SNFI mode ++ nfi_write32(ms, SNF_CFG, SPI_MODE); ++ ++ // setup an initial page format for ops matching page_cache_op template ++ // before ECC is called. ++ ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size, ++ ms->caps->spare_sizes[0]); ++ if (ret) { ++ dev_err(ms->dev, "failed to set initial page format\n"); ++ goto disable_clk; ++ } ++ ++ // setup ECC engine ++ ms->ecc_eng.dev = &pdev->dev; ++ ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; ++ ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops; ++ ms->ecc_eng.priv = ms; ++ ++ ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng); ++ if (ret) { ++ dev_err(&pdev->dev, "failed to register ecc engine.\n"); ++ goto disable_clk; ++ } ++ ++ ctlr->num_chipselect = 1; ++ ctlr->mem_ops = &mtk_snand_mem_ops; ++ ctlr->mem_caps = &mtk_snand_mem_caps; ++ ctlr->bits_per_word_mask = SPI_BPW_MASK(8); ++ ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; ++ ctlr->dev.of_node = pdev->dev.of_node; ++ ret = spi_register_controller(ctlr); ++ if (ret) { ++ dev_err(&pdev->dev, "spi_register_controller failed.\n"); ++ goto disable_clk; ++ } ++ ++ return 0; ++disable_clk: ++ mtk_snand_disable_clk(ms); ++release_ecc: ++ mtk_ecc_release(ms->ecc); ++ return ret; ++} ++ ++static int mtk_snand_remove(struct platform_device *pdev) ++{ ++ struct spi_controller *ctlr = platform_get_drvdata(pdev); ++ struct mtk_snand *ms = spi_controller_get_devdata(ctlr); ++ ++ spi_unregister_controller(ctlr); ++ mtk_snand_disable_clk(ms); ++ mtk_ecc_release(ms->ecc); ++ kfree(ms->buf); ++ return 0; ++} ++ ++static struct platform_driver mtk_snand_driver = { ++ .probe = mtk_snand_probe, ++ .remove = mtk_snand_remove, ++ .driver = { ++ .name = "mtk-snand", ++ .of_match_table = mtk_snand_ids, ++ }, ++}; ++ ++module_platform_driver(mtk_snand_driver); ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>"); ++MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver"); |