aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/coolrunner2/coolrunner2_sop.cc
blob: de0cbb29db004c12b93a6fc93453406cc7a5c37b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20<
module reg_combo_example( a, b, y);
input a, b;
output y;

reg   y;
wire a, b;

always @ ( a or b)
begin	
  y = a & b;
end

endmodule
'>222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2017 Robert Ou <rqou@robertou.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/yosys.h"
#include "kernel/sigtools.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct Coolrunner2SopPass : public Pass {
	Coolrunner2SopPass() : Pass("coolrunner2_sop", "break $sop cells into ANDTERM/ORTERM cells") { }
	void help() YS_OVERRIDE
	{
		log("\n");
		log("    coolrunner2_sop [options] [selection]\n");
		log("\n");
		log("Break $sop cells into ANDTERM/ORTERM cells.\n");
		log("\n");
	}
	void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
	{
		log_header(design, "Executing COOLRUNNER2_SOP pass (break $sop cells into ANDTERM/ORTERM cells).\n");
		extra_args(args, 1, design);

		for (auto module : design->selected_modules())
		{
			pool<Cell*> cells_to_remove;
			SigMap sigmap(module);

			// Find all the $_NOT_ cells
			dict<SigBit, tuple<SigBit, Cell*>> not_cells;
			for (auto cell : module->selected_cells())
			{
				if (cell->type == "$_NOT_")
				{
					auto not_input = sigmap(cell->getPort("\\A")[0]);
					auto not_output = sigmap(cell->getPort("\\Y")[0]);
					not_cells[not_input] = tuple<SigBit, Cell*>(not_output, cell);
				}
			}

			// Find wires that need to become special product terms
			dict<SigBit, pool<tuple<Cell*, std::string>>> special_pterms_no_inv;
			dict<SigBit, pool<tuple<Cell*, std::string>>> special_pterms_inv;
			for (auto cell : module->selected_cells())
			{
				if (cell->type.in("\\FDCP", "\\FDCP_N", "\\FDDCP", "\\FTCP", "\\FTCP_N", "\\FTDCP",
							"\\FDCPE", "\\FDCPE_N", "\\FDDCPE", "\\LDCP", "\\LDCP_N"))
				{
					if (cell->hasPort("\\PRE"))
						special_pterms_no_inv[sigmap(cell->getPort("\\PRE")[0])].insert(
							tuple<Cell*, const char *>(cell, "\\PRE"));
					if (cell->hasPort("\\CLR"))
						special_pterms_no_inv[sigmap(cell->getPort("\\CLR")[0])].insert(
							tuple<Cell*, const char *>(cell, "\\CLR"));
					if (cell->hasPort("\\CE"))
						special_pterms_no_inv[sigmap(cell->getPort("\\CE")[0])].insert(
							tuple<Cell*, const char *>(cell, "\\CE"));

					if (cell->hasPort("\\C"))
						special_pterms_inv[sigmap(cell->getPort("\\C")[0])].insert(
							tuple<Cell*, const char *>(cell, "\\C"));
					if (cell->hasPort("\\G"))
						special_pterms_inv[sigmap(cell->getPort("\\G")[0])].insert(
							tuple<Cell*, const char *>(cell, "\\G"));
				}
			}

			// Process $sop cells
			for (auto cell : module->selected_cells())
			{
				if (cell->type == "$sop")
				{
					// Read the inputs/outputs/parameters of the $sop cell
					auto sop_inputs = sigmap(cell->getPort("\\A"));
					auto sop_output = sigmap(cell->getPort("\\Y"))[0];
					auto sop_depth = cell->getParam("\\DEPTH").as_int();
					auto sop_width = cell->getParam("\\WIDTH").as_int();
					auto sop_table = cell->getParam("\\TABLE");

					// Check for a $_NOT_ at the output
					bool has_invert = false;
					if (not_cells.count(sop_output))
					{
						auto not_cell = not_cells.at(sop_output);

						has_invert = true;
						sop_output = std::get<0>(not_cell);

						// remove the $_NOT_ cell because it gets folded into the xor
						cells_to_remove.insert(std::get<1>(not_cell));
					}

					// Check for special P-term usage
					bool is_special_pterm = false;
					bool special_pterm_can_invert = false;
					if (special_pterms_no_inv.count(sop_output) || special_pterms_inv.count(sop_output))
					{
						is_special_pterm = true;
						if (!special_pterms_no_inv[sop_output].size())
							special_pterm_can_invert = true;
					}

					// Construct AND cells
					pool<SigBit> intermed_wires;
					for (int i = 0; i < sop_depth; i++) {
						// Wire for the output
						auto and_out = module->addWire(NEW_ID);
						intermed_wires.insert(and_out);

						// Signals for the inputs
						pool<SigBit> and_in_true;
						pool<SigBit> and_in_comp;
						for (int j = 0; j < sop_width; j++)
						{
							if (sop_table[2 * (i * sop_width + j) + 0])
							{
								and_in_comp.insert(sop_inputs[j]);
							}
							if (sop_table[2 * (i * sop_width + j) + 1])
							{
								and_in_true.insert(sop_inputs[j]);
							}
						}

						// Construct the cell
						auto and_cell = module->addCell(NEW_ID, "\\ANDTERM");
						and_cell->setParam("\\TRUE_INP", GetSize(and_in_true));
						and_cell->setParam("\\COMP_INP", GetSize(and_in_comp));
						and_cell->setPort("\\OUT", and_out);
						and_cell->setPort("\\IN", and_in_true);
						and_cell->setPort("\\IN_B", and_in_comp);
					}

					if (sop_depth == 1)
					{
						// If there is only one term, don't construct an OR cell. Directly construct the XOR gate
						auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
						xor_cell->setParam("\\INVERT_OUT", has_invert);
						xor_cell->setPort("\\IN_PTC", *intermed_wires.begin());
						xor_cell->setPort("\\OUT", sop_output);

						// Special P-term handling
						if (is_special_pterm)
						{
							if (!has_invert || special_pterm_can_invert)
							{
								// Can connect the P-term directly to the special term sinks
								for (auto x : special_pterms_inv[sop_output])
									std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
								for (auto x : special_pterms_no_inv[sop_output])
									std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
							}

							if (has_invert)
							{
								if (special_pterm_can_invert)
								{
									log_assert(special_pterms_no_inv[sop_output].size() == 0);

									for (auto x : special_pterms_inv[sop_output])
									{
										auto cell = std::get<0>(x);
										// Need to invert the polarity of the cell
										if (cell->type == "\\FDCP") cell->type = "\\FDCP_N";
										else if (cell->type == "\\FDCP_N") cell->type = "\\FDCP";
										else if (cell->type == "\\FTCP") cell->type = "\\FTCP_N";
										else if (cell->type == "\\FTCP_N") cell->type = "\\FTCP";
										else if (cell->type == "\\FDCPE") cell->type = "\\FDCPE_N";
										else if (cell->type == "\\FDCPE_N") cell->type = "\\FDCPE";
										else if (cell->type == "\\LDCP") cell->type = "\\LDCP_N";
										else if (cell->type == "\\LDCP_N") cell->type = "\\LDCP";
										else log_assert(!"Internal error! Bad cell type!");
									}
								}
								else
								{
									// Need to construct a feed-through term
									auto feedthrough_out = module->addWire(NEW_ID);
									auto feedthrough_cell = module->addCell(NEW_ID, "\\ANDTERM");
									feedthrough_cell->setParam("\\TRUE_INP", 1);
									feedthrough_cell->setParam("\\COMP_INP", 0);
									feedthrough_cell->setPort("\\OUT", feedthrough_out);
									feedthrough_cell->setPort("\\IN", sop_output);
									feedthrough_cell->setPort("\\IN_B", SigSpec());

									for (auto x : special_pterms_inv[sop_output])
										std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
									for (auto x : special_pterms_no_inv[sop_output])
										std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
								}
							}
						}
					}
					else
					{
						// Wire from OR to XOR
						auto or_to_xor_wire = module->addWire(NEW_ID);

						// Construct the OR cell
						auto or_cell = module->addCell(NEW_ID, "\\ORTERM");
						or_cell->setParam("\\WIDTH", sop_depth);
						or_cell->setPort("\\IN", intermed_wires);
						or_cell->setPort("\\OUT", or_to_xor_wire);

						// Construct the XOR cell
						auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
						xor_cell->setParam("\\INVERT_OUT", has_invert);
						xor_cell->setPort("\\IN_ORTERM", or_to_xor_wire);
						xor_cell->setPort("\\OUT", sop_output);

						if (is_special_pterm)
						{
							// Need to construct a feed-through term
							auto feedthrough_out = module->addWire(NEW_ID);
							auto feedthrough_cell = module->addCell(NEW_ID, "\\ANDTERM");
							feedthrough_cell->setParam("\\TRUE_INP", 1);
							feedthrough_cell->setParam("\\COMP_INP", 0);
							feedthrough_cell->setPort("\\OUT", feedthrough_out);
							feedthrough_cell->setPort("\\IN", sop_output);
							feedthrough_cell->setPort("\\IN_B", SigSpec());

							for (auto x : special_pterms_inv[sop_output])
								std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
							for (auto x : special_pterms_no_inv[sop_output])
								std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
						}
					}

					// Finally, remove the $sop cell
					cells_to_remove.insert(cell);
				}
			}

			// In some cases we can get a FF feeding straight into an FF. This is not possible, so we need to insert
			// some AND/XOR cells in the middle to make it actually work.

			// Find all the FF outputs
			pool<SigBit> sig_fed_by_ff;
			for (auto cell : module->selected_cells())
			{
				if (cell->type.in("\\FDCP", "\\FDCP_N", "\\FDDCP", "\\LDCP", "\\LDCP_N",
							"\\FTCP", "\\FTCP_N", "\\FTDCP", "\\FDCPE", "\\FDCPE_N", "\\FDDCPE"))
				{
					auto output = sigmap(cell->getPort("\\Q")[0]);
					sig_fed_by_ff.insert(output);
				}
			}

			// Look at all the FF inputs
			for (auto cell : module->selected_cells())
			{
				if (cell->type.in("\\FDCP", "\\FDCP_N", "\\FDDCP", "\\LDCP", "\\LDCP_N",
							"\\FTCP", "\\FTCP_N", "\\FTDCP", "\\FDCPE", "\\FDCPE_N", "\\FDDCPE"))
				{
					SigBit input;
					if (cell->type.in("\\FTCP", "\\FTCP_N", "\\FTDCP"))
						input = sigmap(cell->getPort("\\T")[0]);
					else
						input = sigmap(cell->getPort("\\D")[0]);

					if (sig_fed_by_ff[input])
					{
						printf("Buffering input to \"%s\"\n", cell->name.c_str());

						auto and_to_xor_wire = module->addWire(NEW_ID);
						auto xor_to_ff_wire = module->addWire(NEW_ID);

						auto and_cell = module->addCell(NEW_ID, "\\ANDTERM");
						and_cell->setParam("\\TRUE_INP", 1);
						and_cell->setParam("\\COMP_INP", 0);
						and_cell->setPort("\\OUT", and_to_xor_wire);
						and_cell->setPort("\\IN", input);
						and_cell->setPort("\\IN_B", SigSpec());

						auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
						xor_cell->setParam("\\INVERT_OUT", false);
						xor_cell->setPort("\\IN_PTC", and_to_xor_wire);
						xor_cell->setPort("\\OUT", xor_to_ff_wire);

						if (cell->type.in("\\FTCP", "\\FTCP_N", "\\FTDCP"))
							cell->setPort("\\T", xor_to_ff_wire);
						else
							cell->setPort("\\D", xor_to_ff_wire);
					}
				}
			}

			// Actually do the removal now that we aren't iterating
			for (auto cell : cells_to_remove)
			{
				module->remove(cell);
			}
		}
	}
} Coolrunner2SopPass;

PRIVATE_NAMESPACE_END