1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
// See Xilinx UG953 and UG474 for a description of the cell types below.
// http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
// http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug953-vivado-7series-libraries.pdf
module VCC(output P);
assign P = 1;
endmodule
module GND(output G);
assign G = 0;
endmodule
module IBUF(output O, input I);
assign O = I;
endmodule
module OBUF(output O, input I);
assign O = I;
endmodule
module BUFGP(output O, input I);
assign O = I;
endmodule
module OBUFT(output O, input I, T);
assign O = T ? 1'bz : I;
endmodule
module INV(output O, input I);
assign O = !I;
endmodule
module LUT1(output O, input I0);
parameter [1:0] INIT = 0;
assign O = I0 ? INIT[1] : INIT[0];
endmodule
module LUT2(output O, input I0, I1);
parameter [3:0] INIT = 0;
wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
endmodule
module LUT3(output O, input I0, I1, I2);
parameter [7:0] INIT = 0;
wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
endmodule
module LUT4(output O, input I0, I1, I2, I3);
parameter [15:0] INIT = 0;
wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0];
wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
endmodule
module LUT5(output O, input I0, I1, I2, I3, I4);
parameter [31:0] INIT = 0;
wire [15: 0] s4 = I4 ? INIT[31:16] : INIT[15: 0];
wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0];
wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
endmodule
module LUT6(output O, input I0, I1, I2, I3, I4, I5);
parameter [63:0] INIT = 0;
wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0];
wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0];
wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0];
wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
endmodule
module MUXCY(output O, input CI, DI, S);
assign O = S ? CI : DI;
endmodule
module MUXF7(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
module MUXF8(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
module XORCY(output O, input CI, LI);
assign O = CI ^ LI;
endmodule
module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S);
assign O = S ^ {CO[2:0], CI | CYINIT};
assign CO[0] = S[0] ? CI | CYINIT : DI[0];
assign CO[1] = S[1] ? CO[0] : DI[1];
assign CO[2] = S[2] ? CO[1] : DI[2];
assign CO[3] = S[3] ? CO[2] : DI[3];
endmodule
module FDRE (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
endmodule
module FDSE (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
endmodule
|