aboutsummaryrefslogtreecommitdiffstats
path: root/passes/sat/qbfsat.cc
blob: f4624ab3bb76b19addfd572d2bc9df622d53ac9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2020  Alberto Gonzalez <boqwxp@airmail.cc>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/yosys.h"
#include "kernel/celltypes.h"
#include "kernel/consteval.h"
#include "kernel/log.h"
#include "kernel/rtlil.h"
#include "kernel/register.h"
#include <algorithm>
#include <numeric>

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

static inline unsigned int difference(unsigned int a, unsigned int b) {
	if (a < b)
		return b - a;
	else
		return a - b;
}

struct QbfSolutionType {
	std::vector<std::string> stdout_lines;
	dict<pool<std::string>, std::string> hole_to_value;
	double solver_time;
	bool sat;
	bool unknown; //true if neither 'sat' nor 'unsat'

	QbfSolutionType() : solver_time(0.0), sat(false), unknown(true) {}
};

struct QbfSolveOptions {
	bool specialize, specialize_from_file, write_solution, nocleanup, dump_final_smt2, assume_outputs, assume_neg;
	bool nooptimize, nobisection;
	bool sat, unsat, show_smtbmc;
	enum Solver{Z3, Yices, CVC4} solver;
	int timeout;
	std::string specialize_soln_file;
	std::string write_soln_soln_file;
	std::string dump_final_smt2_file;
	size_t argidx;
	QbfSolveOptions() : specialize(false), specialize_from_file(false), write_solution(false),
			nocleanup(false), dump_final_smt2(false), assume_outputs(false), assume_neg(false),
			nooptimize(false), nobisection(false), sat(false), unsat(false), show_smtbmc(false),
			solver(Yices), timeout(0), argidx(0) {};
};

std::string get_solver_name(const QbfSolveOptions &opt) {
	if (opt.solver == opt.Solver::Z3)
		return "z3";
	else if (opt.solver == opt.Solver::Yices)
		return "yices";
	else if (opt.solver == opt.Solver::CVC4)
		return "cvc4";
	else
		log_cmd_error("unknown solver specified.\n");
	return "";
}

void recover_solution(QbfSolutionType &sol) {
	YS_REGEX_TYPE sat_regex = YS_REGEX_COMPILE("Status: PASSED");
	YS_REGEX_TYPE unsat_regex = YS_REGEX_COMPILE("Solver Error.*model is not available");
	YS_REGEX_TYPE unsat_regex2 = YS_REGEX_COMPILE("Status: FAILED");
	YS_REGEX_TYPE timeout_regex = YS_REGEX_COMPILE("No solution found! \\(timeout\\)");
	YS_REGEX_TYPE timeout_regex2 = YS_REGEX_COMPILE("No solution found! \\(interrupted\\)");
	YS_REGEX_TYPE unknown_regex = YS_REGEX_COMPILE("No solution found! \\(unknown\\)");
	YS_REGEX_TYPE unknown_regex2 = YS_REGEX_COMPILE("Unexpected EOF response from solver");
	YS_REGEX_TYPE memout_regex = YS_REGEX_COMPILE("Solver Error:.*error \"out of memory\"");
	YS_REGEX_TYPE hole_value_regex = YS_REGEX_COMPILE_WITH_SUBS("Value for anyconst in [a-zA-Z0-9_]* \\(([^:]*:[^\\)]*)\\): (.*)");
#ifndef NDEBUG
	YS_REGEX_TYPE hole_loc_regex = YS_REGEX_COMPILE("[^:]*:[0-9]+.[0-9]+-[0-9]+.[0-9]+");
	YS_REGEX_TYPE hole_val_regex = YS_REGEX_COMPILE("[0-9]+");
#endif
	YS_REGEX_MATCH_TYPE m;
	bool sat_regex_found = false;
	bool unsat_regex_found = false;
	dict<std::string, bool> hole_value_recovered;
	for (const std::string &x : sol.stdout_lines) {
		if(YS_REGEX_NS::regex_search(x, m, hole_value_regex)) {
			std::string loc = m[1].str();
			std::string val = m[2].str();
#ifndef NDEBUG
			log_assert(YS_REGEX_NS::regex_search(loc, hole_loc_regex));
			log_assert(YS_REGEX_NS::regex_search(val, hole_val_regex));
#endif
			auto locs = split_tokens(loc, "|");
			pool<std::string> loc_pool(locs.begin(), locs.end());
			sol.hole_to_value[loc_pool] = val;
		}
		else if (YS_REGEX_NS::regex_search(x, sat_regex)) {
			sat_regex_found = true;
			sol.sat = true;
			sol.unknown = false;
		}
		else if (YS_REGEX_NS::regex_search(x, unsat_regex)) {
			unsat_regex_found = true;
			sol.sat = false;
			sol.unknown = false;
		}
		else if (YS_REGEX_NS::regex_search(x, memout_regex)) {
			sol.unknown = true;
			log_warning("solver ran out of memory\n");
		}
		else if (YS_REGEX_NS::regex_search(x, timeout_regex)) {
			sol.unknown = true;
			log_warning("solver timed out\n");
		}
		else if (YS_REGEX_NS::regex_search(x, timeout_regex2)) {
			sol.unknown = true;
			log_warning("solver timed out\n");
		}
		else if (YS_REGEX_NS::regex_search(x, unknown_regex)) {
			sol.unknown = true;
			log_warning("solver returned \"unknown\"\n");
		}
		else if (YS_REGEX_NS::regex_search(x, unsat_regex2)) {
			unsat_regex_found = true;
			sol.sat = false;
			sol.unknown = false;
		}
		else if (YS_REGEX_NS::regex_search(x, unknown_regex2)) {
			sol.unknown = true;
		}
	}
#ifndef NDEBUG
	log_assert(!sol.unknown && sol.sat? sat_regex_found : true);
	log_assert(!sol.unknown && !sol.sat? unsat_regex_found : true);
#endif
}

dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> get_hole_loc_idx_sigbit_map(RTLIL::Module *module, const QbfSolutionType &sol) {
	dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit;
	for (auto cell : module->cells()) {
		pool<std::string> cell_src = cell->get_strpool_attribute(ID::src);
		auto pos = sol.hole_to_value.find(cell_src);
		if (pos != sol.hole_to_value.end() && cell->type.in("$anyconst", "$anyseq")) {
			RTLIL::SigSpec port_y = cell->getPort(ID::Y);
			for (int i = GetSize(port_y) - 1; i >= 0; --i) {
				hole_loc_idx_to_sigbit[std::make_pair(pos->first, i)] = port_y[i];
			}
		}
	}

	return hole_loc_idx_to_sigbit;
}

pool<std::string> validate_design_and_get_inputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
	bool found_input = false;
	bool found_hole = false;
	bool found_1bit_output = false;
	bool found_assert_assume = false;
	pool<std::string> input_wires;
	for (auto wire : module->wires()) {
		if (wire->port_input) {
			found_input = true;
			input_wires.insert(wire->name.str());
		}
		if (wire->port_output && wire->width == 1)
			found_1bit_output = true;
	}
	for (auto cell : module->cells()) {
		if (cell->type == "$allconst")
			found_input = true;
		if (cell->type == "$anyconst")
			found_hole = true;
		if (cell->type.in("$assert", "$assume"))
			found_assert_assume = true;
	}
	if (!found_input)
		log_cmd_error("Can't perform QBF-SAT on a miter with no inputs!\n");
	if (!found_hole)
		log_cmd_error("Did not find any existentially-quantified variables. Use 'sat' instead.\n");
	if (!found_1bit_output && !found_assert_assume)
		log_cmd_error("Did not find any single-bit outputs or $assert/$assume cells. Is this a miter circuit?\n");
	if (!found_assert_assume && !opt.assume_outputs)
		log_cmd_error("Did not find any $assert/$assume cells. Single-bit outputs were found, but `-assume-outputs` was not specified.\n");

	return input_wires;
}

void write_solution(RTLIL::Module *module, const QbfSolutionType &sol, const std::string &file) {
	std::ofstream fout(file.c_str());
	if (!fout)
		log_cmd_error("could not open solution file for writing.\n");

	//There is a question here: How exactly shall we identify holes?
	//There are at least two reasonable options:
	//1. By the source location of the $anyconst cells
	//2. By the name(s) of the wire(s) connected to each SigBit of the $anyconst cell->getPort(ID::Y) SigSpec.
	//
	//Option 1 has the benefit of being very precise.  There is very limited potential for confusion, as long
	//as the source attribute has been set.  However, if the source attribute is not set, this won't work.
	//More importantly, we want to have the ability to port hole assignments to other modules with compatible
	//hole names and widths.  Obviously in those cases source locations of the $anyconst cells will not match.
	//
	//Option 2 has the benefits previously described, but wire names can be changed automatically by 
	//optimization or techmapping passes, especially when (ex/im)porting from BLIF for optimization with ABC.
	//
	//The approach taken here is to allow both options.  We write the assignment information for each bit of
	//the solution on a separate line.  Each line is of one of two forms:
	//
	//location bit name = value
	//location bit name [offset] = value
	//
	//where '[', ']', and '=' are literal symbols, "location" is the $anyconst cell source location attribute,
	//"bit" is the index of the $anyconst cell, "name" is the `wire->name` field of the SigBit corresponding
	//to the current bit of the $anyconst cell->getPort(ID::Y), "offset" is the `offset` field of that same
	//SigBit, and "value", which is either '0' or '1', represents the assignment for that bit.
	dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol);
	for (auto &x : sol.hole_to_value) {
		std::string src_as_str = std::accumulate(x.first.begin(), x.first.end(), std::string(), [](const std::string &a, const std::string &b){return a + "|" + b;});
		for (auto i = 0; i < GetSize(x.second); ++i)
			fout << src_as_str.c_str() << " " << i << " " << log_signal(hole_loc_idx_to_sigbit[std::make_pair(x.first, i)]) << " = " << x.second[GetSize(x.second) - 1 - i] << std::endl;
	}
}

void specialize_from_file(RTLIL::Module *module, const std::string &file) {
	YS_REGEX_TYPE hole_bit_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.+) ([0-9]+) ([^ ]+) \\[([0-9]+)] = ([01])$");
	YS_REGEX_TYPE hole_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.+) ([0-9]+) ([^ ]+) = ([01])$"); //if no index specified
	YS_REGEX_MATCH_TYPE bit_m, m;
	//(hole_loc, hole_bit, hole_name, hole_offset) -> (value, found)
	dict<pool<std::string>, RTLIL::Cell*> anyconst_loc_to_cell;
	dict<RTLIL::SigBit, RTLIL::State> hole_assignments;

	for (auto cell : module->cells())
		if (cell->type == "$anyconst")
			anyconst_loc_to_cell[cell->get_strpool_attribute(ID::src)] = cell;

	std::ifstream fin(file.c_str());
	if (!fin)
		log_cmd_error("could not read solution file.\n");

	std::string buf;
	while (std::getline(fin, buf)) {
		bool bit_assn = true;
		if (!YS_REGEX_NS::regex_search(buf, bit_m, hole_bit_assn_regex)) {
			bit_assn = false;
			if (!YS_REGEX_NS::regex_search(buf, m, hole_assn_regex))
				log_cmd_error("solution file is not formatted correctly: \"%s\"\n", buf.c_str());
		}

		std::string hole_loc = bit_assn? bit_m[1].str() : m[1].str();
		unsigned int hole_bit = bit_assn? atoi(bit_m[2].str().c_str()) : atoi(m[2].str().c_str());
		std::string hole_name = bit_assn? bit_m[3].str() : m[3].str();
		unsigned int hole_offset = bit_assn? atoi(bit_m[4].str().c_str()) : 0;
		RTLIL::State hole_value = bit_assn? (atoi(bit_m[5].str().c_str()) == 1? RTLIL::State::S1 : RTLIL::State::S0)
		                                  : (atoi(m[4].str().c_str()) == 1? RTLIL::State::S1 : RTLIL::State::S0);

		//We have two options to identify holes.  First, try to match wire names.  If we can't find a matching wire,
		//then try to find a cell with a matching location.
		RTLIL::SigBit hole_sigbit;
		if (module->wire(hole_name) != nullptr) {
			RTLIL::Wire *hole_wire = module->wire(hole_name);
			hole_sigbit = RTLIL::SigSpec(hole_wire)[hole_offset];
		} else {
			auto locs = split_tokens(hole_loc, "|");
			pool<std::string> hole_loc_pool(locs.begin(), locs.end());
			auto hole_cell_it = anyconst_loc_to_cell.find(hole_loc_pool);
			if (hole_cell_it == anyconst_loc_to_cell.end())
				YS_DEBUGTRAP;
				//log_cmd_error("cannot find matching wire name or $anyconst cell location for hole spec \"%s\"\n", buf.c_str());

			RTLIL::Cell *hole_cell = hole_cell_it->second;
			hole_sigbit = hole_cell->getPort(ID::Y)[hole_bit];
		}
		hole_assignments[hole_sigbit] = hole_value;
	}

	for (auto &it : anyconst_loc_to_cell)
		module->remove(it.second);

	for (auto &it : hole_assignments) {
		RTLIL::SigSpec lhs(it.first);
		RTLIL::SigSpec rhs(it.second);
		log("Specializing %s from file with %s = %d.\n", module->name.c_str(), log_signal(it.first), it.second == RTLIL::State::S1? 1 : 0);
		module->connect(lhs, rhs);
	}
}

void specialize(RTLIL::Module *module, const QbfSolutionType &sol, bool quiet = false) {
	dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol);
	pool<RTLIL::Cell *> anyconsts_to_remove;
	for (auto cell : module->cells())
		if (cell->type == "$anyconst")
			if (hole_loc_idx_to_sigbit.find(std::make_pair(cell->get_strpool_attribute(ID::src), 0)) != hole_loc_idx_to_sigbit.end())
				anyconsts_to_remove.insert(cell);
	for (auto cell : anyconsts_to_remove)
		module->remove(cell);
	for (auto &it : sol.hole_to_value) {
		pool<std::string> hole_loc = it.first;
		std::string hole_value = it.second;

		for (unsigned int i = 0; i < hole_value.size(); ++i) {
			int bit_idx = GetSize(hole_value) - 1 - i;
			auto it = hole_loc_idx_to_sigbit.find(std::make_pair(hole_loc, i));
			log_assert(it != hole_loc_idx_to_sigbit.end());

			RTLIL::SigBit hole_sigbit = it->second;
			log_assert(hole_sigbit.wire != nullptr);
			log_assert(hole_value[bit_idx] == '0' || hole_value[bit_idx] == '1');
			RTLIL::SigSpec lhs(hole_sigbit.wire, hole_sigbit.offset, 1);
			RTLIL::State hole_bit_val = hole_value[bit_idx] == '1'? RTLIL::State::S1 : RTLIL::State::S0;
			if (!quiet)
				log("Specializing %s with %s = %d.\n", module->name.c_str(), log_signal(hole_sigbit), hole_bit_val == RTLIL::State::S0? 0 : 1)
;
			module->connect(lhs, hole_bit_val);
		}
	}
}

void dump_model(RTLIL::Module *module, const QbfSolutionType &sol) {
	log("Satisfiable model:\n");
	dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol);
	for (auto &it : sol.hole_to_value) {
		pool<std::string> hole_loc = it.first;
		std::string hole_value = it.second;

		for (unsigned int i = 0; i < hole_value.size(); ++i) {
			int bit_idx = GetSize(hole_value) - 1 - i;
			auto it = hole_loc_idx_to_sigbit.find(std::make_pair(hole_loc, i));
			log_assert(it != hole_loc_idx_to_sigbit.end());

			RTLIL::SigBit hole_sigbit = it->second;
			log("\t%s = 1'b%c\n", log_signal(hole_sigbit), hole_value[bit_idx]);
		}
	}
}

void allconstify_inputs(RTLIL::Module *module, const pool<std::string> &input_wires) {
	for (auto &n : input_wires) {
		RTLIL::Wire *input = module->wire(n);
#ifndef NDEBUG
		log_assert(input != nullptr);
#endif

		RTLIL::Cell *allconst = module->addCell("$allconst$" + n, "$allconst");
		allconst->setParam(ID(WIDTH), input->width);
		allconst->setPort(ID::Y, input);
		allconst->set_src_attribute(input->get_src_attribute());
		input->port_input = false;
		log("Replaced input %s with $allconst cell.\n", n.c_str());
	}
	module->fixup_ports();
}

void assume_miter_outputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
	std::vector<RTLIL::Wire *> wires_to_assume;
	for (auto w : module->wires())
		if (w->port_output && w->width == 1)
			wires_to_assume.push_back(w);

	if (wires_to_assume.size() == 0)
		return;
	else {
		log("Adding $assume cell for output(s): ");
		for (auto w : wires_to_assume)
			log("\"%s\" ", w->name.c_str());
		log("\n");
	}

	if (opt.assume_neg) {
		for (unsigned int i = 0; i < wires_to_assume.size(); ++i) {
			RTLIL::SigSpec n_wire = module->LogicNot(wires_to_assume[i]->name.str() + "__n__qbfsat", wires_to_assume[i], false, wires_to_assume[i]->get_src_attribute());
			wires_to_assume[i] = n_wire.as_wire();
		}
	}

	for (auto i = 0; wires_to_assume.size() > 1; ++i) {
		std::vector<RTLIL::Wire *> buf;
		for (auto j = 0; j + 1 < GetSize(wires_to_assume); j += 2) {
			std::stringstream strstr; strstr << i << "_" << j;
			RTLIL::Wire *and_wire = module->addWire("\\_qbfsat_and_" + strstr.str(), 1);
			module->addLogicAnd("$_qbfsat_and_" + strstr.str(), wires_to_assume[j], wires_to_assume[j+1], and_wire, false, wires_to_assume[j]->get_src_attribute());
			buf.push_back(and_wire);
		}
		if (wires_to_assume.size() % 2 == 1)
			buf.push_back(wires_to_assume[wires_to_assume.size() - 1]);
		wires_to_assume.swap(buf);
	}

#ifndef NDEBUG
	log_assert(wires_to_assume.size() == 1);
#endif
	module->addAssume("$assume_qbfsat_miter_outputs", wires_to_assume[0], RTLIL::S1);
}

QbfSolutionType call_qbf_solver(RTLIL::Module *mod, const QbfSolveOptions &opt, const std::string &tempdir_name, const bool quiet = false, const int iter_num = 0) {
	//Execute and capture stdout from `yosys-smtbmc -s z3 -t 1 -g --binary [--dump-smt2 <file>]`
	QbfSolutionType ret;
	const std::string yosys_smtbmc_exe = proc_self_dirname() + "yosys-smtbmc";
	const std::string smt2_command = "write_smt2 -stbv -wires " + tempdir_name + "/problem" + (iter_num != 0? stringf("%d", iter_num) : "") + ".smt2";
	const std::string smtbmc_warning = "z3: WARNING:";
	const std::string smtbmc_cmd = yosys_smtbmc_exe + " -s " + (get_solver_name(opt)) + (opt.timeout != 0? stringf(" --timeout %d", opt.timeout) : "") + " -t 1 -g --binary " + (opt.dump_final_smt2? "--dump-smt2 " + opt.dump_final_smt2_file + " " : "") + tempdir_name + "/problem" + (iter_num != 0? stringf("%d", iter_num) : "") + ".smt2 2>&1";

	Pass::call(mod->design, smt2_command);

	auto process_line = [&ret, &smtbmc_warning, &opt, &quiet](const std::string &line) {
		ret.stdout_lines.push_back(line.substr(0, line.size()-1)); //don't include trailing newline
		auto warning_pos = line.find(smtbmc_warning);
		if (warning_pos != std::string::npos)
			log_warning("%s", line.substr(warning_pos + smtbmc_warning.size() + 1).c_str());
		else
			if (opt.show_smtbmc && !quiet)
				log("smtbmc output: %s", line.c_str());
	};
	log_header(mod->design, "Solving QBF-SAT problem.\n");
	if (!quiet) log("Launching \"%s\".\n", smtbmc_cmd.c_str());
	int64_t begin = PerformanceTimer::query();
	run_command(smtbmc_cmd, process_line);
	int64_t end = PerformanceTimer::query();
	ret.solver_time = (end - begin) / 1e9f;
	if (!quiet) log("Solver finished in %.3f seconds.\n", ret.solver_time);

	recover_solution(ret);
	return ret;
}

QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) {
	QbfSolutionType ret, best_soln;
	const std::string tempdir_name = make_temp_dir("/tmp/yosys-z3-XXXXXX");
	RTLIL::Module *module = mod;
	RTLIL::Design *design = module->design;
	std::string module_name = module->name.str();
	RTLIL::Wire *wire_to_optimize = nullptr;
	RTLIL::IdString wire_to_optimize_name;
	bool maximize = false;
	log_assert(module->design != nullptr);

	Pass::call(design, "design -push-copy");

	//Replace input wires with wires assigned $allconst cells:
	pool<std::string> input_wires = validate_design_and_get_inputs(module, opt);
	allconstify_inputs(module, input_wires);
	if (opt.assume_outputs)
		assume_miter_outputs(module, opt);

	//Find the wire to be optimized, if any:
	for (auto wire : module->wires())
		if (wire->get_bool_attribute("\\maximize") || wire->get_bool_attribute("\\minimize"))
			wire_to_optimize = wire;
	if (wire_to_optimize != nullptr) {
		wire_to_optimize_name = wire_to_optimize->name;
		maximize = wire_to_optimize->get_bool_attribute("\\maximize");
	}

	if (opt.nobisection || opt.nooptimize || wire_to_optimize == nullptr) {
		if (wire_to_optimize != nullptr && opt.nooptimize) {
			wire_to_optimize->set_bool_attribute("\\maximize", false);
			wire_to_optimize->set_bool_attribute("\\minimize", false);
		}
		ret = call_qbf_solver(module, opt, tempdir_name, false, 0);
	} else {
		//Do the iterated bisection method:
		unsigned int iter_num = 1;
		unsigned int success = 0;
		unsigned int failure = 0;
		unsigned int cur_thresh = 0;

		log_assert(wire_to_optimize != nullptr);
		log("%s wire \"%s\".\n", (maximize? "Maximizing" : "Minimizing"), log_signal(wire_to_optimize));

		//If maximizing, grow until we get a failure.  Then bisect success and failure.
		while (failure == 0 || difference(success, failure) > 1) {
			Pass::call(design, "design -push-copy");
			log_header(design, "Preparing QBF-SAT problem.\n");

			if (cur_thresh != 0) {
				//Add thresholding logic (but not on the initial run when we don't have a sense of where to start):
				RTLIL::SigSpec comparator = maximize? module->Ge(NEW_ID, module->wire(wire_to_optimize_name), RTLIL::Const(cur_thresh), false)
				                                    : module->Le(NEW_ID, module->wire(wire_to_optimize_name), RTLIL::Const(cur_thresh), false);

				module->addAssume(wire_to_optimize_name.str() + "__threshold", comparator, RTLIL::Const(1, 1));
				log("Trying to solve with %s %s %d.\n", wire_to_optimize_name.c_str(), (maximize? ">=" : "<="), cur_thresh);
			}

			ret = call_qbf_solver(module, opt, tempdir_name, false, iter_num);
			Pass::call(design, "design -pop");
			module = design->module(module_name);

			if (!ret.unknown && ret.sat) {
				Pass::call(design, "design -push-copy");
				specialize(module, ret, true);

				RTLIL::SigSpec wire, value, undef;
				RTLIL::SigSpec::parse_sel(wire, design, module, wire_to_optimize_name.str());

				ConstEval ce(module);
				value = wire;
				if (!ce.eval(value, undef))
					log_cmd_error("Failed to evaluate signal %s: Missing value for %s.\n", log_signal(wire), log_signal(undef));
				log_assert(value.is_fully_const());
				success = value.as_const().as_int();
				best_soln = ret;
				log("Problem is satisfiable with %s = %d.\n", wire_to_optimize_name.c_str(), success);
				Pass::call(design, "design -pop");
				module = design->module(module_name);

				//sometimes this happens if we get an 'unknown' or timeout
				if (!maximize && success < failure)
					break;
				else if (maximize && failure != 0 && success > failure)
					break;

			} else {
				//Treat 'unknown' as UNSAT
				failure = cur_thresh;
				if (failure == 0) {
					log("Problem is NOT satisfiable.\n");
					break;
				}
				else
					log("Problem is NOT satisfiable with %s %s %d.\n", wire_to_optimize_name.c_str(), (maximize? ">=" : "<="), failure);
			}

			iter_num++;
			if (maximize && failure == 0 && success == 0)
				cur_thresh = 2;
			else if (maximize && failure == 0)
				cur_thresh = 2 * success; //growth
			else //if (!maximize || failure != 0)
				cur_thresh = (success + failure) / 2; //bisection
		}
		if (success != 0 || failure != 0) {
			log("Wire %s is %s at %d.\n", wire_to_optimize_name.c_str(), (maximize? "maximized" : "minimized"), success);
			ret = best_soln;
		}
	}

	if(!opt.nocleanup)
		remove_directory(tempdir_name);

	Pass::call(design, "design -pop");

	return ret;
}

QbfSolveOptions parse_args(const std::vector<std::string> &args) {
	QbfSolveOptions opt;
	for (opt.argidx = 1; opt.argidx < args.size(); opt.argidx++) {
		if (args[opt.argidx] == "-nocleanup") {
			opt.nocleanup = true;
			continue;
		}
		else if (args[opt.argidx] == "-specialize") {
			opt.specialize = true;
			continue;
		}
		else if (args[opt.argidx] == "-assume-outputs") {
			opt.assume_outputs = true;
			continue;
		}
		else if (args[opt.argidx] == "-assume-negative-polarity") {
			opt.assume_neg = true;
			continue;
		}
		else if (args[opt.argidx] == "-nooptimize") {
			opt.nooptimize = true;
			continue;
		}
		else if (args[opt.argidx] == "-nobisection") {
			opt.nobisection = true;
			continue;
		}
		else if (args[opt.argidx] == "-solver") {
			if (args.size() <= opt.argidx + 1)
				log_cmd_error("solver not specified.\n");
			else {
				if (args[opt.argidx+1] == "z3")
					opt.solver = opt.Solver::Z3;
				else if (args[opt.argidx+1] == "yices")
					opt.solver = opt.Solver::Yices;
				else if (args[opt.argidx+1] == "cvc4")
					opt.solver = opt.Solver::CVC4;
				else
					log_cmd_error("Unknown solver \"%s\".\n", args[opt.argidx+1].c_str());
				opt.argidx++;
			}
			continue;
		}
		else if (args[opt.argidx] == "-timeout") {
			if (args.size() <= opt.argidx + 1)
				log_cmd_error("timeout not specified.\n");
			else {
				int timeout = atoi(args[opt.argidx+1].c_str());
				if (timeout > 0)
					opt.timeout = timeout;
				else
					log_cmd_error("timeout must be greater than 0.\n");
				opt.argidx++;
			}
			continue;
		}
		else if (args[opt.argidx] == "-sat") {
			opt.sat = true;
			continue;
		}
		else if (args[opt.argidx] == "-unsat") {
			opt.unsat = true;
			continue;
		}
		else if (args[opt.argidx] == "-show-smtbmc") {
			opt.show_smtbmc = true;
			continue;
		}
		else if (args[opt.argidx] == "-dump-final-smt2") {
			opt.dump_final_smt2 = true;
			if (args.size() <= opt.argidx + 1)
				log_cmd_error("smt2 file not specified.\n");
			else
				opt.dump_final_smt2_file = args[++opt.argidx];
			continue;
		}
		else if (args[opt.argidx] == "-specialize-from-file") {
			opt.specialize_from_file = true;
			if (args.size() <= opt.argidx + 1)
				log_cmd_error("solution file not specified.\n");
			else
				opt.specialize_soln_file = args[++opt.argidx];
			continue;
		}
		else if (args[opt.argidx] == "-write-solution") {
			opt.write_solution = true;
			if (args.size() <= opt.argidx + 1)
				log_cmd_error("solution file not specified.\n");
			else
				opt.write_soln_soln_file = args[++opt.argidx];
			continue;
		}
		break;
	}

	return opt;
}

void print_proof_failed()
{
	log("\n");
	log("   ______                   ___       ___       _ _            _ _ \n");
	log("  (_____ \\                 / __)     / __)     (_) |          | | |\n");
	log("   _____) )___ ___   ___ _| |__    _| |__ _____ _| | _____  __| | |\n");
	log("  |  ____/ ___) _ \\ / _ (_   __)  (_   __|____ | | || ___ |/ _  |_|\n");
	log("  | |   | |  | |_| | |_| || |       | |  / ___ | | || ____( (_| |_ \n");
	log("  |_|   |_|   \\___/ \\___/ |_|       |_|  \\_____|_|\\_)_____)\\____|_|\n");
	log("\n");
}

void print_qed()
{
	log("\n");
	log("                  /$$$$$$      /$$$$$$$$     /$$$$$$$    \n");
	log("                 /$$__  $$    | $$_____/    | $$__  $$   \n");
	log("                | $$  \\ $$    | $$          | $$  \\ $$   \n");
	log("                | $$  | $$    | $$$$$       | $$  | $$   \n");
	log("                | $$  | $$    | $$__/       | $$  | $$   \n");
	log("                | $$/$$ $$    | $$          | $$  | $$   \n");
	log("                |  $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$\n");
	log("                 \\____ $$$|__/|________/|__/|_______/|__/\n");
	log("                       \\__/                              \n");
	log("\n");
}

struct QbfSatPass : public Pass {
	QbfSatPass() : Pass("qbfsat", "solve a 2QBF-SAT problem in the circuit") { }
	void help() override
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    qbfsat [options] [selection]\n");
		log("\n");
		log("This command solves an \"exists-forall\" 2QBF-SAT problem defined over the currently\n");
		log("selected module. Existentially-quantified variables are declared by assigning a wire\n");
		log("\"$anyconst\". Universally-quantified variables may be explicitly declared by assigning\n");
		log("a wire \"$allconst\", but module inputs will be treated as universally-quantified\n");
		log("variables by default.\n");
		log("\n");
		log("    -nocleanup\n");
		log("        Do not delete temporary files and directories. Useful for debugging.\n");
		log("\n");
		log("    -dump-final-smt2 <file>\n");
		log("        Pass the --dump-smt2 option to yosys-smtbmc.\n");
		log("\n");
		log("    -assume-outputs\n");
		log("        Add an \"$assume\" cell for the conjunction of all one-bit module output wires.\n");
		log("\n");
		log("    -assume-negative-polarity\n");
		log("        When adding $assume cells for one-bit module output wires, assume they are\n");
		log("        negative polarity signals and should always be low, for example like the\n");
		log("        miters created with the `miter` command.\n");
		log("\n");
		log("    -nooptimize\n");
		log("        Ignore \"\\minimize\" and \"\\maximize\" attributes, do not emit \"(maximize)\" or\n");
		log("        \"(minimize)\" in the SMT-LIBv2, and generally make no attempt to optimize anything.\n");
		log("\n");
		log("    -nobisection\n");
		log("        If a wire is marked with the \"\\minimize\" or \"\\maximize\" attribute, do not\n");
		log("        attempt to optimize that value with the default iterated solving and threshold\n");
		log("        bisection approach. Instead, have yosys-smtbmc emit a \"(minimize)\" or \"(maximize)\"\n");
		log("        command in the SMT-LIBv2 output and hope that the solver supports optimizing\n");
		log("        quantified bitvector problems.\n");
		log("\n");
		log("    -solver <solver>\n");
		log("        Use a particular solver. Choose one of: \"z3\", \"yices\", and \"cvc4\".\n");
		log("\n");
		log("    -timeout <value>\n");
		log("        Set the per-iteration timeout in seconds.\n");
		log("\n");
		log("    -sat\n");
		log("        Generate an error if the solver does not return \"sat\".\n");
		log("\n");
		log("    -unsat\n");
		log("        Generate an error if the solver does not return \"unsat\".\n");
		log("\n");
		log("    -show-smtbmc\n");
		log("        Print the output from yosys-smtbmc.\n");
		log("\n");
		log("    -specialize\n");
		log("        If the problem is satisfiable, replace each \"$anyconst\" cell with its\n");
		log("        corresponding constant value from the model produced by the solver.\n");
		log("\n");
		log("    -specialize-from-file <solution file>\n");
		log("        Do not run the solver, but instead only attempt to replace each \"$anyconst\"\n");
		log("        cell in the current module with a constant value provided by the specified file.\n");
		log("\n");
		log("    -write-solution <solution file>\n");
		log("        If the problem is satisfiable, write the corresponding constant value for each\n");
		log("        \"$anyconst\" cell from the model produced by the solver to the specified file.");
		log("\n");
		log("\n");
	}

	void execute(std::vector<std::string> args, RTLIL::Design *design) override
	{
		log_header(design, "Executing QBFSAT pass (solving QBF-SAT problems in the circuit).\n");
		QbfSolveOptions opt = parse_args(args);
		extra_args(args, opt.argidx, design);

		RTLIL::Module *module = nullptr;
		for (auto mod : design->selected_modules()) {
			if (module)
				log_cmd_error("Only one module must be selected for the QBF-SAT pass! (selected: %s and %s)\n", log_id(module), log_id(mod));
			module = mod;
		}
		if (module == nullptr)
			log_cmd_error("Can't perform QBF-SAT on an empty selection!\n");

		log_push();
		if (!opt.specialize_from_file) {
			//Save the design to restore after modiyfing the current module.
			std::string module_name = module->name.str();

			QbfSolutionType ret = qbf_solve(module, opt);
			module = design->module(module_name);
			if (ret.unknown) {
				if (opt.sat || opt.unsat)
					log_cmd_error("expected problem to be %s\n", opt.sat? "SAT" : "UNSAT");
			}
			else if (ret.sat) {
				print_qed();
				if (opt.write_solution) {
					write_solution(module, ret, opt.write_soln_soln_file);
				}
				if (opt.specialize) {
					specialize(module, ret);
				} else {
					dump_model(module, ret);
				}
				if (opt.unsat)
					log_cmd_error("expected problem to be UNSAT\n");
			}
			else {
				print_proof_failed();
				if (opt.sat)
					log_cmd_error("expected problem to be SAT\n");
			}
		} else
			specialize_from_file(module, opt.specialize_soln_file);
		log_pop();
	}
} QbfSatPass;

PRIVATE_NAMESPACE_END