aboutsummaryrefslogtreecommitdiffstats
path: root/tests/verilog/genvar_loop_decl_1.ys
blob: ded4862481a8a792fd0fe7467ba6364e09fc74ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
f='#n21'>21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
// The core logic primitive of the Cyclone V/10GX is the Adaptive Logic Module
// (ALM). Each ALM is made up of an 8-input, 2-output look-up table, covered 
// in this file, connected to combinational outputs, a carry chain, and four
// D flip-flops (which are covered as MISTRAL_FF in dff_sim.v).
//
// The ALM is vertically symmetric, so I find it helps to think in terms of
// half-ALMs, as that's predominantly the unit that synth_intel_alm uses.
//
// ALMs are quite flexible, having multiple modes.
//
// Normal (combinational) mode
// ---------------------------
// The ALM can implement:
// - a single 6-input function (with the other inputs usable for flip-flop access)
// - two 5-input functions that share two inputs
// - a 5-input and a 4-input function that share one input
// - a 5-input and a 3-or-less-input function that share no inputs
// - two 4-or-less-input functions that share no inputs
//
// Normal-mode functions are represented as MISTRAL_ALUTN cells with N inputs.
// It would be possible to represent a normal mode function as a single cell -
// the vendor cyclone{v,10gx}_lcell_comb cell does exactly that - but I felt
// it was more user-friendly to print out the specific function sizes
// separately.
//
// With the exception of MISTRAL_ALUT6, you can think of two normal-mode cells
// fitting inside a single ALM.
//
// Extended (7-input) mode
// -----------------------
// The ALM can also fit a 7-input function made of two 5-input functions that
// share four inputs, multiplexed by another input.
//
// Because this can't accept arbitrary 7-input functions, Yosys can't handle
// it, so it doesn't have a cell, but I would likely call it MISTRAL_ALUT7(E?)
// if it did, and it would take up a full ALM.
//
// It might be possible to add an extraction pass to examine all ALUT5 cells
// that feed into ALUT3 cells to see if they can be combined into an extended
// ALM, but I don't think it will be worth it.
//
// Arithmetic mode
// ---------------
// In arithmetic mode, each half-ALM uses its carry chain to perform fast addition
// of two four-input functions that share three inputs. Oddly, the result of
// one of the functions is inverted before being added (you can see this as
// the dot on a full-adder input of Figure 1-8 in the Handbook).
//
// The cell for an arithmetic-mode half-ALM is MISTRAL_ALM_ARITH. One idea
// I've had (or rather was suggested by mwk) is that functions that feed into
// arithmetic-mode cells could be packed directly into the arithmetic-mode
// cell as a function, which reduces the number of ALMs needed.
//
// Shared arithmetic mode
// ----------------------
// Shared arithmetic mode looks a lot like arithmetic mode, but here the
// output of every other four-input function goes to the input of the adder
// the next bit along. What this means is that adding three bits together can
// be done in an ALM, because functions can be used to implement addition that
// then feeds into the carry chain. This means that three bits can be added per
// ALM, as opposed to two in the arithmetic mode.
//
// Shared arithmetic mode doesn't currently have a cell, but I intend to add
// it as MISTRAL_ALM_SHARED, and have it occupy a full ALM. Because it adds
// three bits per cell, it makes addition shorter and use less ALMs, but
// I don't know enough to tell whether it's more efficient to use shared
// arithmetic mode to shorten the carry chain, or plain arithmetic mode with
// the functions packed in.

`default_nettype none

// Cyclone V LUT output timings (picoseconds):
//
//          CARRY   A    B    C   D   E    F   G
//  COMBOUT    -  605  583  510 512   -   97 400 (LUT6)
//  COMBOUT    -  602  583  457 510 302   93 483 (LUT7)
//   SUMOUT  368 1342 1323  887 927   -  785   -
// CARRYOUT   71 1082 1062  866 813   - 1198   -

// Arria V LUT output timings (picoseconds):
//
//          CARRY   A    B    C   D   E    F   G
//  COMBOUT    -  387  375  316 317   -   76 319 (LUT6)
//  COMBOUT    -  387  375  316 317 218   76 319 (LUT7)
//   SUMOUT  249  744  732  562 576   -  511   -
// CARRYOUT   19  629  623  530 514   -  696   -

(* abc9_lut=2, lib_whitebox *)
module MISTRAL_ALUT6(input A, B, C, D, E, F, output Q);

parameter [63:0] LUT = 64'h0000_0000_0000_0000;

`ifdef cyclonev
specify
    (A => Q) = 605;
    (B => Q) = 583;
    (C => Q) = 510;
    (D => Q) = 512;
    (E => Q) = 400;
    (F => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 387;
    (B => Q) = 375;
    (C => Q) = 316;
    (D => Q) = 317;
    (E => Q) = 319;
    (F => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 275;
    (B => Q) = 272;
    (C => Q) = 175;
    (D => Q) = 165;
    (E => Q) = 162;
    (F => Q) = 53;
endspecify
`endif

assign Q = LUT >> {F, E, D, C, B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT5(input A, B, C, D, E, output Q);

parameter [31:0] LUT = 32'h0000_0000;

`ifdef cyclonev
specify
    (A => Q) = 583;
    (B => Q) = 510;
    (C => Q) = 512;
    (D => Q) = 400;
    (E => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 375;
    (B => Q) = 316;
    (C => Q) = 317;
    (D => Q) = 319;
    (E => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 272;
    (B => Q) = 175;
    (C => Q) = 165;
    (D => Q) = 162;
    (E => Q) = 53;
endspecify
`endif

assign Q = LUT >> {E, D, C, B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT4(input A, B, C, D, output Q);

parameter [15:0] LUT = 16'h0000;

`ifdef cyclonev
specify
    (A => Q) = 510;
    (B => Q) = 512;
    (C => Q) = 400;
    (D => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 316;
    (B => Q) = 317;
    (C => Q) = 319;
    (D => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 175;
    (B => Q) = 165;
    (C => Q) = 162;
    (D => Q) = 53;
endspecify
`endif

assign Q = LUT >> {D, C, B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT3(input A, B, C, output Q);

parameter [7:0] LUT = 8'h00;

`ifdef cyclonev
specify
    (A => Q) = 510;
    (B => Q) = 400;
    (C => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 316;
    (B => Q) = 317;
    (C => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 165;
    (B => Q) = 162;
    (C => Q) = 53;
endspecify
`endif

assign Q = LUT >> {C, B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT2(input A, B, output Q);

parameter [3:0] LUT = 4'h0;

`ifdef cyclonev
specify
    (A => Q) = 400;
    (B => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 316;
    (B => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 162;
    (B => Q) = 53;
endspecify
`endif

assign Q = LUT >> {B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_NOT(input A, output Q);

`ifdef cyclonev
specify
    (A => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 53;
endspecify
`endif

assign Q = ~A;

endmodule

// Despite the abc9_carry attributes, this doesn't seem to stop ABC9 adding illegal fanout to the carry chain that nextpnr cannot handle.
// So we treat it as a total blackbox from ABC9's perspective for now.
// (* abc9_box, lib_whitebox *)
module MISTRAL_ALUT_ARITH(input A, B, C, D0, D1, /* (* abc9_carry *) */ input CI, output SO, /* (* abc9_carry *) */ output CO);

parameter LUT0 = 16'h0000;
parameter LUT1 = 16'h0000;

`ifdef cyclonev
specify
    (A  => SO) = 1342;
    (B  => SO) = 1323;
    (C  => SO) = 927;
    (D0 => SO) = 887;
    (D1 => SO) = 785;
    (CI => SO) = 368;

    (A  => CO) = 1082;
    (B  => CO) = 1062;
    (C  => CO) = 813;
    (D0 => CO) = 866;
    (D1 => CO) = 1198;
    (CI => CO) = 36; // Divided by 2 to account for there being two ALUT_ARITHs in an ALM)
endspecify
`endif
`ifdef arriav
specify
    (A  => SO) = 744;
    (B  => SO) = 732;
    (C  => SO) = 562;
    (D0 => SO) = 576;
    (D1 => SO) = 511;
    (CI => SO) = 249;

    (A  => CO) = 629;
    (B  => CO) = 623;
    (C  => CO) = 530;
    (D0 => CO) = 514;
    (D1 => CO) = 696;
    (CI => CO) = 10; // Divided by 2 to account for there being two ALUT_ARITHs in an ALM)
endspecify
`endif
`ifdef cyclone10gx
specify
    (A  => SO) = 644;
    (B  => SO) = 477;
    (C  => SO) = 416;
    (D0 => SO) = 380;
    (D1 => SO) = 431;
    (CI => SO) = 276;

    (A  => CO) = 525;
    (B  => CO) = 433;
    (C  => CO) = 712;
    (D0 => CO) = 653;
    (D1 => CO) = 593;
    (CI => CO) = 16;
endspecify
`endif

wire q0, q1;

assign q0 = LUT0 >> {D0, C, B, A};
assign q1 = LUT1 >> {D1, C, B, A};

assign {CO, SO} = q0 + !q1 + CI;

endmodule


/*
// A, B, C0, C1, E0, E1, F0, F1: data inputs
// CARRYIN: carry input
// SHAREIN: shared-arithmetic input
// CLK0, CLK1, CLK2: clock inputs
//
// COMB0, COMB1: combinational outputs
// FF0, FF1, FF2, FF3: DFF outputs
// SUM0, SUM1: adder outputs
// CARRYOUT: carry output
// SHAREOUT: shared-arithmetic output
module MISTRAL_ALM(
    input A, B, C0, C1, E0, E1, F0, F1, CARRYIN, SHAREIN, // LUT path
    input CLK0, CLK1, CLK2, AC0, AC1,                     // FF path
    output COMB0, COMB1, SUM0, SUM1, CARRYOUT, SHAREOUT,
    output FF0, FF1, FF2, FF3
);

parameter LUT0 = 16'b0000;
parameter LUT1 = 16'b0000;
parameter LUT2 = 16'b0000;
parameter LUT3 = 16'b0000;

parameter INIT0 = 1'b0;
parameter INIT1 = 1'b0;
parameter INIT2 = 1'b0;
parameter INIT3 = 1'b0;

parameter C0_MUX = "C0";
parameter C1_MUX = "C1";

parameter F0_MUX = "VCC";
parameter F1_MUX = "GND";

parameter FEEDBACK0 = "FF0";
parameter FEEDBACK1 = "FF2";

parameter ADD_MUX = "LUT";

parameter DFF01_DATA_MUX = "COMB";
parameter DFF23_DATA_MUX = "COMB";

parameter DFF0_CLK = "CLK0";
parameter DFF1_CLK = "CLK0";
parameter DFF2_CLK = "CLK0";
parameter DFF3_CLK = "CLK0";

parameter DFF0_AC  = "AC0";
parameter DFF1_AC  = "AC0";
parameter DFF2_AC  = "AC0";
parameter DFF3_AC  = "AC0";

// Feedback muxes from the flip-flop outputs.
wire ff_feedback_mux0, ff_feedback_mux1;

// C-input muxes which can be set to also use the F-input.
wire c0_input_mux, c1_input_mux;

// F-input muxes which can be set to a constant to allow LUT5 use.
wire f0_input_mux, f1_input_mux;

// Adder input muxes to select between shared-arithmetic mode and arithmetic mode.
wire add0_input_mux, add1_input_mux;

// Combinational-output muxes for LUT #1 and LUT #3
wire lut1_comb_mux, lut3_comb_mux;

// Sum-output muxes for LUT #1 and LUT #3
wire lut1_sum_mux, lut3_sum_mux;

// DFF data-input muxes
wire dff01_data_mux, dff23_data_mux;

// DFF clock selectors
wire dff0_clk, dff1_clk, dff2_clk, dff3_clk;

// DFF asynchronous-clear selectors
wire dff0_ac, dff1_ac, dff2_ac, dff3_ac;

// LUT, DFF and adder output wires for routing.
wire lut0_out, lut1a_out, lut1b_out, lut2_out, lut3a_out, lut3b_out;
wire dff0_out, dff1_out, dff2_out, dff3_out;
wire add0_sum, add1_sum, add0_carry, add1_carry;

generate
    if (FEEDBACK0 === "FF0")
        assign ff_feedback_mux0 = dff0_out;
    else if (FEEDBACK0 === "FF1")
        assign ff_feedback_mux0 = dff1_out;
    else
        $error("Invalid FEEDBACK0 setting!");

    if (FEEDBACK1 == "FF2")
        assign ff_feedback_mux1 = dff2_out;
    else if (FEEDBACK1 == "FF3")
        assign ff_feedback_mux1 = dff3_out;
    else
        $error("Invalid FEEDBACK1 setting!");

    if (C0_MUX === "C0")
        assign c0_input_mux = C0;
    else if (C0_MUX === "F1")
        assign c0_input_mux = F1;
    else if (C0_MUX === "FEEDBACK1")
        assign c0_input_mux = ff_feedback_mux1;
    else
        $error("Invalid C0_MUX setting!");

    if (C1_MUX === "C1")
        assign c1_input_mux = C1;
    else if (C1_MUX === "F0")
        assign c1_input_mux = F0;
    else if (C1_MUX === "FEEDBACK0")
        assign c1_input_mux = ff_feedback_mux0;
    else
        $error("Invalid C1_MUX setting!");

    // F0 == VCC is LUT5
    // F0 == F0 is LUT6
    // F0 == FEEDBACK is unknown
    if (F0_MUX === "VCC")
        assign f0_input_mux = 1'b1;
    else if (F0_MUX === "F0")
        assign f0_input_mux = F0;
    else if (F0_MUX === "FEEDBACK0")
        assign f0_input_mux = ff_feedback_mux0;
    else
        $error("Invalid F0_MUX setting!");

    // F1 == GND is LUT5
    // F1 == F1 is LUT6
    // F1 == FEEDBACK is unknown
    if (F1_MUX === "GND")
        assign f1_input_mux = 1'b0;
    else if (F1_MUX === "F1")
        assign f1_input_mux = F1;
    else if (F1_MUX === "FEEDBACK1")
        assign f1_input_mux = ff_feedback_mux1;
    else
        $error("Invalid F1_MUX setting!");

    if (ADD_MUX === "LUT") begin
        assign add0_input_mux = ~lut1_sum_mux;
        assign add1_input_mux = ~lut3_sum_mux;
    end else if (ADD_MUX === "SHARE") begin
        assign add0_input_mux = SHAREIN;
        assign add1_input_mux = lut1_comb_mux;
    end else
        $error("Invalid ADD_MUX setting!");

    if (DFF01_DATA_MUX === "COMB")
        assign dff01_data_mux = COMB0;
    else if (DFF01_DATA_MUX === "SUM")
        assign dff01_data_mux = SUM0;
    else
        $error("Invalid DFF01_DATA_MUX setting!");

    if (DFF23_DATA_MUX === "COMB")
        assign dff23_data_mux = COMB0;
    else if (DFF23_DATA_MUX === "SUM")
        assign dff23_data_mux = SUM0;
    else
        $error("Invalid DFF23_DATA_MUX setting!");

    if (DFF0_CLK === "CLK0")
        assign dff0_clk = CLK0;
    else if (DFF0_CLK === "CLK1")
        assign dff0_clk = CLK1;
    else if (DFF0_CLK === "CLK2")
        assign dff0_clk = CLK2;
    else
        $error("Invalid DFF0_CLK setting!");

    if (DFF1_CLK === "CLK0")
        assign dff1_clk = CLK0;
    else if (DFF1_CLK === "CLK1")
        assign dff1_clk = CLK1;
    else if (DFF1_CLK === "CLK2")
        assign dff1_clk = CLK2;
    else
        $error("Invalid DFF1_CLK setting!");

    if (DFF2_CLK === "CLK0")
        assign dff2_clk = CLK0;
    else if (DFF2_CLK === "CLK1")
        assign dff2_clk = CLK1;
    else if (DFF2_CLK === "CLK2")
        assign dff2_clk = CLK2;
    else
        $error("Invalid DFF2_CLK setting!");

    if (DFF3_CLK === "CLK0")
        assign dff3_clk = CLK0;
    else if (DFF3_CLK === "CLK1")
        assign dff3_clk = CLK1;
    else if (DFF3_CLK === "CLK2")
        assign dff3_clk = CLK2;
    else
        $error("Invalid DFF3_CLK setting!");

    if (DFF0_AC === "AC0")
        assign dff0_ac = AC0;
    else if (DFF0_AC === "AC1")
        assign dff0_ac = AC1;
    else
        $error("Invalid DFF0_AC setting!");

    if (DFF1_AC === "AC0")
        assign dff1_ac = AC0;
    else if (DFF1_AC === "AC1")
        assign dff1_ac = AC1;
    else
        $error("Invalid DFF1_AC setting!");

    if (DFF2_AC === "AC0")
        assign dff2_ac = AC0;
    else if (DFF2_AC === "AC1")
        assign dff2_ac = AC1;
    else
        $error("Invalid DFF2_AC setting!");

    if (DFF3_AC === "AC0")
        assign dff3_ac = AC0;
    else if (DFF3_AC === "AC1")
        assign dff3_ac = AC1;
    else
        $error("Invalid DFF3_AC setting!");

endgenerate

// F0 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT0)) lut0 (.A(A), .B(B), .C(C0), .D(c1_input_mux), .Q(lut0_out));

// F2 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT1)) lut1_comb (.A(A), .B(B), .C(C0), .D(c1_input_mux), .Q(lut1_comb_mux));
MISTRAL_ALUT4 #(.LUT(LUT1)) lut1_sum  (.A(A), .B(B), .C(C0), .D(E0), .Q(lut1_sum_mux));

// F1 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT2)) lut2 (.A(A), .B(B), .C(C1), .D(c0_input_mux), .Q(lut2_out));

// F3 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT3)) lut3_comb (.A(A), .B(B), .C(C1), .D(c0_input_mux), .Q(lut3_comb_mux));
MISTRAL_ALUT4 #(.LUT(LUT3)) lut3_sum  (.A(A), .B(B), .C(C1), .D(E1), .Q(lut3_sum_mux));

MISTRAL_FF #(.INIT(INIT0)) dff0 (.D(dff01_data_mux), .CLK(dff0_clk), .ACn(dff0_ac), .Q(dff0_out));
MISTRAL_FF #(.INIT(INIT1)) dff1 (.D(dff01_data_mux), .CLK(dff1_clk), .ACn(dff1_ac), .Q(dff1_out));
MISTRAL_FF #(.INIT(INIT2)) dff2 (.D(dff23_data_mux), .CLK(dff2_clk), .ACn(dff2_ac), .Q(dff2_out));
MISTRAL_FF #(.INIT(INIT3)) dff3 (.D(dff23_data_mux), .CLK(dff3_clk), .ACn(dff3_ac), .Q(dff3_out));

// Adders
assign {add0_carry, add0_sum} = CARRYIN + lut0_out + lut1_sum_mux;
assign {add1_carry, add1_sum} = add0_carry + lut2_out + lut3_sum_mux;

// COMBOUT outputs on the Quartus diagram
assign COMB0 = E0 ? (f0_input_mux ? lut3_comb_mux : lut1_comb_mux)
                    : (f0_input_mux ? lut2_out : lut0_out);

assign COMB1 = E1 ? (f1_input_mux ? lut3_comb_mux : lut1_comb_mux)
                    : (f1_input_mux ? lut2_out : lut0_out);

// SUMOUT output on the Quartus diagram
assign SUM0 = add0_sum;
assign SUM1 = add1_sum;

// COUT output on the Quartus diagram
assign CARRYOUT = add1_carry;

// SHAREOUT output on the Quartus diagram
assign SHAREOUT = lut3_comb_mux;

// REGOUT outputs on the Quartus diagram
assign FF0 = dff0_out;
assign FF1 = dff1_out;
assign FF2 = dff2_out;
assign FF3 = dff3_out;

endmodule
*/