aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/intel/cyclonev/cells_map.v
blob: f8d142bc9a901411508f86903c0991481b9a22c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */
// > c60k28 (Viacheslav, VT) [at] yandex [dot] com
// > Intel FPGA technology mapping. User must first simulate the generated \
// > netlist before going to test it on board.
// > Changelog: 1) The missing power_up parameter in the techmap introduces a problem in Quartus mapper. Fixed.
//              2) Cyclone V 7-input LUT function was wrong implemented. Removed abc option to map this function \
//                 and added the explanation in this file instead. Such function needs to be implemented.

// Normal mode DFF negedge clk, negedge reset
module  \$_DFF_N_ (input D, C, output Q);
   parameter WYSIWYG="TRUE";
   parameter power_up=1'bx;
   dffeas #(.is_wysiwyg(WYSIWYG), .power_up(power_up)) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .clrn(1'b1), .prn(1'b1), .ena(1'b1), .asdata(1'b0), .aload(1'b0), .sclr(1'b0), .sload(1'b0));
endmodule
// Normal mode DFF
module  \$_DFF_P_ (input D, C, output Q);
   parameter WYSIWYG="TRUE";
   parameter power_up=1'bx;
   dffeas #(.is_wysiwyg(WYSIWYG), .power_up(power_up)) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .clrn(1'b1), .prn(1'b1), .ena(1'b1), .asdata(1'b0), .aload(1'b0), .sclr(1'b0), .sload(1'b0));
endmodule

// Async Active Low Reset DFF
module  \$_DFF_PN0_ (input D, C, R, output Q);
   parameter WYSIWYG="TRUE";
   parameter power_up=1'bx;
   dffeas #(.is_wysiwyg(WYSIWYG), .power_up("power_up")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .clrn(R), .prn(1'b1), .ena(1'b1), .asdata(1'b0), .aload(1'b0), .sclr(1'b0), .sload(1'b0));
endmodule
// Async Active High Reset DFF
module  \$_DFF_PP0_ (input D, C, R, output Q);
   parameter WYSIWYG="TRUE";
   parameter power_up=1'bx;
   wire R_i = ~ R;
   dffeas #(.is_wysiwyg(WYSIWYG), .power_up(power_up)) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .clrn(R_i), .prn(1'b1), .ena(1'b1), .asdata(1'b0), .aload(1'b0), .sclr(1'b0), .sload(1'b0));
endmodule

module  \$__DFFE_PP0 (input D, C, E, R, output Q);
   parameter WYSIWYG="TRUE";
   parameter power_up=1'bx;
   wire E_i = ~ E;
   dffeas #(.is_wysiwyg(WYSIWYG), .power_up(power_up)) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .clrn(R), .prn(1'b1), .ena(1'b1), .asdata(1'b0), .aload(1'b0), .sclr(E_i), .sload(1'b0));
endmodule

// Input buffer map
module \$__inpad (input I, output O);
   cyclonev_io_ibuf _TECHMAP_REPLACE_ (.o(O), .i(I), .ibar(1'b0));
endmodule

// Output buffer map
module \$__outpad (input I, output O);
   cyclonev_io_obuf _TECHMAP_REPLACE_ (.o(O), .i(I), .oe(1'b1));
endmodule

// LUT Map
module \$lut (A, Y);
   parameter WIDTH  = 0;
   parameter LUT    = 0;
   input [WIDTH-1:0] A;
   output            Y;
   wire              VCC;
   wire              GND;
   assign {VCC,GND} = {1'b1,1'b0};

   generate
      if (WIDTH == 1) begin
	 assign Y = ~A[0]; // Not need to spend 1 logic cell for such an easy function
      end
      else
        if (WIDTH == 2) begin
           cyclonev_lcell_comb #(.lut_mask({16{LUT}}), .shared_arith("off"), .extended_lut("off"))
           _TECHMAP_REPLACE_
             (.combout(Y),
              .dataa(A[0]),
              .datab(A[1]),
              .datac(VCC),
              .datad(VCC),
              .datae(VCC),
              .dataf(VCC),
              .datag(VCC));
        end
        else
          if(WIDTH == 3) begin
	     cyclonev_lcell_comb #(.lut_mask({8{LUT}}), .shared_arith("off"), .extended_lut("off"))
             _TECHMAP_REPLACE_
               (.combout(Y),
                .dataa(A[0]),
                .datab(A[1]),
                .datac(A[2]),
                .datad(VCC),
                .datae(VCC),
                .dataf(VCC),
                .datag(VCC));
          end
          else
            if(WIDTH == 4) begin
	       cyclonev_lcell_comb #(.lut_mask({4{LUT}}), .shared_arith("off"), .extended_lut("off"))
               _TECHMAP_REPLACE_
                 (.combout(Y),
                  .dataa(A[0]),
                  .datab(A[1]),
                  .datac(A[2]),
                  .datad(A[3]),
                  .datae(VCC),
                  .dataf(VCC),
                  .datag(VCC));
            end
            else
              if(WIDTH == 5) begin
                 cyclonev_lcell_comb #(.lut_mask({2{LUT}}), .shared_arith("off"), .extended_lut("off"))
                 _TECHMAP_REPLACE_
                   (.combout(Y),
                    .dataa(A[0]),
                    .datab(A[1]),
                    .datac(A[2]),
                    .datad(A[3]),
                    .datae(A[4]),
                    .dataf(VCC),
                    .datag(VCC));
              end
              else
                if(WIDTH == 6) begin
                   cyclonev_lcell_comb #(.lut_mask(LUT), .shared_arith("off"), .extended_lut("off"))
                   _TECHMAP_REPLACE_
                     (.combout(Y),
                      .dataa(A[0]),
                      .datab(A[1]),
                      .datac(A[2]),
                      .datad(A[3]),
                      .datae(A[4]),
                      .dataf(A[5]),
                      .datag(VCC));
                end
                /*else
                  if(WIDTH == 7) begin
                    TODO: There's not a just 7-input function on Cyclone V, see the following note:
                    **Extended LUT Mode**
                    Use extended LUT mode to implement a specific set of 7-input functions. The set must
                    be a 2-to-1 multiplexer fed by two arbitrary 5-input functions sharing four inputs.
                    [source](Device Interfaces and Integration Basics for Cyclone V Devices).
                  end*/
                  else
                     wire _TECHMAP_FAIL_ = 1;
   endgenerate
endmodule // lut
span>, float32 STATUS_PARAM ); int float32_lt_quiet( float32, float32 STATUS_PARAM ); int float32_compare( float32, float32 STATUS_PARAM ); int float32_compare_quiet( float32, float32 STATUS_PARAM ); int float32_is_signaling_nan( float32 ); int float64_is_nan( float64 a ); INLINE float32 float32_abs(float32 a) { return a & 0x7fffffff; } INLINE float32 float32_chs(float32 a) { return a ^ 0x80000000; } /*---------------------------------------------------------------------------- | Software IEC/IEEE double-precision conversion routines. *----------------------------------------------------------------------------*/ int float64_to_int32( float64 STATUS_PARAM ); int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); unsigned int float64_to_uint32( float64 STATUS_PARAM ); unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); int64_t float64_to_int64( float64 STATUS_PARAM ); int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); float32 float64_to_float32( float64 STATUS_PARAM ); #ifdef FLOATX80 floatx80 float64_to_floatx80( float64 STATUS_PARAM ); #endif #ifdef FLOAT128 float128 float64_to_float128( float64 STATUS_PARAM ); #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE double-precision operations. *----------------------------------------------------------------------------*/ float64 float64_round_to_int( float64 STATUS_PARAM ); float64 float64_trunc_to_int( float64 STATUS_PARAM ); float64 float64_add( float64, float64 STATUS_PARAM ); float64 float64_sub( float64, float64 STATUS_PARAM ); float64 float64_mul( float64, float64 STATUS_PARAM ); float64 float64_div( float64, float64 STATUS_PARAM ); float64 float64_rem( float64, float64 STATUS_PARAM ); float64 float64_sqrt( float64 STATUS_PARAM ); int float64_eq( float64, float64 STATUS_PARAM ); int float64_le( float64, float64 STATUS_PARAM ); int float64_lt( float64, float64 STATUS_PARAM ); int float64_eq_signaling( float64, float64 STATUS_PARAM ); int float64_le_quiet( float64, float64 STATUS_PARAM ); int float64_lt_quiet( float64, float64 STATUS_PARAM ); int float64_compare( float64, float64 STATUS_PARAM ); int float64_compare_quiet( float64, float64 STATUS_PARAM ); int float64_is_signaling_nan( float64 ); INLINE float64 float64_abs(float64 a) { return a & 0x7fffffffffffffffLL; } INLINE float64 float64_chs(float64 a) { return a ^ 0x8000000000000000LL; } #ifdef FLOATX80 /*---------------------------------------------------------------------------- | Software IEC/IEEE extended double-precision conversion routines. *----------------------------------------------------------------------------*/ int floatx80_to_int32( floatx80 STATUS_PARAM ); int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); int64_t floatx80_to_int64( floatx80 STATUS_PARAM ); int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); float32 floatx80_to_float32( floatx80 STATUS_PARAM ); float64 floatx80_to_float64( floatx80 STATUS_PARAM ); #ifdef FLOAT128 float128 floatx80_to_float128( floatx80 STATUS_PARAM ); #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE extended double-precision operations. *----------------------------------------------------------------------------*/ floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM ); floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM ); floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM ); floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM ); floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); int floatx80_eq( floatx80, floatx80 STATUS_PARAM ); int floatx80_le( floatx80, floatx80 STATUS_PARAM ); int floatx80_lt( floatx80, floatx80 STATUS_PARAM ); int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM ); int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM ); int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM ); int floatx80_is_signaling_nan( floatx80 ); INLINE floatx80 floatx80_abs(floatx80 a) { a.high &= 0x7fff; return a; } INLINE floatx80 floatx80_chs(floatx80 a) { a.high ^= 0x8000; return a; } #endif #ifdef FLOAT128 /*---------------------------------------------------------------------------- | Software IEC/IEEE quadruple-precision conversion routines. *----------------------------------------------------------------------------*/ int float128_to_int32( float128 STATUS_PARAM ); int float128_to_int32_round_to_zero( float128 STATUS_PARAM ); int64_t float128_to_int64( float128 STATUS_PARAM ); int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM ); float32 float128_to_float32( float128 STATUS_PARAM ); float64 float128_to_float64( float128 STATUS_PARAM ); #ifdef FLOATX80 floatx80 float128_to_floatx80( float128 STATUS_PARAM ); #endif /*---------------------------------------------------------------------------- | Software IEC/IEEE quadruple-precision operations. *----------------------------------------------------------------------------*/ float128 float128_round_to_int( float128 STATUS_PARAM ); float128 float128_add( float128, float128 STATUS_PARAM ); float128 float128_sub( float128, float128 STATUS_PARAM ); float128 float128_mul( float128, float128 STATUS_PARAM ); float128 float128_div( float128, float128 STATUS_PARAM ); float128 float128_rem( float128, float128 STATUS_PARAM ); float128 float128_sqrt( float128 STATUS_PARAM ); int float128_eq( float128, float128 STATUS_PARAM ); int float128_le( float128, float128 STATUS_PARAM ); int float128_lt( float128, float128 STATUS_PARAM ); int float128_eq_signaling( float128, float128 STATUS_PARAM ); int float128_le_quiet( float128, float128 STATUS_PARAM ); int float128_lt_quiet( float128, float128 STATUS_PARAM ); int float128_is_signaling_nan( float128 ); INLINE float128 float128_abs(float128 a) { a.high &= 0x7fffffffffffffffLL; return a; } INLINE float128 float128_chs(float128 a) { a.high ^= 0x8000000000000000LL; return a; } #endif #else /* CONFIG_SOFTFLOAT */ #include "softfloat-native.h" #endif /* !CONFIG_SOFTFLOAT */ #endif /* !SOFTFLOAT_H */