1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2017 Robert Ou <rqou@robertou.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include <deque>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct ExtractReducePass : public Pass
{
enum GateType {
And,
Or,
Xor
};
ExtractReducePass() : Pass("extract_reduce", "converts gate chains into $reduce_* cells") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" extract_reduce [options] [selection]\n");
log("\n");
log("converts gate chains into $reduce_* cells\n");
log("\n");
log("This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them\n");
log("with their corresponding $reduce_* cells. Because this command only operates on\n");
log("these cell types, it is recommended to map the design to only these cell types\n");
log("using the `abc -g` command. Note that, in some cases, it may be more effective\n");
log("to map the design to only $_AND_ cells, run extract_reduce, map the remaining\n");
log("parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.\n");
log("\n");
log(" -allow-off-chain\n");
log(" Allows matching of cells that have loads outside the chain. These cells\n");
log(" will be replicated and folded into the $reduce_* cell, but the original\n");
log(" cell will remain, driving its original loads.\n");
log("\n");
}
inline bool IsRightType(Cell* cell, GateType gt)
{
return (cell->type == "$_AND_" && gt == GateType::And) ||
(cell->type == "$_OR_" && gt == GateType::Or) ||
(cell->type == "$_XOR_" && gt == GateType::Xor);
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing EXTRACT_REDUCE pass.\n");
log_push();
size_t argidx;
bool allow_off_chain = false;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-allow-off-chain")
{
allow_off_chain = true;
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto module : design->selected_modules())
{
SigMap sigmap(module);
// Index all of the nets in the module
dict<SigBit, Cell*> sig_to_driver;
dict<SigBit, pool<Cell*>> sig_to_sink;
for (auto cell : module->selected_cells())
{
for (auto &conn : cell->connections())
{
if (cell->output(conn.first))
for (auto bit : sigmap(conn.second))
sig_to_driver[bit] = cell;
if (cell->input(conn.first))
{
for (auto bit : sigmap(conn.second))
{
if (sig_to_sink.count(bit) == 0)
sig_to_sink[bit] = pool<Cell*>();
sig_to_sink[bit].insert(cell);
}
}
}
}
// Need to check if any wires connect to module ports
pool<SigBit> port_sigs;
for (auto wire : module->selected_wires())
if (wire->port_input || wire->port_output)
for (auto bit : sigmap(wire))
port_sigs.insert(bit);
// Actual logic starts here
pool<Cell*> consumed_cells;
for (auto cell : module->selected_cells())
{
if (consumed_cells.count(cell))
continue;
GateType gt;
if (cell->type == "$_AND_")
gt = GateType::And;
else if (cell->type == "$_OR_")
gt = GateType::Or;
else if (cell->type == "$_XOR_")
gt = GateType::Xor;
else
continue;
log("Working on cell %s...\n", cell->name.c_str());
// If looking for a single chain, follow linearly to the sink
pool<Cell*> sinks;
if(!allow_off_chain)
{
Cell* head_cell = cell;
Cell* x = cell;
while (true)
{
if(!IsRightType(x, gt))
break;
head_cell = x;
auto y = sigmap(x->getPort("\\Y"));
log_assert(y.size() == 1);
// Should only continue if there is one fanout back into a cell (not to a port)
if (sig_to_sink[y[0]].size() != 1)
break;
x = *sig_to_sink[y[0]].begin();
}
sinks.insert(head_cell);
}
//If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is
else
{
//BFS, following all chains until they hit a cell of a different type
//Pick the longest one
auto y = sigmap(cell->getPort("\\Y"));
pool<Cell*> current_loads = sig_to_sink[y];
pool<Cell*> next_loads;
while(!current_loads.empty())
{
//Find each sink and see what they are
for(auto x : current_loads)
{
//Not one of our gates? Don't follow any further
//(but add the originating cell to the list of sinks)
if(!IsRightType(x, gt))
{
sinks.insert(cell);
continue;
}
//If this signal drives a port, add it to the sinks
//(even though it may not be the end of a chain)
if(port_sigs.count(x) && !consumed_cells.count(x))
sinks.insert(x);
//It's a match, search everything out from it
auto& next = sig_to_sink[x];
for(auto z : next)
next_loads.insert(z);
}
//If we couldn't find any downstream loads, stop.
//Create a reduction for each of the max-length chains we found
if(next_loads.empty())
{
for(auto s : current_loads)
{
//Not one of our gates? Don't follow any further
if(!IsRightType(s, gt))
continue;
sinks.insert(s);
}
break;
}
//Otherwise, continue down the chain
current_loads = next_loads;
next_loads.clear();
}
}
//We have our list, go act on it
for(auto head_cell : sinks)
{
log(" Head cell is %s\n", head_cell->name.c_str());
//Avoid duplication if we already were covered
if(consumed_cells.count(head_cell))
continue;
pool<Cell*> cur_supercell;
std::deque<Cell*> bfs_queue = {head_cell};
while (bfs_queue.size())
{
Cell* x = bfs_queue.front();
bfs_queue.pop_front();
cur_supercell.insert(x);
auto a = sigmap(x->getPort("\\A"));
log_assert(a.size() == 1);
// Must have only one sink unless we're going off chain
// XXX: Check that it is indeed this node?
if( allow_off_chain || (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1) )
{
Cell* cell_a = sig_to_driver[a[0]];
if(cell_a && IsRightType(cell_a, gt))
{
// The cell here is the correct type, and it's definitely driving
// this current cell.
bfs_queue.push_back(cell_a);
}
}
auto b = sigmap(x->getPort("\\B"));
log_assert(b.size() == 1);
// Must have only one sink
// XXX: Check that it is indeed this node?
if( allow_off_chain || (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1) )
{
Cell* cell_b = sig_to_driver[b[0]];
if(cell_b && IsRightType(cell_b, gt))
{
// The cell here is the correct type, and it's definitely driving only
// this current cell.
bfs_queue.push_back(cell_b);
}
}
}
log(" Cells:\n");
for (auto x : cur_supercell)
log(" %s\n", x->name.c_str());
if (cur_supercell.size() > 1)
{
// Worth it to create reduce cell
log(" Creating $reduce_* cell!\n");
pool<SigBit> input_pool;
pool<SigBit> input_pool_intermed;
for (auto x : cur_supercell)
{
input_pool.insert(sigmap(x->getPort("\\A"))[0]);
input_pool.insert(sigmap(x->getPort("\\B"))[0]);
input_pool_intermed.insert(sigmap(x->getPort("\\Y"))[0]);
}
SigSpec input;
for (auto b : input_pool)
if (input_pool_intermed.count(b) == 0)
input.append_bit(b);
SigBit output = sigmap(head_cell->getPort("\\Y")[0]);
auto new_reduce_cell = module->addCell(NEW_ID,
gt == GateType::And ? "$reduce_and" :
gt == GateType::Or ? "$reduce_or" :
gt == GateType::Xor ? "$reduce_xor" : "");
new_reduce_cell->setParam("\\A_SIGNED", 0);
new_reduce_cell->setParam("\\A_WIDTH", input.size());
new_reduce_cell->setParam("\\Y_WIDTH", 1);
new_reduce_cell->setPort("\\A", input);
new_reduce_cell->setPort("\\Y", output);
if(allow_off_chain)
consumed_cells.insert(head_cell);
else
{
for (auto x : cur_supercell)
consumed_cells.insert(x);
}
}
}
}
// Remove all of the head cells, since we supplant them.
// Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones)
for (auto cell : consumed_cells)
module->remove(cell);
}
log_pop();
}
} ExtractReducePass;
PRIVATE_NAMESPACE_END
|