1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "libs/subcircuit/subcircuit.h"
#include <algorithm>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
using RTLIL::id2cstr;
class SubCircuitSolver : public SubCircuit::Solver
{
public:
bool ignore_parameters;
std::set<std::pair<RTLIL::IdString, RTLIL::IdString>> ignored_parameters;
std::set<RTLIL::IdString> cell_attr, wire_attr;
SubCircuitSolver() : ignore_parameters(false)
{
}
bool compareAttributes(const std::set<RTLIL::IdString> &attr, const std::map<RTLIL::IdString, RTLIL::Const> &needleAttr, const std::map<RTLIL::IdString, RTLIL::Const> &haystackAttr)
{
for (auto &it : attr) {
size_t nc = needleAttr.count(it), hc = haystackAttr.count(it);
if (nc != hc || (nc > 0 && needleAttr.at(it) != haystackAttr.at(it)))
return false;
}
return true;
}
RTLIL::Const unified_param(RTLIL::IdString cell_type, RTLIL::IdString param, RTLIL::Const value)
{
if (cell_type.substr(0, 1) != "$" || cell_type.substr(0, 2) == "$_")
return value;
#define param_bool(_n) if (param == _n) return value.as_bool();
param_bool("\\ARST_POLARITY");
param_bool("\\A_SIGNED");
param_bool("\\B_SIGNED");
param_bool("\\CLK_ENABLE");
param_bool("\\CLK_POLARITY");
param_bool("\\CLR_POLARITY");
param_bool("\\EN_POLARITY");
param_bool("\\SET_POLARITY");
param_bool("\\TRANSPARENT");
#undef param_bool
#define param_int(_n) if (param == _n) return value.as_int();
param_int("\\ABITS")
param_int("\\A_WIDTH")
param_int("\\B_WIDTH")
param_int("\\CTRL_IN_WIDTH")
param_int("\\CTRL_OUT_WIDTH")
param_int("\\OFFSET")
param_int("\\PRIORITY")
param_int("\\RD_PORTS")
param_int("\\SIZE")
param_int("\\STATE_BITS")
param_int("\\STATE_NUM")
param_int("\\STATE_NUM_LOG2")
param_int("\\STATE_RST")
param_int("\\S_WIDTH")
param_int("\\TRANS_NUM")
param_int("\\WIDTH")
param_int("\\WR_PORTS")
param_int("\\Y_WIDTH")
#undef param_int
return value;
}
virtual bool userCompareNodes(const std::string &, const std::string &, void *needleUserData,
const std::string &, const std::string &, void *haystackUserData, const std::map<std::string, std::string> &portMapping)
{
RTLIL::Cell *needleCell = (RTLIL::Cell*) needleUserData;
RTLIL::Cell *haystackCell = (RTLIL::Cell*) haystackUserData;
if (!needleCell || !haystackCell) {
log_assert(!needleCell && !haystackCell);
return true;
}
if (!ignore_parameters) {
std::map<RTLIL::IdString, RTLIL::Const> needle_param, haystack_param;
for (auto &it : needleCell->parameters)
if (!ignored_parameters.count(std::pair<RTLIL::IdString, RTLIL::IdString>(needleCell->type, it.first)))
needle_param[it.first] = unified_param(needleCell->type, it.first, it.second);
for (auto &it : haystackCell->parameters)
if (!ignored_parameters.count(std::pair<RTLIL::IdString, RTLIL::IdString>(haystackCell->type, it.first)))
haystack_param[it.first] = unified_param(haystackCell->type, it.first, it.second);
if (needle_param != haystack_param)
return false;
}
if (cell_attr.size() > 0 && !compareAttributes(cell_attr, needleCell->attributes, haystackCell->attributes))
return false;
if (wire_attr.size() > 0)
{
RTLIL::Wire *lastNeedleWire = NULL;
RTLIL::Wire *lastHaystackWire = NULL;
std::map<RTLIL::IdString, RTLIL::Const> emptyAttr;
for (auto &conn : needleCell->connections())
{
RTLIL::SigSpec needleSig = conn.second;
RTLIL::SigSpec haystackSig = haystackCell->getPort(portMapping.at(conn.first.str()));
for (int i = 0; i < std::min(needleSig.size(), haystackSig.size()); i++) {
RTLIL::Wire *needleWire = needleSig[i].wire, *haystackWire = haystackSig[i].wire;
if (needleWire != lastNeedleWire || haystackWire != lastHaystackWire)
if (!compareAttributes(wire_attr, needleWire ? needleWire->attributes : emptyAttr, haystackWire ? haystackWire->attributes : emptyAttr))
return false;
lastNeedleWire = needleWire, lastHaystackWire = haystackWire;
}
}
}
return true;
}
};
struct bit_ref_t {
std::string cell, port;
int bit;
};
bool module2graph(SubCircuit::Graph &graph, RTLIL::Module *mod, bool constports, RTLIL::Design *sel = NULL,
int max_fanout = -1, std::set<std::pair<RTLIL::IdString, RTLIL::IdString>> *split = NULL)
{
SigMap sigmap(mod);
std::map<RTLIL::SigBit, bit_ref_t> sig_bit_ref;
if (sel && !sel->selected(mod)) {
log(" Skipping module %s as it is not selected.\n", id2cstr(mod->name));
return false;
}
if (mod->processes.size() > 0) {
log(" Skipping module %s as it contains unprocessed processes.\n", id2cstr(mod->name));
return false;
}
if (constports) {
graph.createNode("$const$0", "$const$0", NULL, true);
graph.createNode("$const$1", "$const$1", NULL, true);
graph.createNode("$const$x", "$const$x", NULL, true);
graph.createNode("$const$z", "$const$z", NULL, true);
graph.createPort("$const$0", "\\Y", 1);
graph.createPort("$const$1", "\\Y", 1);
graph.createPort("$const$x", "\\Y", 1);
graph.createPort("$const$z", "\\Y", 1);
graph.markExtern("$const$0", "\\Y", 0);
graph.markExtern("$const$1", "\\Y", 0);
graph.markExtern("$const$x", "\\Y", 0);
graph.markExtern("$const$z", "\\Y", 0);
}
std::map<std::pair<RTLIL::Wire*, int>, int> sig_use_count;
if (max_fanout > 0)
for (auto &cell_it : mod->cells_)
{
RTLIL::Cell *cell = cell_it.second;
if (!sel || sel->selected(mod, cell))
for (auto &conn : cell->connections()) {
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
for (auto &bit : conn_sig)
if (bit.wire != NULL)
sig_use_count[std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset)]++;
}
}
// create graph nodes from cells
for (auto &cell_it : mod->cells_)
{
RTLIL::Cell *cell = cell_it.second;
if (sel && !sel->selected(mod, cell))
continue;
std::string type = cell->type.str();
if (sel == NULL && type.substr(0, 2) == "\\$")
type = type.substr(1);
graph.createNode(cell->name.str(), type, (void*)cell);
for (auto &conn : cell->connections())
{
graph.createPort(cell->name.str(), conn.first.str(), conn.second.size());
if (split && split->count(std::pair<RTLIL::IdString, RTLIL::IdString>(cell->type, conn.first)) > 0)
continue;
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
for (int i = 0; i < conn_sig.size(); i++)
{
auto &bit = conn_sig[i];
if (bit.wire == NULL) {
if (constports) {
std::string node = "$const$x";
if (bit == RTLIL::State::S0) node = "$const$0";
if (bit == RTLIL::State::S1) node = "$const$1";
if (bit == RTLIL::State::Sz) node = "$const$z";
graph.createConnection(cell->name.str(), conn.first.str(), i, node, "\\Y", 0);
} else
graph.createConstant(cell->name.str(), conn.first.str(), i, int(bit.data));
continue;
}
if (max_fanout > 0 && sig_use_count[std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset)] > max_fanout)
continue;
if (sel && !sel->selected(mod, bit.wire))
continue;
if (sig_bit_ref.count(bit) == 0) {
bit_ref_t &bit_ref = sig_bit_ref[bit];
bit_ref.cell = cell->name.str();
bit_ref.port = conn.first.str();
bit_ref.bit = i;
}
bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.createConnection(bit_ref.cell, bit_ref.port, bit_ref.bit, cell->name.str(), conn.first.str(), i);
}
}
}
// mark external signals (used in non-selected cells)
for (auto &cell_it : mod->cells_)
{
RTLIL::Cell *cell = cell_it.second;
if (sel && !sel->selected(mod, cell))
for (auto &conn : cell->connections())
{
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
for (auto &bit : conn_sig)
if (sig_bit_ref.count(bit) != 0) {
bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
}
// mark external signals (used in module ports)
for (auto &wire_it : mod->wires_)
{
RTLIL::Wire *wire = wire_it.second;
if (wire->port_id > 0)
{
RTLIL::SigSpec conn_sig(wire);
sigmap.apply(conn_sig);
for (auto &bit : conn_sig)
if (sig_bit_ref.count(bit) != 0) {
bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
}
// graph.print();
return true;
}
RTLIL::Cell *replace(RTLIL::Module *needle, RTLIL::Module *haystack, SubCircuit::Solver::Result &match)
{
SigMap sigmap(needle);
SigSet<std::pair<RTLIL::IdString, int>> sig2port;
// create new cell
RTLIL::Cell *cell = haystack->addCell(stringf("$extract$%s$%d", needle->name.c_str(), autoidx++), needle->name);
// create cell ports
for (auto &it : needle->wires_) {
RTLIL::Wire *wire = it.second;
if (wire->port_id > 0) {
for (int i = 0; i < wire->width; i++)
sig2port.insert(sigmap(RTLIL::SigSpec(wire, i)), std::pair<RTLIL::IdString, int>(wire->name, i));
cell->setPort(wire->name, RTLIL::SigSpec(RTLIL::State::Sz, wire->width));
}
}
// delete replaced cells and connect new ports
for (auto &it : match.mappings)
{
auto &mapping = it.second;
RTLIL::Cell *needle_cell = (RTLIL::Cell*)mapping.needleUserData;
RTLIL::Cell *haystack_cell = (RTLIL::Cell*)mapping.haystackUserData;
if (needle_cell == NULL)
continue;
for (auto &conn : needle_cell->connections()) {
RTLIL::SigSpec sig = sigmap(conn.second);
if (mapping.portMapping.count(conn.first.str()) > 0 && sig2port.has(sigmap(sig))) {
for (int i = 0; i < sig.size(); i++)
for (auto &port : sig2port.find(sig[i])) {
RTLIL::SigSpec bitsig = haystack_cell->getPort(mapping.portMapping[conn.first.str()]).extract(i, 1);
RTLIL::SigSpec new_sig = cell->getPort(port.first);
new_sig.replace(port.second, bitsig);
cell->setPort(port.first, new_sig);
}
}
}
haystack->remove(haystack_cell);
}
return cell;
}
bool compareSortNeedleList(RTLIL::Module *left, RTLIL::Module *right)
{
int left_idx = 0, right_idx = 0;
if (left->attributes.count("\\extract_order") > 0)
left_idx = left->attributes.at("\\extract_order").as_int();
if (right->attributes.count("\\extract_order") > 0)
right_idx = right->attributes.at("\\extract_order").as_int();
if (left_idx != right_idx)
return left_idx < right_idx;
return left->name < right->name;
}
struct ExtractPass : public Pass {
ExtractPass() : Pass("extract", "find subcircuits and replace them with cells") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" extract -map <map_file> [options] [selection]\n");
log(" extract -mine <out_file> [options] [selection]\n");
log("\n");
log("This pass looks for subcircuits that are isomorphic to any of the modules\n");
log("in the given map file and replaces them with instances of this modules. The\n");
log("map file can be a verilog source file (*.v) or an ilang file (*.il).\n");
log("\n");
log(" -map <map_file>\n");
log(" use the modules in this file as reference. This option can be used\n");
log(" multiple times.\n");
log("\n");
log(" -map %%<design-name>\n");
log(" use the modules in this in-memory design as reference. This option can\n");
log(" be used multiple times.\n");
log("\n");
log(" -verbose\n");
log(" print debug output while analyzing\n");
log("\n");
log(" -constports\n");
log(" also find instances with constant drivers. this may be much\n");
log(" slower than the normal operation.\n");
log("\n");
log(" -nodefaultswaps\n");
log(" normally builtin port swapping rules for internal cells are used per\n");
log(" default. This turns that off, so e.g. 'a^b' does not match 'b^a'\n");
log(" when this option is used.\n");
log("\n");
log(" -compat <needle_type> <haystack_type>\n");
log(" Per default, the cells in the map file (needle) must have the\n");
log(" type as the cells in the active design (haystack). This option\n");
log(" can be used to register additional pairs of types that should\n");
log(" match. This option can be used multiple times.\n");
log("\n");
log(" -swap <needle_type> <port1>,<port2>[,...]\n");
log(" Register a set of swapable ports for a needle cell type.\n");
log(" This option can be used multiple times.\n");
log("\n");
log(" -perm <needle_type> <port1>,<port2>[,...] <portA>,<portB>[,...]\n");
log(" Register a valid permutation of swapable ports for a needle\n");
log(" cell type. This option can be used multiple times.\n");
log("\n");
log(" -cell_attr <attribute_name>\n");
log(" Attributes on cells with the given name must match.\n");
log("\n");
log(" -wire_attr <attribute_name>\n");
log(" Attributes on wires with the given name must match.\n");
log("\n");
log(" -ignore_parameters\n");
log(" Do not use parameters when matching cells.\n");
log("\n");
log(" -ignore_param <cell_type> <parameter_name>\n");
log(" Do not use this parameter when matching cells.\n");
log("\n");
log("This pass does not operate on modules with uprocessed processes in it.\n");
log("(I.e. the 'proc' pass should be used first to convert processes to netlists.)\n");
log("\n");
log("This pass can also be used for mining for frequent subcircuits. In this mode\n");
log("the following options are to be used instead of the -map option.\n");
log("\n");
log(" -mine <out_file>\n");
log(" mine for frequent subcircuits and write them to the given ilang file\n");
log("\n");
log(" -mine_cells_span <min> <max>\n");
log(" only mine for subcircuits with the specified number of cells\n");
log(" default value: 3 5\n");
log("\n");
log(" -mine_min_freq <num>\n");
log(" only mine for subcircuits with at least the specified number of matches\n");
log(" default value: 10\n");
log("\n");
log(" -mine_limit_matches_per_module <num>\n");
log(" when calculating the number of matches for a subcircuit, don't count\n");
log(" more than the specified number of matches per module\n");
log("\n");
log(" -mine_max_fanout <num>\n");
log(" don't consider internal signals with more than <num> connections\n");
log("\n");
log("The modules in the map file may have the attribute 'extract_order' set to an\n");
log("integer value. Then this value is used to determine the order in which the pass\n");
log("tries to map the modules to the design (ascending, default value is 0).\n");
log("\n");
log("See 'help techmap' for a pass that does the opposite thing.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header("Executing EXTRACT pass (map subcircuits to cells).\n");
log_push();
SubCircuitSolver solver;
std::vector<std::string> map_filenames;
std::string mine_outfile;
bool constports = false;
bool nodefaultswaps = false;
bool mine_mode = false;
int mine_cells_min = 3;
int mine_cells_max = 5;
int mine_min_freq = 10;
int mine_limit_mod = -1;
int mine_max_fanout = -1;
std::set<std::pair<RTLIL::IdString, RTLIL::IdString>> mine_split;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-map" && argidx+1 < args.size()) {
if (mine_mode)
log_cmd_error("You cannot mix -map and -mine.\n");
map_filenames.push_back(args[++argidx]);
continue;
}
if (args[argidx] == "-mine" && argidx+1 < args.size()) {
if (!map_filenames.empty())
log_cmd_error("You cannot mix -map and -mine.\n");
mine_outfile = args[++argidx];
mine_mode = true;
continue;
}
if (args[argidx] == "-mine_cells_span" && argidx+2 < args.size()) {
mine_cells_min = atoi(args[++argidx].c_str());
mine_cells_max = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-mine_min_freq" && argidx+1 < args.size()) {
mine_min_freq = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-mine_limit_matches_per_module" && argidx+1 < args.size()) {
mine_limit_mod = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-mine_split" && argidx+2 < args.size()) {
mine_split.insert(std::pair<RTLIL::IdString, RTLIL::IdString>(RTLIL::escape_id(args[argidx+1]), RTLIL::escape_id(args[argidx+2])));
argidx += 2;
continue;
}
if (args[argidx] == "-mine_max_fanout" && argidx+1 < args.size()) {
mine_max_fanout = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-verbose") {
solver.setVerbose();
continue;
}
if (args[argidx] == "-constports") {
constports = true;
continue;
}
if (args[argidx] == "-nodefaultswaps") {
nodefaultswaps = true;
continue;
}
if (args[argidx] == "-compat" && argidx+2 < args.size()) {
std::string needle_type = RTLIL::escape_id(args[++argidx]);
std::string haystack_type = RTLIL::escape_id(args[++argidx]);
solver.addCompatibleTypes(needle_type, haystack_type);
continue;
}
if (args[argidx] == "-swap" && argidx+2 < args.size()) {
std::string type = RTLIL::escape_id(args[++argidx]);
std::set<std::string> ports;
std::string ports_str = args[++argidx], p;
while (!(p = next_token(ports_str, ",\t\r\n ")).empty())
ports.insert(RTLIL::escape_id(p));
solver.addSwappablePorts(type, ports);
continue;
}
if (args[argidx] == "-perm" && argidx+3 < args.size()) {
std::string type = RTLIL::escape_id(args[++argidx]);
std::vector<std::string> map_left, map_right;
std::string left_str = args[++argidx];
std::string right_str = args[++argidx], p;
while (!(p = next_token(left_str, ",\t\r\n ")).empty())
map_left.push_back(RTLIL::escape_id(p));
while (!(p = next_token(right_str, ",\t\r\n ")).empty())
map_right.push_back(RTLIL::escape_id(p));
if (map_left.size() != map_right.size())
log_cmd_error("Arguments to -perm are not a valid permutation!\n");
std::map<std::string, std::string> map;
for (size_t i = 0; i < map_left.size(); i++)
map[map_left[i]] = map_right[i];
std::sort(map_left.begin(), map_left.end());
std::sort(map_right.begin(), map_right.end());
if (map_left != map_right)
log_cmd_error("Arguments to -perm are not a valid permutation!\n");
solver.addSwappablePortsPermutation(type, map);
continue;
}
if (args[argidx] == "-cell_attr" && argidx+1 < args.size()) {
solver.cell_attr.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-wire_attr" && argidx+1 < args.size()) {
solver.wire_attr.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-ignore_parameters") {
solver.ignore_parameters = true;
continue;
}
if (args[argidx] == "-ignore_param" && argidx+2 < args.size()) {
solver.ignored_parameters.insert(std::pair<RTLIL::IdString, RTLIL::IdString>(RTLIL::escape_id(args[argidx+1]), RTLIL::escape_id(args[argidx+2])));
argidx += 2;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!nodefaultswaps) {
solver.addSwappablePorts("$and", "\\A", "\\B");
solver.addSwappablePorts("$or", "\\A", "\\B");
solver.addSwappablePorts("$xor", "\\A", "\\B");
solver.addSwappablePorts("$xnor", "\\A", "\\B");
solver.addSwappablePorts("$eq", "\\A", "\\B");
solver.addSwappablePorts("$ne", "\\A", "\\B");
solver.addSwappablePorts("$eqx", "\\A", "\\B");
solver.addSwappablePorts("$nex", "\\A", "\\B");
solver.addSwappablePorts("$add", "\\A", "\\B");
solver.addSwappablePorts("$mul", "\\A", "\\B");
solver.addSwappablePorts("$logic_and", "\\A", "\\B");
solver.addSwappablePorts("$logic_or", "\\A", "\\B");
solver.addSwappablePorts("$_AND_", "\\A", "\\B");
solver.addSwappablePorts("$_OR_", "\\A", "\\B");
solver.addSwappablePorts("$_XOR_", "\\A", "\\B");
}
if (map_filenames.empty() && mine_outfile.empty())
log_cmd_error("Missing option -map <verilog_or_ilang_file> or -mine <output_ilang_file>.\n");
RTLIL::Design *map = NULL;
if (!mine_mode)
{
map = new RTLIL::Design;
for (auto &filename : map_filenames)
{
if (filename.substr(0, 1) == "%")
{
if (!saved_designs.count(filename.substr(1))) {
delete map;
log_cmd_error("Can't saved design `%s'.\n", filename.c_str()+1);
}
for (auto mod : saved_designs.at(filename.substr(1))->modules())
if (!map->has(mod->name))
map->add(mod->clone());
}
else
{
std::ifstream f;
f.open(filename.c_str());
if (f.fail()) {
delete map;
log_cmd_error("Can't open map file `%s'.\n", filename.c_str());
}
Frontend::frontend_call(map, &f, filename, (filename.size() > 3 && filename.substr(filename.size()-3) == ".il") ? "ilang" : "verilog");
f.close();
if (filename.size() <= 3 || filename.substr(filename.size()-3) != ".il") {
Pass::call(map, "proc");
Pass::call(map, "opt_clean");
}
}
}
}
std::map<std::string, RTLIL::Module*> needle_map, haystack_map;
std::vector<RTLIL::Module*> needle_list;
log_header("Creating graphs for SubCircuit library.\n");
if (!mine_mode)
for (auto &mod_it : map->modules_) {
SubCircuit::Graph mod_graph;
std::string graph_name = "needle_" + RTLIL::unescape_id(mod_it.first);
log("Creating needle graph %s.\n", graph_name.c_str());
if (module2graph(mod_graph, mod_it.second, constports)) {
solver.addGraph(graph_name, mod_graph);
needle_map[graph_name] = mod_it.second;
needle_list.push_back(mod_it.second);
}
}
for (auto &mod_it : design->modules_) {
SubCircuit::Graph mod_graph;
std::string graph_name = "haystack_" + RTLIL::unescape_id(mod_it.first);
log("Creating haystack graph %s.\n", graph_name.c_str());
if (module2graph(mod_graph, mod_it.second, constports, design, mine_mode ? mine_max_fanout : -1, mine_mode ? &mine_split : NULL)) {
solver.addGraph(graph_name, mod_graph);
haystack_map[graph_name] = mod_it.second;
}
}
if (!mine_mode)
{
std::vector<SubCircuit::Solver::Result> results;
log_header("Running solver from SubCircuit library.\n");
std::sort(needle_list.begin(), needle_list.end(), compareSortNeedleList);
for (auto needle : needle_list)
for (auto &haystack_it : haystack_map) {
log("Solving for %s in %s.\n", ("needle_" + RTLIL::unescape_id(needle->name)).c_str(), haystack_it.first.c_str());
solver.solve(results, "needle_" + RTLIL::unescape_id(needle->name), haystack_it.first, false);
}
log("Found %d matches.\n", GetSize(results));
if (results.size() > 0)
{
log_header("Substitute SubCircuits with cells.\n");
for (int i = 0; i < int(results.size()); i++) {
auto &result = results[i];
log("\nMatch #%d: (%s in %s)\n", i, result.needleGraphId.c_str(), result.haystackGraphId.c_str());
for (const auto &it : result.mappings) {
log(" %s -> %s", it.first.c_str(), it.second.haystackNodeId.c_str());
for (const auto & it2 : it.second.portMapping)
log(" %s:%s", it2.first.c_str(), it2.second.c_str());
log("\n");
}
RTLIL::Cell *new_cell = replace(needle_map.at(result.needleGraphId), haystack_map.at(result.haystackGraphId), result);
design->select(haystack_map.at(result.haystackGraphId), new_cell);
log(" new cell: %s\n", id2cstr(new_cell->name));
}
}
}
else
{
std::vector<SubCircuit::Solver::MineResult> results;
log_header("Running miner from SubCircuit library.\n");
solver.mine(results, mine_cells_min, mine_cells_max, mine_min_freq, mine_limit_mod);
map = new RTLIL::Design;
int needleCounter = 0;
for (auto &result: results)
{
log("\nFrequent SubCircuit with %d nodes and %d matches:\n", int(result.nodes.size()), result.totalMatchesAfterLimits);
log(" primary match in %s:", id2cstr(haystack_map.at(result.graphId)->name));
for (auto &node : result.nodes)
log(" %s", RTLIL::unescape_id(node.nodeId).c_str());
log("\n");
for (auto &it : result.matchesPerGraph)
log(" matches in %s: %d\n", id2cstr(haystack_map.at(it.first)->name), it.second);
RTLIL::Module *mod = haystack_map.at(result.graphId);
std::set<RTLIL::Cell*> cells;
std::set<RTLIL::Wire*> wires;
SigMap sigmap(mod);
for (auto &node : result.nodes)
cells.insert((RTLIL::Cell*)node.userData);
for (auto cell : cells)
for (auto &conn : cell->connections()) {
RTLIL::SigSpec sig = sigmap(conn.second);
for (auto &chunk : sig.chunks())
if (chunk.wire != NULL)
wires.insert(chunk.wire);
}
RTLIL::Module *newMod = new RTLIL::Module;
newMod->name = stringf("\\needle%05d_%s_%dx", needleCounter++, id2cstr(haystack_map.at(result.graphId)->name), result.totalMatchesAfterLimits);
map->add(newMod);
for (auto wire : wires) {
RTLIL::Wire *newWire = newMod->addWire(wire->name, wire->width);
newWire->port_input = true;
newWire->port_output = true;
}
newMod->fixup_ports();
for (auto cell : cells) {
RTLIL::Cell *newCell = newMod->addCell(cell->name, cell->type);
newCell->parameters = cell->parameters;
for (auto &conn : cell->connections()) {
std::vector<RTLIL::SigChunk> chunks = sigmap(conn.second);
for (auto &chunk : chunks)
if (chunk.wire != NULL)
chunk.wire = newMod->wires_.at(chunk.wire->name);
newCell->setPort(conn.first, chunks);
}
}
}
std::ofstream f;
f.open(mine_outfile.c_str(), std::ofstream::trunc);
if (f.fail())
log_error("Can't open output file `%s'.\n", mine_outfile.c_str());
Backend::backend_call(map, &f, mine_outfile, "ilang");
f.close();
}
delete map;
log_pop();
}
} ExtractPass;
PRIVATE_NAMESPACE_END
|