aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/intel_alm/common/alm_sim.v
blob: 242f1003f2ff19e5312c3970299ad731a1397b68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
// The core logic primitive of the Cyclone V/10GX is the Adaptive Logic Module
// (ALM). Each ALM is made up of an 8-input, 2-output look-up table, covered 
// in this file, connected to combinational outputs, a carry chain, and four
// D flip-flops (which are covered as MISTRAL_FF in dff_sim.v).
//
// The ALM is vertically symmetric, so I find it helps to think in terms of
// half-ALMs, as that's predominantly the unit that synth_intel_alm uses.
//
// ALMs are quite flexible, having multiple modes.
//
// Normal (combinational) mode
// ---------------------------
// The ALM can implement:
// - a single 6-input function (with the other inputs usable for flip-flop access)
// - two 5-input functions that share two inputs
// - a 5-input and a 4-input function that share one input
// - a 5-input and a 3-or-less-input function that share no inputs
// - two 4-or-less-input functions that share no inputs
//
// Normal-mode functions are represented as MISTRAL_ALUTN cells with N inputs.
// It would be possible to represent a normal mode function as a single cell -
// the vendor cyclone{v,10gx}_lcell_comb cell does exactly that - but I felt
// it was more user-friendly to print out the specific function sizes
// separately.
//
// With the exception of MISTRAL_ALUT6, you can think of two normal-mode cells
// fitting inside a single ALM.
//
// Extended (7-input) mode
// -----------------------
// The ALM can also fit a 7-input function made of two 5-input functions that
// share four inputs, multiplexed by another input.
//
// Because this can't accept arbitrary 7-input functions, Yosys can't handle
// it, so it doesn't have a cell, but I would likely call it MISTRAL_ALUT7(E?)
// if it did, and it would take up a full ALM.
//
// It might be possible to add an extraction pass to examine all ALUT5 cells
// that feed into ALUT3 cells to see if they can be combined into an extended
// ALM, but I don't think it will be worth it.
//
// Arithmetic mode
// ---------------
// In arithmetic mode, each half-ALM uses its carry chain to perform fast addition
// of two four-input functions that share three inputs. Oddly, the result of
// one of the functions is inverted before being added (you can see this as
// the dot on a full-adder input of Figure 1-8 in the Handbook).
//
// The cell for an arithmetic-mode half-ALM is MISTRAL_ALM_ARITH. One idea
// I've had (or rather was suggested by mwk) is that functions that feed into
// arithmetic-mode cells could be packed directly into the arithmetic-mode
// cell as a function, which reduces the number of ALMs needed.
//
// Shared arithmetic mode
// ----------------------
// Shared arithmetic mode looks a lot like arithmetic mode, but here the
// output of every other four-input function goes to the input of the adder
// the next bit along. What this means is that adding three bits together can
// be done in an ALM, because functions can be used to implement addition that
// then feeds into the carry chain. This means that three bits can be added per
// ALM, as opposed to two in the arithmetic mode.
//
// Shared arithmetic mode doesn't currently have a cell, but I intend to add
// it as MISTRAL_ALM_SHARED, and have it occupy a full ALM. Because it adds
// three bits per cell, it makes addition shorter and use less ALMs, but
// I don't know enough to tell whether it's more efficient to use shared
// arithmetic mode to shorten the carry chain, or plain arithmetic mode with
// the functions packed in.

`default_nettype none

// Cyclone V LUT output timings (picoseconds):
//
//          CARRY   A    B    C   D   E    F   G
//  COMBOUT    -  605  583  510 512   -   97 400 (LUT6)
//  COMBOUT    -  602  583  457 510 302   93 483 (LUT7)
//   SUMOUT  368 1342 1323  887 927   -  785   -
// CARRYOUT   71 1082 1062  866 813   - 1198   -

// Arria V LUT output timings (picoseconds):
//
//          CARRY   A    B    C   D   E    F   G
//  COMBOUT    -  387  375  316 317   -   76 319 (LUT6)
//  COMBOUT    -  387  375  316 317 218   76 319 (LUT7)
//   SUMOUT  249  744  732  562 576   -  511   -
// CARRYOUT   19  629  623  530 514   -  696   -

(* abc9_lut=2, lib_whitebox *)
module MISTRAL_ALUT6(input A, B, C, D, E, F, output Q);

parameter [63:0] LUT = 64'h0000_0000_0000_0000;

`ifdef cyclonev
specify
    (A => Q) = 605;
    (B => Q) = 583;
    (C => Q) = 510;
    (D => Q) = 512;
    (E => Q) = 400;
    (F => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 387;
    (B => Q) = 375;
    (C => Q) = 316;
    (D => Q) = 317;
    (E => Q) = 319;
    (F => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 275;
    (B => Q) = 272;
    (C => Q) = 175;
    (D => Q) = 165;
    (E => Q) = 162;
    (F => Q) = 53;
endspecify
`endif

assign Q = LUT >> {F, E, D, C, B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT5(input A, B, C, D, E, output Q);

parameter [31:0] LUT = 32'h0000_0000;

`ifdef cyclonev
specify
    (A => Q) = 583;
    (B => Q) = 510;
    (C => Q) = 512;
    (D => Q) = 400;
    (E => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 375;
    (B => Q) = 316;
    (C => Q) = 317;
    (D => Q) = 319;
    (E => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 272;
    (B => Q) = 175;
    (C => Q) = 165;
    (D => Q) = 162;
    (E => Q) = 53;
endspecify
`endif

assign Q = LUT >> {E, D, C, B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT4(input A, B, C, D, output Q);

parameter [15:0] LUT = 16'h0000;

`ifdef cyclonev
specify
    (A => Q) = 510;
    (B => Q) = 512;
    (C => Q) = 400;
    (D => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 316;
    (B => Q) = 317;
    (C => Q) = 319;
    (D => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 175;
    (B => Q) = 165;
    (C => Q) = 162;
    (D => Q) = 53;
endspecify
`endif

assign Q = LUT >> {D, C, B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT3(input A, B, C, output Q);

parameter [7:0] LUT = 8'h00;

`ifdef cyclonev
specify
    (A => Q) = 510;
    (B => Q) = 400;
    (C => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 316;
    (B => Q) = 317;
    (C => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 165;
    (B => Q) = 162;
    (C => Q) = 53;
endspecify
`endif

assign Q = LUT >> {C, B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT2(input A, B, output Q);

parameter [3:0] LUT = 4'h0;

`ifdef cyclonev
specify
    (A => Q) = 400;
    (B => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 316;
    (B => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 162;
    (B => Q) = 53;
endspecify
`endif

assign Q = LUT >> {B, A};

endmodule


(* abc9_lut=1, lib_whitebox *)
module MISTRAL_NOT(input A, output Q);

`ifdef cyclonev
specify
    (A => Q) = 97;
endspecify
`endif
`ifdef arriav
specify
    (A => Q) = 76;
endspecify
`endif
`ifdef cyclone10gx
specify
    (A => Q) = 53;
endspecify
`endif

assign Q = ~A;

endmodule

// Despite the abc9_carry attributes, this doesn't seem to stop ABC9 adding illegal fanout to the carry chain that nextpnr cannot handle.
// So we treat it as a total blackbox from ABC9's perspective for now.
// (* abc9_box, lib_whitebox *)
module MISTRAL_ALUT_ARITH(input A, B, C, D0, D1, /* (* abc9_carry *) */ input CI, output SO, /* (* abc9_carry *) */ output CO);

parameter LUT0 = 16'h0000;
parameter LUT1 = 16'h0000;

`ifdef cyclonev
specify
    (A  => SO) = 1342;
    (B  => SO) = 1323;
    (C  => SO) = 927;
    (D0 => SO) = 887;
    (D1 => SO) = 785;
    (CI => SO) = 368;

    (A  => CO) = 1082;
    (B  => CO) = 1062;
    (C  => CO) = 813;
    (D0 => CO) = 866;
    (D1 => CO) = 1198;
    (CI => CO) = 36; // Divided by 2 to account for there being two ALUT_ARITHs in an ALM)
endspecify
`endif
`ifdef arriav
specify
    (A  => SO) = 744;
    (B  => SO) = 732;
    (C  => SO) = 562;
    (D0 => SO) = 576;
    (D1 => SO) = 511;
    (CI => SO) = 249;

    (A  => CO) = 629;
    (B  => CO) = 623;
    (C  => CO) = 530;
    (D0 => CO) = 514;
    (D1 => CO) = 696;
    (CI => CO) = 10; // Divided by 2 to account for there being two ALUT_ARITHs in an ALM)
endspecify
`endif
`ifdef cyclone10gx
specify
    (A  => SO) = 644;
    (B  => SO) = 477;
    (C  => SO) = 416;
    (D0 => SO) = 380;
    (D1 => SO) = 431;
    (CI => SO) = 276;

    (A  => CO) = 525;
    (B  => CO) = 433;
    (C  => CO) = 712;
    (D0 => CO) = 653;
    (D1 => CO) = 593;
    (CI => CO) = 16;
endspecify
`endif

wire q0, q1;

assign q0 = LUT0 >> {D0, C, B, A};
assign q1 = LUT1 >> {D1, C, B, A};

assign {CO, SO} = q0 + !q1 + CI;

endmodule


/*
// A, B, C0, C1, E0, E1, F0, F1: data inputs
// CARRYIN: carry input
// SHAREIN: shared-arithmetic input
// CLK0, CLK1, CLK2: clock inputs
//
// COMB0, COMB1: combinational outputs
// FF0, FF1, FF2, FF3: DFF outputs
// SUM0, SUM1: adder outputs
// CARRYOUT: carry output
// SHAREOUT: shared-arithmetic output
module MISTRAL_ALM(
    input A, B, C0, C1, E0, E1, F0, F1, CARRYIN, SHAREIN, // LUT path
    input CLK0, CLK1, CLK2, AC0, AC1,                     // FF path
    output COMB0, COMB1, SUM0, SUM1, CARRYOUT, SHAREOUT,
    output FF0, FF1, FF2, FF3
);

parameter LUT0 = 16'b0000;
parameter LUT1 = 16'b0000;
parameter LUT2 = 16'b0000;
parameter LUT3 = 16'b0000;

parameter INIT0 = 1'b0;
parameter INIT1 = 1'b0;
parameter INIT2 = 1'b0;
parameter INIT3 = 1'b0;

parameter C0_MUX = "C0";
parameter C1_MUX = "C1";

parameter F0_MUX = "VCC";
parameter F1_MUX = "GND";

parameter FEEDBACK0 = "FF0";
parameter FEEDBACK1 = "FF2";

parameter ADD_MUX = "LUT";

parameter DFF01_DATA_MUX = "COMB";
parameter DFF23_DATA_MUX = "COMB";

parameter DFF0_CLK = "CLK0";
parameter DFF1_CLK = "CLK0";
parameter DFF2_CLK = "CLK0";
parameter DFF3_CLK = "CLK0";

parameter DFF0_AC  = "AC0";
parameter DFF1_AC  = "AC0";
parameter DFF2_AC  = "AC0";
parameter DFF3_AC  = "AC0";

// Feedback muxes from the flip-flop outputs.
wire ff_feedback_mux0, ff_feedback_mux1;

// C-input muxes which can be set to also use the F-input.
wire c0_input_mux, c1_input_mux;

// F-input muxes which can be set to a constant to allow LUT5 use.
wire f0_input_mux, f1_input_mux;

// Adder input muxes to select between shared-arithmetic mode and arithmetic mode.
wire add0_input_mux, add1_input_mux;

// Combinational-output muxes for LUT #1 and LUT #3
wire lut1_comb_mux, lut3_comb_mux;

// Sum-output muxes for LUT #1 and LUT #3
wire lut1_sum_mux, lut3_sum_mux;

// DFF data-input muxes
wire dff01_data_mux, dff23_data_mux;

// DFF clock selectors
wire dff0_clk, dff1_clk, dff2_clk, dff3_clk;

// DFF asynchronous-clear selectors
wire dff0_ac, dff1_ac, dff2_ac, dff3_ac;

// LUT, DFF and adder output wires for routing.
wire lut0_out, lut1a_out, lut1b_out, lut2_out, lut3a_out, lut3b_out;
wire dff0_out, dff1_out, dff2_out, dff3_out;
wire add0_sum, add1_sum, add0_carry, add1_carry;

generate
    if (FEEDBACK0 === "FF0")
        assign ff_feedback_mux0 = dff0_out;
    else if (FEEDBACK0 === "FF1")
        assign ff_feedback_mux0 = dff1_out;
    else
        $error("Invalid FEEDBACK0 setting!");

    if (FEEDBACK1 == "FF2")
        assign ff_feedback_mux1 = dff2_out;
    else if (FEEDBACK1 == "FF3")
        assign ff_feedback_mux1 = dff3_out;
    else
        $error("Invalid FEEDBACK1 setting!");

    if (C0_MUX === "C0")
        assign c0_input_mux = C0;
    else if (C0_MUX === "F1")
        assign c0_input_mux = F1;
    else if (C0_MUX === "FEEDBACK1")
        assign c0_input_mux = ff_feedback_mux1;
    else
        $error("Invalid C0_MUX setting!");

    if (C1_MUX === "C1")
        assign c1_input_mux = C1;
    else if (C1_MUX === "F0")
        assign c1_input_mux = F0;
    else if (C1_MUX === "FEEDBACK0")
        assign c1_input_mux = ff_feedback_mux0;
    else
        $error("Invalid C1_MUX setting!");

    // F0 == VCC is LUT5
    // F0 == F0 is LUT6
    // F0 == FEEDBACK is unknown
    if (F0_MUX === "VCC")
        assign f0_input_mux = 1'b1;
    else if (F0_MUX === "F0")
        assign f0_input_mux = F0;
    else if (F0_MUX === "FEEDBACK0")
        assign f0_input_mux = ff_feedback_mux0;
    else
        $error("Invalid F0_MUX setting!");

    // F1 == GND is LUT5
    // F1 == F1 is LUT6
    // F1 == FEEDBACK is unknown
    if (F1_MUX === "GND")
        assign f1_input_mux = 1'b0;
    else if (F1_MUX === "F1")
        assign f1_input_mux = F1;
    else if (F1_MUX === "FEEDBACK1")
        assign f1_input_mux = ff_feedback_mux1;
    else
        $error("Invalid F1_MUX setting!");

    if (ADD_MUX === "LUT") begin
        assign add0_input_mux = ~lut1_sum_mux;
        assign add1_input_mux = ~lut3_sum_mux;
    end else if (ADD_MUX === "SHARE") begin
        assign add0_input_mux = SHAREIN;
        assign add1_input_mux = lut1_comb_mux;
    end else
        $error("Invalid ADD_MUX setting!");

    if (DFF01_DATA_MUX === "COMB")
        assign dff01_data_mux = COMB0;
    else if (DFF01_DATA_MUX === "SUM")
        assign dff01_data_mux = SUM0;
    else
        $error("Invalid DFF01_DATA_MUX setting!");

    if (DFF23_DATA_MUX === "COMB")
        assign dff23_data_mux = COMB0;
    else if (DFF23_DATA_MUX === "SUM")
        assign dff23_data_mux = SUM0;
    else
        $error("Invalid DFF23_DATA_MUX setting!");

    if (DFF0_CLK === "CLK0")
        assign dff0_clk = CLK0;
    else if (DFF0_CLK === "CLK1")
        assign dff0_clk = CLK1;
    else if (DFF0_CLK === "CLK2")
        assign dff0_clk = CLK2;
    else
        $error("Invalid DFF0_CLK setting!");

    if (DFF1_CLK === "CLK0")
        assign dff1_clk = CLK0;
    else if (DFF1_CLK === "CLK1")
        assign dff1_clk = CLK1;
    else if (DFF1_CLK === "CLK2")
        assign dff1_clk = CLK2;
    else
        $error("Invalid DFF1_CLK setting!");

    if (DFF2_CLK === "CLK0")
        assign dff2_clk = CLK0;
    else if (DFF2_CLK === "CLK1")
        assign dff2_clk = CLK1;
    else if (DFF2_CLK === "CLK2")
        assign dff2_clk = CLK2;
    else
        $error("Invalid DFF2_CLK setting!");

    if (DFF3_CLK === "CLK0")
        assign dff3_clk = CLK0;
    else if (DFF3_CLK === "CLK1")
        assign dff3_clk = CLK1;
    else if (DFF3_CLK === "CLK2")
        assign dff3_clk = CLK2;
    else
        $error("Invalid DFF3_CLK setting!");

    if (DFF0_AC === "AC0")
        assign dff0_ac = AC0;
    else if (DFF0_AC === "AC1")
        assign dff0_ac = AC1;
    else
        $error("Invalid DFF0_AC setting!");

    if (DFF1_AC === "AC0")
        assign dff1_ac = AC0;
    else if (DFF1_AC === "AC1")
        assign dff1_ac = AC1;
    else
        $error("Invalid DFF1_AC setting!");

    if (DFF2_AC === "AC0")
        assign dff2_ac = AC0;
    else if (DFF2_AC === "AC1")
        assign dff2_ac = AC1;
    else
        $error("Invalid DFF2_AC setting!");

    if (DFF3_AC === "AC0")
        assign dff3_ac = AC0;
    else if (DFF3_AC === "AC1")
        assign dff3_ac = AC1;
    else
        $error("Invalid DFF3_AC setting!");

endgenerate

// F0 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT0)) lut0 (.A(A), .B(B), .C(C0), .D(c1_input_mux), .Q(lut0_out));

// F2 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT1)) lut1_comb (.A(A), .B(B), .C(C0), .D(c1_input_mux), .Q(lut1_comb_mux));
MISTRAL_ALUT4 #(.LUT(LUT1)) lut1_sum  (.A(A), .B(B), .C(C0), .D(E0), .Q(lut1_sum_mux));

// F1 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT2)) lut2 (.A(A), .B(B), .C(C1), .D(c0_input_mux), .Q(lut2_out));

// F3 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT3)) lut3_comb (.A(A), .B(B), .C(C1), .D(c0_input_mux), .Q(lut3_comb_mux));
MISTRAL_ALUT4 #(.LUT(LUT3)) lut3_sum  (.A(A), .B(B), .C(C1), .D(E1), .Q(lut3_sum_mux));

MISTRAL_FF #(.INIT(INIT0)) dff0 (.D(dff01_data_mux), .CLK(dff0_clk), .ACn(dff0_ac), .Q(dff0_out));
MISTRAL_FF #(.INIT(INIT1)) dff1 (.D(dff01_data_mux), .CLK(dff1_clk), .ACn(dff1_ac), .Q(dff1_out));
MISTRAL_FF #(.INIT(INIT2)) dff2 (.D(dff23_data_mux), .CLK(dff2_clk), .ACn(dff2_ac), .Q(dff2_out));
MISTRAL_FF #(.INIT(INIT3)) dff3 (.D(dff23_data_mux), .CLK(dff3_clk), .ACn(dff3_ac), .Q(dff3_out));

// Adders
assign {add0_carry, add0_sum} = CARRYIN + lut0_out + lut1_sum_mux;
assign {add1_carry, add1_sum} = add0_carry + lut2_out + lut3_sum_mux;

// COMBOUT outputs on the Quartus diagram
assign COMB0 = E0 ? (f0_input_mux ? lut3_comb_mux : lut1_comb_mux)
                    : (f0_input_mux ? lut2_out : lut0_out);

assign COMB1 = E1 ? (f1_input_mux ? lut3_comb_mux : lut1_comb_mux)
                    : (f1_input_mux ? lut2_out : lut0_out);

// SUMOUT output on the Quartus diagram
assign SUM0 = add0_sum;
assign SUM1 = add1_sum;

// COUT output on the Quartus diagram
assign CARRYOUT = add1_carry;

// SHAREOUT output on the Quartus diagram
assign SHAREOUT = lut3_comb_mux;

// REGOUT outputs on the Quartus diagram
assign FF0 = dff0_out;
assign FF1 = dff1_out;
assign FF2 = dff2_out;
assign FF3 = dff3_out;

endmodule
*/