1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
|
`timescale 1ns/1ps
module GP_2LUT(input IN0, IN1, output OUT);
parameter [3:0] INIT = 0;
assign OUT = INIT[{IN1, IN0}];
endmodule
module GP_3LUT(input IN0, IN1, IN2, output OUT);
parameter [7:0] INIT = 0;
assign OUT = INIT[{IN2, IN1, IN0}];
endmodule
module GP_4LUT(input IN0, IN1, IN2, IN3, output OUT);
parameter [15:0] INIT = 0;
assign OUT = INIT[{IN3, IN2, IN1, IN0}];
endmodule
module GP_ABUF(input wire IN, output wire OUT);
assign OUT = IN;
//must be 1, 5, 20, 50
//values >1 only available with Vdd > 2.7V
parameter BANDWIDTH_KHZ = 1;
//cannot simulate mixed signal IP
endmodule
module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT);
parameter BANDWIDTH = "HIGH";
parameter VIN_ATTEN = 1;
parameter VIN_ISRC_EN = 0;
parameter HYSTERESIS = 0;
initial OUT = 0;
//cannot simulate mixed signal IP
endmodule
module GP_BANDGAP(output reg OK);
parameter AUTO_PWRDN = 1;
parameter CHOPPER_EN = 1;
parameter OUT_DELAY = 100;
//cannot simulate mixed signal IP
endmodule
module GP_CLKBUF(input wire IN, output wire OUT);
assign OUT = IN;
endmodule
module GP_COUNT8(input CLK, input wire RST, output reg OUT);
parameter RESET_MODE = "RISING";
parameter COUNT_TO = 8'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
reg[7:0] count = COUNT_TO;
//Combinatorially output whenever we wrap low
always @(*) begin
OUT <= (count == 8'h0);
end
//POR or SYSRST reset value is COUNT_TO. Datasheet is unclear but conversations w/ Silego confirm.
//Runtime reset value is clearly 0 except in count/FSM cells where it's configurable but we leave at 0 for now.
//Datasheet seems to indicate that reset is asynchronous, but for now we model as sync due to Yosys issues...
always @(posedge CLK) begin
count <= count - 1'd1;
if(count == 0)
count <= COUNT_TO;
/*
if((RESET_MODE == "RISING") && RST)
count <= 0;
if((RESET_MODE == "FALLING") && !RST)
count <= 0;
if((RESET_MODE == "BOTH") && RST)
count <= 0;
*/
end
endmodule
module GP_COUNT14(input CLK, input wire RST, output reg OUT);
parameter RESET_MODE = "RISING";
parameter COUNT_TO = 14'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
endmodule
module GP_COUNT8_ADV(input CLK, input RST, output reg OUT,
input UP, input KEEP);
parameter RESET_MODE = "RISING";
parameter RESET_VALUE = "ZERO";
parameter COUNT_TO = 8'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
endmodule
module GP_COUNT14_ADV(input CLK, input RST, output reg OUT,
input UP, input KEEP);
parameter RESET_MODE = "RISING";
parameter RESET_VALUE = "ZERO";
parameter COUNT_TO = 14'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
endmodule
module GP_DAC(input[7:0] DIN, input wire VREF, output reg VOUT);
initial VOUT = 0;
//analog hard IP is not supported for simulation
endmodule
module GP_DCMP(input[7:0] INP, input[7:0] INN, input CLK, input PWRDN, output reg GREATER, output reg EQUAL);
parameter PWRDN_SYNC = 1'b0;
parameter CLK_EDGE = "RISING";
parameter GREATER_OR_EQUAL = 1'b0;
//TODO implement power-down mode
initial GREATER = 0;
initial EQUAL = 0;
wire clk_minv = (CLK_EDGE == "RISING") ? CLK : ~CLK;
always @(posedge clk_minv) begin
if(GREATER_OR_EQUAL)
GREATER <= (INP >= INN);
else
GREATER <= (INP > INN);
EQUAL <= (INP == INN);
end
endmodule
module GP_DCMPREF(output reg[7:0]OUT);
parameter[7:0] REF_VAL = 8'h00;
initial OUT = REF_VAL;
endmodule
module GP_DCMPMUX(input[1:0] SEL, input[7:0] IN0, input[7:0] IN1, input[7:0] IN2, input[7:0] IN3, output reg[7:0] OUTA, output reg[7:0] OUTB);
always @(*) begin
case(SEL)
2'd00: begin
OUTA <= IN0;
OUTB <= IN3;
end
2'd01: begin
OUTA <= IN1;
OUTB <= IN2;
end
2'd02: begin
OUTA <= IN2;
OUTB <= IN1;
end
2'd03: begin
OUTA <= IN3;
OUTB <= IN0;
end
endcase
end
endmodule
module GP_DELAY(input IN, output reg OUT);
parameter DELAY_STEPS = 1;
parameter GLITCH_FILTER = 0;
initial OUT = 0;
generate
//TODO: These delays are PTV dependent! For now, hard code 3v3 timing
//Change simulation-mode delay depending on global Vdd range (how to specify this?)
always @(*) begin
case(DELAY_STEPS)
1: #166 OUT = IN;
2: #318 OUT = IN;
2: #471 OUT = IN;
3: #622 OUT = IN;
default: begin
$display("ERROR: GP_DELAY must have DELAY_STEPS in range [1,4]");
$finish;
end
endcase
end
endgenerate
endmodule
module GP_DFF(input D, CLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK) begin
Q <= D;
end
endmodule
module GP_DFFI(input D, CLK, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK) begin
nQ <= ~D;
end
endmodule
module GP_DFFR(input D, CLK, nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nRST) begin
if (!nRST)
Q <= 1'b0;
else
Q <= D;
end
endmodule
module GP_DFFRI(input D, CLK, nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nRST) begin
if (!nRST)
nQ <= 1'b1;
else
nQ <= ~D;
end
endmodule
module GP_DFFS(input D, CLK, nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSET) begin
if (!nSET)
Q <= 1'b1;
else
Q <= D;
end
endmodule
module GP_DFFSI(input D, CLK, nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nSET) begin
if (!nSET)
nQ <= 1'b0;
else
nQ <= ~D;
end
endmodule
module GP_DFFSR(input D, CLK, nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
Q <= SRMODE;
else
Q <= D;
end
endmodule
module GP_DFFSRI(input D, CLK, nSR, output reg nQ);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
nQ <= ~SRMODE;
else
nQ <= ~D;
end
endmodule
module GP_DLATCH(input D, input nCLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHI(input D, input nCLK, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHR(input D, input nCLK, input nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nRST)
Q <= 1'b0;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHRI(input D, input nCLK, input nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nRST)
nQ <= 1'b1;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHS(input D, input nCLK, input nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSET)
Q <= 1'b1;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSI(input D, input nCLK, input nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSET)
nQ <= 1'b0;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHSR(input D, input nCLK, input nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSR)
Q <= SRMODE;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSRI(input D, input nCLK, input nSR, output reg nQ);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSR)
nQ <= ~SRMODE;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_EDGEDET(input IN, output reg OUT);
parameter EDGE_DIRECTION = "RISING";
parameter DELAY_STEPS = 1;
parameter GLITCH_FILTER = 0;
//not implemented for simulation
endmodule
module GP_IBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_IOBUF(input IN, input OE, output OUT, inout IO);
assign OUT = IO;
assign IO = OE ? IN : 1'bz;
endmodule
module GP_INV(input IN, output OUT);
assign OUT = ~IN;
endmodule
module GP_LFOSC(input PWRDN, output reg CLKOUT);
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter OUT_DIV = 1;
initial CLKOUT = 0;
//auto powerdown not implemented for simulation
//output dividers not implemented for simulation
always begin
if(PWRDN)
CLKOUT = 0;
else begin
//half period of 1730 Hz
#289017;
CLKOUT = ~CLKOUT;
end
end
endmodule
module GP_OBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_OBUFT(input IN, input OE, output OUT);
assign OUT = OE ? IN : 1'bz;
endmodule
module GP_PGA(input wire VIN_P, input wire VIN_N, input wire VIN_SEL, output reg VOUT);
parameter GAIN = 1;
parameter INPUT_MODE = "SINGLE";
initial VOUT = 0;
//cannot simulate mixed signal IP
endmodule
module GP_PGEN(input wire nRST, input wire CLK, output reg OUT);
initial OUT = 0;
parameter PATTERN_DATA = 16'h0;
parameter PATTERN_LEN = 5'd16;
reg[3:0] count = 0;
always @(posedge CLK) begin
if(!nRST)
OUT <= PATTERN_DATA[0];
else begin
count <= count + 1;
OUT <= PATTERN_DATA[count];
if( (count + 1) == PATTERN_LEN)
count <= 0;
end
end
endmodule
module GP_PWRDET(output reg VDD_LOW);
initial VDD_LOW = 0;
endmodule
module GP_POR(output reg RST_DONE);
parameter POR_TIME = 500;
initial begin
RST_DONE = 0;
if(POR_TIME == 4)
#4000;
else if(POR_TIME == 500)
#500000;
else begin
$display("ERROR: bad POR_TIME for GP_POR cell");
$finish;
end
RST_DONE = 1;
end
endmodule
module GP_RCOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter HARDIP_DIV = 1;
parameter FABRIC_DIV = 1;
parameter OSC_FREQ = "25k";
initial CLKOUT_HARDIP = 0;
initial CLKOUT_FABRIC = 0;
//output dividers not implemented for simulation
//auto powerdown not implemented for simulation
always begin
if(PWRDN) begin
CLKOUT_HARDIP = 0;
CLKOUT_FABRIC = 0;
end
else begin
if(OSC_FREQ == "25k") begin
//half period of 25 kHz
#20000;
end
else begin
//half period of 2 MHz
#250;
end
CLKOUT_HARDIP = ~CLKOUT_HARDIP;
CLKOUT_FABRIC = ~CLKOUT_FABRIC;
end
end
endmodule
module GP_RINGOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter HARDIP_DIV = 1;
parameter FABRIC_DIV = 1;
initial CLKOUT_HARDIP = 0;
initial CLKOUT_FABRIC = 0;
//output dividers not implemented for simulation
//auto powerdown not implemented for simulation
always begin
if(PWRDN) begin
CLKOUT_HARDIP = 0;
CLKOUT_FABRIC = 0;
end
else begin
//half period of 27 MHz
#18.518;
CLKOUT_HARDIP = ~CLKOUT_HARDIP;
CLKOUT_FABRIC = ~CLKOUT_FABRIC;
end
end
endmodule
module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB);
parameter OUTA_TAP = 1;
parameter OUTA_INVERT = 0;
parameter OUTB_TAP = 1;
reg[15:0] shreg = 0;
always @(posedge CLK, negedge nRST) begin
if(!nRST)
shreg = 0;
else
shreg <= {shreg[14:0], IN};
end
assign OUTA = (OUTA_INVERT) ? ~shreg[OUTA_TAP - 1] : shreg[OUTA_TAP - 1];
assign OUTB = shreg[OUTB_TAP - 1];
endmodule
module GP_SPI(
input SCK,
inout SDAT,
input CSN,
input[7:0] TXD_HIGH,
input[7:0] TXD_LOW,
output reg[7:0] RXD_HIGH,
output reg[7:0] RXD_LOW,
output reg INT);
initial DOUT_HIGH = 0;
initial DOUT_LOW = 0;
initial INT = 0;
parameter DATA_WIDTH = 8; //byte or word width
parameter SPI_CPHA = 0; //SPI clock phase
parameter SPI_CPOL = 0; //SPI clock polarity
parameter DIRECTION = "INPUT"; //SPI data direction (either input to chip or output to host)
//parallel output to fabric not yet implemented
//TODO: write sim model
//TODO: SPI SDIO control... can we use ADC output while SPI is input??
//TODO: clock sync
endmodule
//keep constraint needed to prevent optimization since we have no outputs
(* keep *)
module GP_SYSRESET(input RST);
parameter RESET_MODE = "EDGE";
parameter EDGE_SPEED = 4;
//cannot simulate whole system reset
endmodule
module GP_VDD(output OUT);
assign OUT = 1;
endmodule
module GP_VREF(input VIN, output reg VOUT);
parameter VIN_DIV = 1;
parameter VREF = 0;
//cannot simulate mixed signal IP
endmodule
module GP_VSS(output OUT);
assign OUT = 0;
endmodule
|