aboutsummaryrefslogtreecommitdiffstats
path: root/manual/PRESENTATION_ExAdv/macc_simple_xmap.v
blob: 42f5bae958e594f7dcc3541934dd1bd8620708d6 (plain)
1
2
3
4
5
6
module macc_16_16_32(a, b, c, y);
input [15:0] a, b;
input [31:0] c;
output [31:0] y;
assign y = a*b + c;
endmodule
' href='#n204'>204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
/*
    pybind11/pytypes.h: Convenience wrapper classes for basic Python types

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "detail/common.h"
#include "buffer_info.h"
#include <utility>
#include <type_traits>

PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)

/* A few forward declarations */
class handle; class object;
class str; class iterator;
class type;
struct arg; struct arg_v;

PYBIND11_NAMESPACE_BEGIN(detail)
class args_proxy;
inline bool isinstance_generic(handle obj, const std::type_info &tp);

// Accessor forward declarations
template <typename Policy> class accessor;
namespace accessor_policies {
    struct obj_attr;
    struct str_attr;
    struct generic_item;
    struct sequence_item;
    struct list_item;
    struct tuple_item;
} // namespace accessor_policies
using obj_attr_accessor = accessor<accessor_policies::obj_attr>;
using str_attr_accessor = accessor<accessor_policies::str_attr>;
using item_accessor = accessor<accessor_policies::generic_item>;
using sequence_accessor = accessor<accessor_policies::sequence_item>;
using list_accessor = accessor<accessor_policies::list_item>;
using tuple_accessor = accessor<accessor_policies::tuple_item>;

/// Tag and check to identify a class which implements the Python object API
class pyobject_tag { };
template <typename T> using is_pyobject = std::is_base_of<pyobject_tag, remove_reference_t<T>>;

/** \rst
    A mixin class which adds common functions to `handle`, `object` and various accessors.
    The only requirement for `Derived` is to implement ``PyObject *Derived::ptr() const``.
\endrst */
template <typename Derived>
class object_api : public pyobject_tag {
    const Derived &derived() const { return static_cast<const Derived &>(*this); }

public:
    /** \rst
        Return an iterator equivalent to calling ``iter()`` in Python. The object
        must be a collection which supports the iteration protocol.
    \endrst */
    iterator begin() const;
    /// Return a sentinel which ends iteration.
    iterator end() const;

    /** \rst
        Return an internal functor to invoke the object's sequence protocol. Casting
        the returned ``detail::item_accessor`` instance to a `handle` or `object`
        subclass causes a corresponding call to ``__getitem__``. Assigning a `handle`
        or `object` subclass causes a call to ``__setitem__``.
    \endrst */
    item_accessor operator[](handle key) const;
    /// See above (the only difference is that they key is provided as a string literal)
    item_accessor operator[](const char *key) const;

    /** \rst
        Return an internal functor to access the object's attributes. Casting the
        returned ``detail::obj_attr_accessor`` instance to a `handle` or `object`
        subclass causes a corresponding call to ``getattr``. Assigning a `handle`
        or `object` subclass causes a call to ``setattr``.
    \endrst */
    obj_attr_accessor attr(handle key) const;
    /// See above (the only difference is that they key is provided as a string literal)
    str_attr_accessor attr(const char *key) const;

    /** \rst
        Matches * unpacking in Python, e.g. to unpack arguments out of a ``tuple``
        or ``list`` for a function call. Applying another * to the result yields
        ** unpacking, e.g. to unpack a dict as function keyword arguments.
        See :ref:`calling_python_functions`.
    \endrst */
    args_proxy operator*() const;

    /// Check if the given item is contained within this object, i.e. ``item in obj``.
    template <typename T> bool contains(T &&item) const;

    /** \rst
        Assuming the Python object is a function or implements the ``__call__``
        protocol, ``operator()`` invokes the underlying function, passing an
        arbitrary set of parameters. The result is returned as a `object` and
        may need to be converted back into a Python object using `handle::cast()`.

        When some of the arguments cannot be converted to Python objects, the
        function will throw a `cast_error` exception. When the Python function
        call fails, a `error_already_set` exception is thrown.
    \endrst */
    template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
    object operator()(Args &&...args) const;
    template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
    PYBIND11_DEPRECATED("call(...) was deprecated in favor of operator()(...)")
        object call(Args&&... args) const;

    /// Equivalent to ``obj is other`` in Python.
    bool is(object_api const& other) const { return derived().ptr() == other.derived().ptr(); }
    /// Equivalent to ``obj is None`` in Python.
    bool is_none() const { return derived().ptr() == Py_None; }
    /// Equivalent to obj == other in Python
    bool equal(object_api const &other) const      { return rich_compare(other, Py_EQ); }
    bool not_equal(object_api const &other) const  { return rich_compare(other, Py_NE); }
    bool operator<(object_api const &other) const  { return rich_compare(other, Py_LT); }
    bool operator<=(object_api const &other) const { return rich_compare(other, Py_LE); }
    bool operator>(object_api const &other) const  { return rich_compare(other, Py_GT); }
    bool operator>=(object_api const &other) const { return rich_compare(other, Py_GE); }

    object operator-() const;
    object operator~() const;
    object operator+(object_api const &other) const;
    object operator+=(object_api const &other) const;
    object operator-(object_api const &other) const;
    object operator-=(object_api const &other) const;
    object operator*(object_api const &other) const;
    object operator*=(object_api const &other) const;
    object operator/(object_api const &other) const;
    object operator/=(object_api const &other) const;
    object operator|(object_api const &other) const;
    object operator|=(object_api const &other) const;
    object operator&(object_api const &other) const;
    object operator&=(object_api const &other) const;
    object operator^(object_api const &other) const;
    object operator^=(object_api const &other) const;
    object operator<<(object_api const &other) const;
    object operator<<=(object_api const &other) const;
    object operator>>(object_api const &other) const;
    object operator>>=(object_api const &other) const;

    PYBIND11_DEPRECATED("Use py::str(obj) instead")
    pybind11::str str() const;

    /// Get or set the object's docstring, i.e. ``obj.__doc__``.
    str_attr_accessor doc() const;

    /// Return the object's current reference count
    int ref_count() const { return static_cast<int>(Py_REFCNT(derived().ptr())); }

    // TODO PYBIND11_DEPRECATED("Call py::type::handle_of(h) or py::type::of(h) instead of h.get_type()")
    handle get_type() const;

private:
    bool rich_compare(object_api const &other, int value) const;
};

PYBIND11_NAMESPACE_END(detail)

/** \rst
    Holds a reference to a Python object (no reference counting)

    The `handle` class is a thin wrapper around an arbitrary Python object (i.e. a
    ``PyObject *`` in Python's C API). It does not perform any automatic reference
    counting and merely provides a basic C++ interface to various Python API functions.

    .. seealso::
        The `object` class inherits from `handle` and adds automatic reference
        counting features.
\endrst */
class handle : public detail::object_api<handle> {
public:
    /// The default constructor creates a handle with a ``nullptr``-valued pointer
    handle() = default;
    /// Creates a ``handle`` from the given raw Python object pointer
    handle(PyObject *ptr) : m_ptr(ptr) { } // Allow implicit conversion from PyObject*

    /// Return the underlying ``PyObject *`` pointer
    PyObject *ptr() const { return m_ptr; }
    PyObject *&ptr() { return m_ptr; }

    /** \rst
        Manually increase the reference count of the Python object. Usually, it is
        preferable to use the `object` class which derives from `handle` and calls
        this function automatically. Returns a reference to itself.
    \endrst */
    const handle& inc_ref() const & { Py_XINCREF(m_ptr); return *this; }

    /** \rst
        Manually decrease the reference count of the Python object. Usually, it is
        preferable to use the `object` class which derives from `handle` and calls
        this function automatically. Returns a reference to itself.
    \endrst */
    const handle& dec_ref() const & { Py_XDECREF(m_ptr); return *this; }

    /** \rst
        Attempt to cast the Python object into the given C++ type. A `cast_error`
        will be throw upon failure.
    \endrst */
    template <typename T> T cast() const;
    /// Return ``true`` when the `handle` wraps a valid Python object
    explicit operator bool() const { return m_ptr != nullptr; }
    /** \rst
        Deprecated: Check that the underlying pointers are the same.
        Equivalent to ``obj1 is obj2`` in Python.
    \endrst */
    PYBIND11_DEPRECATED("Use obj1.is(obj2) instead")
    bool operator==(const handle &h) const { return m_ptr == h.m_ptr; }
    PYBIND11_DEPRECATED("Use !obj1.is(obj2) instead")
    bool operator!=(const handle &h) const { return m_ptr != h.m_ptr; }
    PYBIND11_DEPRECATED("Use handle::operator bool() instead")
    bool check() const { return m_ptr != nullptr; }
protected:
    PyObject *m_ptr = nullptr;
};

/** \rst
    Holds a reference to a Python object (with reference counting)

    Like `handle`, the `object` class is a thin wrapper around an arbitrary Python
    object (i.e. a ``PyObject *`` in Python's C API). In contrast to `handle`, it
    optionally increases the object's reference count upon construction, and it
    *always* decreases the reference count when the `object` instance goes out of
    scope and is destructed. When using `object` instances consistently, it is much
    easier to get reference counting right at the first attempt.
\endrst */
class object : public handle {
public:
    object() = default;
    PYBIND11_DEPRECATED("Use reinterpret_borrow<object>() or reinterpret_steal<object>()")
    object(handle h, bool is_borrowed) : handle(h) { if (is_borrowed) inc_ref(); }
    /// Copy constructor; always increases the reference count
    object(const object &o) : handle(o) { inc_ref(); }
    /// Move constructor; steals the object from ``other`` and preserves its reference count
    object(object &&other) noexcept { m_ptr = other.m_ptr; other.m_ptr = nullptr; }
    /// Destructor; automatically calls `handle::dec_ref()`
    ~object() { dec_ref(); }

    /** \rst
        Resets the internal pointer to ``nullptr`` without decreasing the
        object's reference count. The function returns a raw handle to the original
        Python object.
    \endrst */
    handle release() {
      PyObject *tmp = m_ptr;
      m_ptr = nullptr;
      return handle(tmp);
    }

    object& operator=(const object &other) {
        other.inc_ref();
        dec_ref();
        m_ptr = other.m_ptr;
        return *this;
    }

    object& operator=(object &&other) noexcept {
        if (this != &other) {
            handle temp(m_ptr);
            m_ptr = other.m_ptr;
            other.m_ptr = nullptr;
            temp.dec_ref();
        }
        return *this;
    }

    // Calling cast() on an object lvalue just copies (via handle::cast)
    template <typename T> T cast() const &;
    // Calling on an object rvalue does a move, if needed and/or possible
    template <typename T> T cast() &&;

protected:
    // Tags for choosing constructors from raw PyObject *
    struct borrowed_t { };
    struct stolen_t { };

    template <typename T> friend T reinterpret_borrow(handle);
    template <typename T> friend T reinterpret_steal(handle);

public:
    // Only accessible from derived classes and the reinterpret_* functions
    object(handle h, borrowed_t) : handle(h) { inc_ref(); }
    object(handle h, stolen_t) : handle(h) { }
};

/** \rst
    Declare that a `handle` or ``PyObject *`` is a certain type and borrow the reference.
    The target type ``T`` must be `object` or one of its derived classes. The function
    doesn't do any conversions or checks. It's up to the user to make sure that the
    target type is correct.

    .. code-block:: cpp

        PyObject *p = PyList_GetItem(obj, index);
        py::object o = reinterpret_borrow<py::object>(p);
        // or
        py::tuple t = reinterpret_borrow<py::tuple>(p); // <-- `p` must be already be a `tuple`
\endrst */
template <typename T> T reinterpret_borrow(handle h) { return {h, object::borrowed_t{}}; }

/** \rst
    Like `reinterpret_borrow`, but steals the reference.

     .. code-block:: cpp

        PyObject *p = PyObject_Str(obj);
        py::str s = reinterpret_steal<py::str>(p); // <-- `p` must be already be a `str`
\endrst */
template <typename T> T reinterpret_steal(handle h) { return {h, object::stolen_t{}}; }

PYBIND11_NAMESPACE_BEGIN(detail)
inline std::string error_string();
PYBIND11_NAMESPACE_END(detail)

/// Fetch and hold an error which was already set in Python.  An instance of this is typically
/// thrown to propagate python-side errors back through C++ which can either be caught manually or
/// else falls back to the function dispatcher (which then raises the captured error back to
/// python).
class error_already_set : public std::runtime_error {
public:
    /// Constructs a new exception from the current Python error indicator, if any.  The current
    /// Python error indicator will be cleared.
    error_already_set() : std::runtime_error(detail::error_string()) {
        PyErr_Fetch(&m_type.ptr(), &m_value.ptr(), &m_trace.ptr());
    }

    error_already_set(const error_already_set &) = default;
    error_already_set(error_already_set &&) = default;

    inline ~error_already_set() override;

    /// Give the currently-held error back to Python, if any.  If there is currently a Python error
    /// already set it is cleared first.  After this call, the current object no longer stores the
    /// error variables (but the `.what()` string is still available).
    void restore() { PyErr_Restore(m_type.release().ptr(), m_value.release().ptr(), m_trace.release().ptr()); }

    /// If it is impossible to raise the currently-held error, such as in destructor, we can write
    /// it out using Python's unraisable hook (sys.unraisablehook). The error context should be
    /// some object whose repr() helps identify the location of the error. Python already knows the
    /// type and value of the error, so there is no need to repeat that. For example, __func__ could
    /// be helpful. After this call, the current object no longer stores the error variables,
    /// and neither does Python.
    void discard_as_unraisable(object err_context) {
        restore();
        PyErr_WriteUnraisable(err_context.ptr());
    }
    void discard_as_unraisable(const char *err_context) {
        discard_as_unraisable(reinterpret_steal<object>(PYBIND11_FROM_STRING(err_context)));
    }

    // Does nothing; provided for backwards compatibility.
    PYBIND11_DEPRECATED("Use of error_already_set.clear() is deprecated")
    void clear() {}

    /// Check if the currently trapped error type matches the given Python exception class (or a
    /// subclass thereof).  May also be passed a tuple to search for any exception class matches in
    /// the given tuple.
    bool matches(handle exc) const { return PyErr_GivenExceptionMatches(m_type.ptr(), exc.ptr()); }

    const object& type() const { return m_type; }
    const object& value() const { return m_value; }
    const object& trace() const { return m_trace; }

private:
    object m_type, m_value, m_trace;
};

/** \defgroup python_builtins _
    Unless stated otherwise, the following C++ functions behave the same
    as their Python counterparts.
 */

/** \ingroup python_builtins
    \rst
    Return true if ``obj`` is an instance of ``T``. Type ``T`` must be a subclass of
    `object` or a class which was exposed to Python as ``py::class_<T>``.
\endrst */
template <typename T, detail::enable_if_t<std::is_base_of<object, T>::value, int> = 0>
bool isinstance(handle obj) { return T::check_(obj); }

template <typename T, detail::enable_if_t<!std::is_base_of<object, T>::value, int> = 0>
bool isinstance(handle obj) { return detail::isinstance_generic(obj, typeid(T)); }

template <> inline bool isinstance<handle>(handle) = delete;
template <> inline bool isinstance<object>(handle obj) { return obj.ptr() != nullptr; }

/// \ingroup python_builtins
/// Return true if ``obj`` is an instance of the ``type``.
inline bool isinstance(handle obj, handle type) {
    const auto result = PyObject_IsInstance(obj.ptr(), type.ptr());
    if (result == -1)
        throw error_already_set();
    return result != 0;
}

/// \addtogroup python_builtins
/// @{
inline bool hasattr(handle obj, handle name) {
    return PyObject_HasAttr(obj.ptr(), name.ptr()) == 1;
}

inline bool hasattr(handle obj, const char *name) {
    return PyObject_HasAttrString(obj.ptr(), name) == 1;
}

inline void delattr(handle obj, handle name) {
    if (PyObject_DelAttr(obj.ptr(), name.ptr()) != 0) { throw error_already_set(); }
}

inline void delattr(handle obj, const char *name) {
    if (PyObject_DelAttrString(obj.ptr(), name) != 0) { throw error_already_set(); }
}

inline object getattr(handle obj, handle name) {
    PyObject *result = PyObject_GetAttr(obj.ptr(), name.ptr());
    if (!result) { throw error_already_set(); }
    return reinterpret_steal<object>(result);
}

inline object getattr(handle obj, const char *name) {
    PyObject *result = PyObject_GetAttrString(obj.ptr(), name);
    if (!result) { throw error_already_set(); }
    return reinterpret_steal<object>(result);
}

inline object getattr(handle obj, handle name, handle default_) {
    if (PyObject *result = PyObject_GetAttr(obj.ptr(), name.ptr())) {
        return reinterpret_steal<object>(result);
    } else {
        PyErr_Clear();
        return reinterpret_borrow<object>(default_);
    }
}

inline object getattr(handle obj, const char *name, handle default_) {
    if (PyObject *result = PyObject_GetAttrString(obj.ptr(), name)) {
        return reinterpret_steal<object>(result);
    } else {
        PyErr_Clear();
        return reinterpret_borrow<object>(default_);
    }
}

inline void setattr(handle obj, handle name, handle value) {
    if (PyObject_SetAttr(obj.ptr(), name.ptr(), value.ptr()) != 0) { throw error_already_set(); }
}

inline void setattr(handle obj, const char *name, handle value) {
    if (PyObject_SetAttrString(obj.ptr(), name, value.ptr()) != 0) { throw error_already_set(); }
}

inline ssize_t hash(handle obj) {
    auto h = PyObject_Hash(obj.ptr());
    if (h == -1) { throw error_already_set(); }
    return h;
}

/// @} python_builtins

PYBIND11_NAMESPACE_BEGIN(detail)
inline handle get_function(handle value) {
    if (value) {
#if PY_MAJOR_VERSION >= 3
        if (PyInstanceMethod_Check(value.ptr()))
            value = PyInstanceMethod_GET_FUNCTION(value.ptr());
        else
#endif
        if (PyMethod_Check(value.ptr()))
            value = PyMethod_GET_FUNCTION(value.ptr());
    }
    return value;
}

// Helper aliases/functions to support implicit casting of values given to python accessors/methods.
// When given a pyobject, this simply returns the pyobject as-is; for other C++ type, the value goes
// through pybind11::cast(obj) to convert it to an `object`.
template <typename T, enable_if_t<is_pyobject<T>::value, int> = 0>
auto object_or_cast(T &&o) -> decltype(std::forward<T>(o)) { return std::forward<T>(o); }
// The following casting version is implemented in cast.h:
template <typename T, enable_if_t<!is_pyobject<T>::value, int> = 0>
object object_or_cast(T &&o);
// Match a PyObject*, which we want to convert directly to handle via its converting constructor
inline handle object_or_cast(PyObject *ptr) { return ptr; }

template <typename Policy>
class accessor : public object_api<accessor<Policy>> {
    using key_type = typename Policy::key_type;

public:
    accessor(handle obj, key_type key) : obj(obj), key(std::move(key)) { }
    accessor(const accessor &) = default;
    accessor(accessor &&) = default;

    // accessor overload required to override default assignment operator (templates are not allowed
    // to replace default compiler-generated assignments).
    void operator=(const accessor &a) && { std::move(*this).operator=(handle(a)); }
    void operator=(const accessor &a) & { operator=(handle(a)); }

    template <typename T> void operator=(T &&value) && {
        Policy::set(obj, key, object_or_cast(std::forward<T>(value)));
    }
    template <typename T> void operator=(T &&value) & {
        get_cache() = reinterpret_borrow<object>(object_or_cast(std::forward<T>(value)));
    }

    template <typename T = Policy>
    PYBIND11_DEPRECATED("Use of obj.attr(...) as bool is deprecated in favor of pybind11::hasattr(obj, ...)")
    explicit operator enable_if_t<std::is_same<T, accessor_policies::str_attr>::value ||
            std::is_same<T, accessor_policies::obj_attr>::value, bool>() const {
        return hasattr(obj, key);
    }
    template <typename T = Policy>
    PYBIND11_DEPRECATED("Use of obj[key] as bool is deprecated in favor of obj.contains(key)")
    explicit operator enable_if_t<std::is_same<T, accessor_policies::generic_item>::value, bool>() const {
        return obj.contains(key);
    }

    operator object() const { return get_cache(); }
    PyObject *ptr() const { return get_cache().ptr(); }
    template <typename T> T cast() const { return get_cache().template cast<T>(); }

private:
    object &get_cache() const {
        if (!cache) { cache = Policy::get(obj, key); }
        return cache;
    }

private:
    handle obj;
    key_type key;
    mutable object cache;
};

PYBIND11_NAMESPACE_BEGIN(accessor_policies)
struct obj_attr {
    using key_type = object;
    static object get(handle obj, handle key) { return getattr(obj, key); }
    static void set(handle obj, handle key, handle val) { setattr(obj, key, val); }
};

struct str_attr {
    using key_type = const char *;
    static object get(handle obj, const char *key) { return getattr(obj, key); }
    static void set(handle obj, const char *key, handle val) { setattr(obj, key, val); }
};

struct generic_item {
    using key_type = object;

    static object get(handle obj, handle key) {
        PyObject *result = PyObject_GetItem(obj.ptr(), key.ptr());
        if (!result) { throw error_already_set(); }
        return reinterpret_steal<object>(result);
    }

    static void set(handle obj, handle key, handle val) {
        if (PyObject_SetItem(obj.ptr(), key.ptr(), val.ptr()) != 0) { throw error_already_set(); }
    }
};

struct sequence_item {
    using key_type = size_t;

    static object get(handle obj, size_t index) {
        PyObject *result = PySequence_GetItem(obj.ptr(), static_cast<ssize_t>(index));
        if (!result) { throw error_already_set(); }
        return reinterpret_steal<object>(result);
    }

    static void set(handle obj, size_t index, handle val) {
        // PySequence_SetItem does not steal a reference to 'val'
        if (PySequence_SetItem(obj.ptr(), static_cast<ssize_t>(index), val.ptr()) != 0) {
            throw error_already_set();
        }
    }
};

struct list_item {
    using key_type = size_t;

    static object get(handle obj, size_t index) {
        PyObject *result = PyList_GetItem(obj.ptr(), static_cast<ssize_t>(index));
        if (!result) { throw error_already_set(); }
        return reinterpret_borrow<object>(result);
    }

    static void set(handle obj, size_t index, handle val) {
        // PyList_SetItem steals a reference to 'val'
        if (PyList_SetItem(obj.ptr(), static_cast<ssize_t>(index), val.inc_ref().ptr()) != 0) {
            throw error_already_set();
        }
    }
};

struct tuple_item {
    using key_type = size_t;

    static object get(handle obj, size_t index) {
        PyObject *result = PyTuple_GetItem(obj.ptr(), static_cast<ssize_t>(index));
        if (!result) { throw error_already_set(); }
        return reinterpret_borrow<object>(result);
    }

    static void set(handle obj, size_t index, handle val) {
        // PyTuple_SetItem steals a reference to 'val'
        if (PyTuple_SetItem(obj.ptr(), static_cast<ssize_t>(index), val.inc_ref().ptr()) != 0) {
            throw error_already_set();
        }
    }
};
PYBIND11_NAMESPACE_END(accessor_policies)

/// STL iterator template used for tuple, list, sequence and dict
template <typename Policy>
class generic_iterator : public Policy {
    using It = generic_iterator;

public:
    using difference_type = ssize_t;
    using iterator_category = typename Policy::iterator_category;
    using value_type = typename Policy::value_type;
    using reference = typename Policy::reference;
    using pointer = typename Policy::pointer;

    generic_iterator() = default;
    generic_iterator(handle seq, ssize_t index) : Policy(seq, index) { }

    reference operator*() const { return Policy::dereference(); }
    reference operator[](difference_type n) const { return *(*this + n); }
    pointer operator->() const { return **this; }

    It &operator++() { Policy::increment(); return *this; }
    It operator++(int) { auto copy = *this; Policy::increment(); return copy; }
    It &operator--() { Policy::decrement(); return *this; }
    It operator--(int) { auto copy = *this; Policy::decrement(); return copy; }
    It &operator+=(difference_type n) { Policy::advance(n); return *this; }
    It &operator-=(difference_type n) { Policy::advance(-n); return *this; }

    friend It operator+(const It &a, difference_type n) { auto copy = a; return copy += n; }
    friend It operator+(difference_type n, const It &b) { return b + n; }
    friend It operator-(const It &a, difference_type n) { auto copy = a; return copy -= n; }
    friend difference_type operator-(const It &a, const It &b) { return a.distance_to(b); }

    friend bool operator==(const It &a, const It &b) { return a.equal(b); }
    friend bool operator!=(const It &a, const It &b) { return !(a == b); }
    friend bool operator< (const It &a, const It &b) { return b - a > 0; }
    friend bool operator> (const It &a, const It &b) { return b < a; }
    friend bool operator>=(const It &a, const It &b) { return !(a < b); }
    friend bool operator<=(const It &a, const It &b) { return !(a > b); }
};

PYBIND11_NAMESPACE_BEGIN(iterator_policies)
/// Quick proxy class needed to implement ``operator->`` for iterators which can't return pointers
template <typename T>
struct arrow_proxy {
    T value;

    arrow_proxy(T &&value) : value(std::move(value)) { }
    T *operator->() const { return &value; }
};

/// Lightweight iterator policy using just a simple pointer: see ``PySequence_Fast_ITEMS``
class sequence_fast_readonly {
protected:
    using iterator_category = std::random_access_iterator_tag;
    using value_type = handle;
    using reference = const handle;
    using pointer = arrow_proxy<const handle>;

    sequence_fast_readonly(handle obj, ssize_t n) : ptr(PySequence_Fast_ITEMS(obj.ptr()) + n) { }

    reference dereference() const { return *ptr; }
    void increment() { ++ptr; }
    void decrement() { --ptr; }
    void advance(ssize_t n) { ptr += n; }
    bool equal(const sequence_fast_readonly &b) const { return ptr == b.ptr; }
    ssize_t distance_to(const sequence_fast_readonly &b) const { return ptr - b.ptr; }

private:
    PyObject **ptr;
};

/// Full read and write access using the sequence protocol: see ``detail::sequence_accessor``
class sequence_slow_readwrite {
protected:
    using iterator_category = std::random_access_iterator_tag;
    using value_type = object;
    using reference = sequence_accessor;
    using pointer = arrow_proxy<const sequence_accessor>;

    sequence_slow_readwrite(handle obj, ssize_t index) : obj(obj), index(index) { }

    reference dereference() const { return {obj, static_cast<size_t>(index)}; }
    void increment() { ++index; }
    void decrement() { --index; }
    void advance(ssize_t n) { index += n; }
    bool equal(const sequence_slow_readwrite &b) const { return index == b.index; }
    ssize_t distance_to(const sequence_slow_readwrite &b) const { return index - b.index; }

private:
    handle obj;
    ssize_t index;
};

/// Python's dictionary protocol permits this to be a forward iterator
class dict_readonly {
protected:
    using iterator_category = std::forward_iterator_tag;
    using value_type = std::pair<handle, handle>;
    using reference = const value_type;
    using pointer = arrow_proxy<const value_type>;

    dict_readonly() = default;
    dict_readonly(handle obj, ssize_t pos) : obj(obj), pos(pos) { increment(); }

    reference dereference() const { return {key, value}; }
    void increment() { if (!PyDict_Next(obj.ptr(), &pos, &key, &value)) { pos = -1; } }
    bool equal(const dict_readonly &b) const { return pos == b.pos; }

private:
    handle obj;
    PyObject *key = nullptr, *value = nullptr;
    ssize_t pos = -1;
};
PYBIND11_NAMESPACE_END(iterator_policies)

#if !defined(PYPY_VERSION)
using tuple_iterator = generic_iterator<iterator_policies::sequence_fast_readonly>;
using list_iterator = generic_iterator<iterator_policies::sequence_fast_readonly>;
#else
using tuple_iterator = generic_iterator<iterator_policies::sequence_slow_readwrite>;
using list_iterator = generic_iterator<iterator_policies::sequence_slow_readwrite>;
#endif

using sequence_iterator = generic_iterator<iterator_policies::sequence_slow_readwrite>;
using dict_iterator = generic_iterator<iterator_policies::dict_readonly>;

inline bool PyIterable_Check(PyObject *obj) {
    PyObject *iter = PyObject_GetIter(obj);
    if (iter) {
        Py_DECREF(iter);
        return true;
    } else {
        PyErr_Clear();
        return false;
    }
}

inline bool PyNone_Check(PyObject *o) { return o == Py_None; }
inline bool PyEllipsis_Check(PyObject *o) { return o == Py_Ellipsis; }

inline bool PyUnicode_Check_Permissive(PyObject *o) { return PyUnicode_Check(o) || PYBIND11_BYTES_CHECK(o); }

inline bool PyStaticMethod_Check(PyObject *o) { return o->ob_type == &PyStaticMethod_Type; }

class kwargs_proxy : public handle {
public:
    explicit kwargs_proxy(handle h) : handle(h) { }
};

class args_proxy : public handle {
public:
    explicit args_proxy(handle h) : handle(h) { }
    kwargs_proxy operator*() const { return kwargs_proxy(*this); }
};

/// Python argument categories (using PEP 448 terms)
template <typename T> using is_keyword = std::is_base_of<arg, T>;
template <typename T> using is_s_unpacking = std::is_same<args_proxy, T>; // * unpacking
template <typename T> using is_ds_unpacking = std::is_same<kwargs_proxy, T>; // ** unpacking
template <typename T> using is_positional = satisfies_none_of<T,
    is_keyword, is_s_unpacking, is_ds_unpacking
>;
template <typename T> using is_keyword_or_ds = satisfies_any_of<T, is_keyword, is_ds_unpacking>;

// Call argument collector forward declarations
template <return_value_policy policy = return_value_policy::automatic_reference>
class simple_collector;
template <return_value_policy policy = return_value_policy::automatic_reference>
class unpacking_collector;

PYBIND11_NAMESPACE_END(detail)

// TODO: After the deprecated constructors are removed, this macro can be simplified by
//       inheriting ctors: `using Parent::Parent`. It's not an option right now because
//       the `using` statement triggers the parent deprecation warning even if the ctor
//       isn't even used.
#define PYBIND11_OBJECT_COMMON(Name, Parent, CheckFun) \
    public: \
        PYBIND11_DEPRECATED("Use reinterpret_borrow<"#Name">() or reinterpret_steal<"#Name">()") \
        Name(handle h, bool is_borrowed) : Parent(is_borrowed ? Parent(h, borrowed_t{}) : Parent(h, stolen_t{})) { } \
        Name(handle h, borrowed_t) : Parent(h, borrowed_t{}) { } \
        Name(handle h, stolen_t) : Parent(h, stolen_t{}) { } \
        PYBIND11_DEPRECATED("Use py::isinstance<py::python_type>(obj) instead") \
        bool check() const { return m_ptr != nullptr && (bool) CheckFun(m_ptr); } \
        static bool check_(handle h) { return h.ptr() != nullptr && CheckFun(h.ptr()); } \
        template <typename Policy_> \
        Name(const ::pybind11::detail::accessor<Policy_> &a) : Name(object(a)) { }

#define PYBIND11_OBJECT_CVT(Name, Parent, CheckFun, ConvertFun) \
    PYBIND11_OBJECT_COMMON(Name, Parent, CheckFun) \
    /* This is deliberately not 'explicit' to allow implicit conversion from object: */ \
    Name(const object &o) \
    : Parent(check_(o) ? o.inc_ref().ptr() : ConvertFun(o.ptr()), stolen_t{}) \
    { if (!m_ptr) throw error_already_set(); } \
    Name(object &&o) \
    : Parent(check_(o) ? o.release().ptr() : ConvertFun(o.ptr()), stolen_t{}) \
    { if (!m_ptr) throw error_already_set(); }

#define PYBIND11_OBJECT_CHECK_FAILED(Name, o) \
    ::pybind11::type_error("Object of type '" + \
                           ::pybind11::detail::get_fully_qualified_tp_name(Py_TYPE(o.ptr())) + \
                           "' is not an instance of '" #Name "'")

#define PYBIND11_OBJECT(Name, Parent, CheckFun) \
    PYBIND11_OBJECT_COMMON(Name, Parent, CheckFun) \
    /* This is deliberately not 'explicit' to allow implicit conversion from object: */ \
    Name(const object &o) : Parent(o) \
    { if (o && !check_(o)) throw PYBIND11_OBJECT_CHECK_FAILED(Name, o); } \
    Name(object &&o) : Parent(std::move(o)) \
    { if (o && !check_(o)) throw PYBIND11_OBJECT_CHECK_FAILED(Name, o); }

#define PYBIND11_OBJECT_DEFAULT(Name, Parent, CheckFun) \
    PYBIND11_OBJECT(Name, Parent, CheckFun) \
    Name() : Parent() { }

/// \addtogroup pytypes
/// @{

/** \rst
    Wraps a Python iterator so that it can also be used as a C++ input iterator

    Caveat: copying an iterator does not (and cannot) clone the internal
    state of the Python iterable. This also applies to the post-increment
    operator. This iterator should only be used to retrieve the current
    value using ``operator*()``.
\endrst */
class iterator : public object {
public:
    using iterator_category = std::input_iterator_tag;
    using difference_type = ssize_t;
    using value_type = handle;
    using reference = const handle;
    using pointer = const handle *;

    PYBIND11_OBJECT_DEFAULT(iterator, object, PyIter_Check)

    iterator& operator++() {
        advance();
        return *this;
    }

    iterator operator++(int) {
        auto rv = *this;
        advance();
        return rv;
    }

    reference operator*() const {
        if (m_ptr && !value.ptr()) {
            auto& self = const_cast<iterator &>(*this);
            self.advance();
        }
        return value;
    }

    pointer operator->() const { operator*(); return &value; }

    /** \rst
         The value which marks the end of the iteration. ``it == iterator::sentinel()``
         is equivalent to catching ``StopIteration`` in Python.

         .. code-block:: cpp

             void foo(py::iterator it) {
                 while (it != py::iterator::sentinel()) {
                    // use `*it`
                    ++it;
                 }
             }
    \endrst */
    static iterator sentinel() { return {}; }

    friend bool operator==(const iterator &a, const iterator &b) { return a->ptr() == b->ptr(); }
    friend bool operator!=(const iterator &a, const iterator &b) { return a->ptr() != b->ptr(); }

private:
    void advance() {
        value = reinterpret_steal<object>(PyIter_Next(m_ptr));
        if (PyErr_Occurred()) { throw error_already_set(); }
    }

private:
    object value = {};
};



class type : public object {
public:
    PYBIND11_OBJECT(type, object, PyType_Check)

    /// Return a type handle from a handle or an object
    static handle handle_of(handle h) { return handle((PyObject*) Py_TYPE(h.ptr())); }

    /// Return a type object from a handle or an object
    static type of(handle h) { return type(type::handle_of(h), borrowed_t{}); }

    // Defined in pybind11/cast.h
    /// Convert C++ type to handle if previously registered. Does not convert
    /// standard types, like int, float. etc. yet.
    /// See https://github.com/pybind/pybind11/issues/2486
    template<typename T>
    static handle handle_of();

    /// Convert C++ type to type if previously registered. Does not convert
    /// standard types, like int, float. etc. yet.
    /// See https://github.com/pybind/pybind11/issues/2486
    template<typename T>
    static type of() {return type(type::handle_of<T>(), borrowed_t{}); }
};

class iterable : public object {
public:
    PYBIND11_OBJECT_DEFAULT(iterable, object, detail::PyIterable_Check)
};

class bytes;

class str : public object {
public:
    PYBIND11_OBJECT_CVT(str, object, detail::PyUnicode_Check_Permissive, raw_str)

    str(const char *c, size_t n)
        : object(PyUnicode_FromStringAndSize(c, (ssize_t) n), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate string object!");
    }

    // 'explicit' is explicitly omitted from the following constructors to allow implicit conversion to py::str from C++ string-like objects
    str(const char *c = "")
        : object(PyUnicode_FromString(c), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate string object!");
    }

    str(const std::string &s) : str(s.data(), s.size()) { }

    explicit str(const bytes &b);

    /** \rst
        Return a string representation of the object. This is analogous to
        the ``str()`` function in Python.
    \endrst */
    explicit str(handle h) : object(raw_str(h.ptr()), stolen_t{}) { if (!m_ptr) throw error_already_set(); }

    operator std::string() const {
        object temp = *this;
        if (PyUnicode_Check(m_ptr)) {
            temp = reinterpret_steal<object>(PyUnicode_AsUTF8String(m_ptr));
            if (!temp)
                pybind11_fail("Unable to extract string contents! (encoding issue)");
        }
        char *buffer;
        ssize_t length;
        if (PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), &buffer, &length))
            pybind11_fail("Unable to extract string contents! (invalid type)");
        return std::string(buffer, (size_t) length);
    }

    template <typename... Args>
    str format(Args &&...args) const {
        return attr("format")(std::forward<Args>(args)...);
    }

private:
    /// Return string representation -- always returns a new reference, even if already a str
    static PyObject *raw_str(PyObject *op) {
        PyObject *str_value = PyObject_Str(op);
#if PY_MAJOR_VERSION < 3
        if (!str_value) throw error_already_set();
        PyObject *unicode = PyUnicode_FromEncodedObject(str_value, "utf-8", nullptr);
        Py_XDECREF(str_value); str_value = unicode;
#endif
        return str_value;
    }
};
/// @} pytypes

inline namespace literals {
/** \rst
    String literal version of `str`
 \endrst */
inline str operator"" _s(const char *s, size_t size) { return {s, size}; }
} // namespace literals

/// \addtogroup pytypes
/// @{
class bytes : public object {
public:
    PYBIND11_OBJECT(bytes, object, PYBIND11_BYTES_CHECK)

    // Allow implicit conversion:
    bytes(const char *c = "")
        : object(PYBIND11_BYTES_FROM_STRING(c), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate bytes object!");
    }

    bytes(const char *c, size_t n)
        : object(PYBIND11_BYTES_FROM_STRING_AND_SIZE(c, (ssize_t) n), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate bytes object!");
    }

    // Allow implicit conversion:
    bytes(const std::string &s) : bytes(s.data(), s.size()) { }

    explicit bytes(const pybind11::str &s);

    operator std::string() const {
        char *buffer;
        ssize_t length;
        if (PYBIND11_BYTES_AS_STRING_AND_SIZE(m_ptr, &buffer, &length))
            pybind11_fail("Unable to extract bytes contents!");
        return std::string(buffer, (size_t) length);
    }
};
// Note: breathe >= 4.17.0 will fail to build docs if the below two constructors
// are included in the doxygen group; close here and reopen after as a workaround
/// @} pytypes

inline bytes::bytes(const pybind11::str &s) {
    object temp = s;
    if (PyUnicode_Check(s.ptr())) {
        temp = reinterpret_steal<object>(PyUnicode_AsUTF8String(s.ptr()));
        if (!temp)
            pybind11_fail("Unable to extract string contents! (encoding issue)");
    }
    char *buffer;
    ssize_t length;
    if (PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), &buffer, &length))
        pybind11_fail("Unable to extract string contents! (invalid type)");
    auto obj = reinterpret_steal<object>(PYBIND11_BYTES_FROM_STRING_AND_SIZE(buffer, length));
    if (!obj)
        pybind11_fail("Could not allocate bytes object!");
    m_ptr = obj.release().ptr();
}

inline str::str(const bytes& b) {
    char *buffer;
    ssize_t length;
    if (PYBIND11_BYTES_AS_STRING_AND_SIZE(b.ptr(), &buffer, &length))
        pybind11_fail("Unable to extract bytes contents!");
    auto obj = reinterpret_steal<object>(PyUnicode_FromStringAndSize(buffer, (ssize_t) length));
    if (!obj)
        pybind11_fail("Could not allocate string object!");
    m_ptr = obj.release().ptr();
}

/// \addtogroup pytypes
/// @{
class none : public object {
public:
    PYBIND11_OBJECT(none, object, detail::PyNone_Check)
    none() : object(Py_None, borrowed_t{}) { }
};

class ellipsis : public object {
public:
    PYBIND11_OBJECT(ellipsis, object, detail::PyEllipsis_Check)
    ellipsis() : object(Py_Ellipsis, borrowed_t{}) { }
};

class bool_ : public object {
public:
    PYBIND11_OBJECT_CVT(bool_, object, PyBool_Check, raw_bool)
    bool_() : object(Py_False, borrowed_t{}) { }
    // Allow implicit conversion from and to `bool`:
    bool_(bool value) : object(value ? Py_True : Py_False, borrowed_t{}) { }
    operator bool() const { return m_ptr && PyLong_AsLong(m_ptr) != 0; }

private:
    /// Return the truth value of an object -- always returns a new reference
    static PyObject *raw_bool(PyObject *op) {
        const auto value = PyObject_IsTrue(op);
        if (value == -1) return nullptr;
        return handle(value ? Py_True : Py_False).inc_ref().ptr();
    }
};

PYBIND11_NAMESPACE_BEGIN(detail)
// Converts a value to the given unsigned type.  If an error occurs, you get back (Unsigned) -1;
// otherwise you get back the unsigned long or unsigned long long value cast to (Unsigned).
// (The distinction is critically important when casting a returned -1 error value to some other
// unsigned type: (A)-1 != (B)-1 when A and B are unsigned types of different sizes).
template <typename Unsigned>
Unsigned as_unsigned(PyObject *o) {
    if (sizeof(Unsigned) <= sizeof(unsigned long)
#if PY_VERSION_HEX < 0x03000000
            || PyInt_Check(o)
#endif
    ) {
        unsigned long v = PyLong_AsUnsignedLong(o);
        return v == (unsigned long) -1 && PyErr_Occurred() ? (Unsigned) -1 : (Unsigned) v;
    }
    else {
        unsigned long long v = PyLong_AsUnsignedLongLong(o);
        return v == (unsigned long long) -1 && PyErr_Occurred() ? (Unsigned) -1 : (Unsigned) v;
    }
}
PYBIND11_NAMESPACE_END(detail)

class int_ : public object {
public:
    PYBIND11_OBJECT_CVT(int_, object, PYBIND11_LONG_CHECK, PyNumber_Long)
    int_() : object(PyLong_FromLong(0), stolen_t{}) { }
    // Allow implicit conversion from C++ integral types:
    template <typename T,
              detail::enable_if_t<std::is_integral<T>::value, int> = 0>
    int_(T value) {
        if (sizeof(T) <= sizeof(long)) {
            if (std::is_signed<T>::value)
                m_ptr = PyLong_FromLong((long) value);
            else
                m_ptr = PyLong_FromUnsignedLong((unsigned long) value);
        } else {
            if (std::is_signed<T>::value)
                m_ptr = PyLong_FromLongLong((long long) value);
            else
                m_ptr = PyLong_FromUnsignedLongLong((unsigned long long) value);
        }
        if (!m_ptr) pybind11_fail("Could not allocate int object!");
    }

    template <typename T,
              detail::enable_if_t<std::is_integral<T>::value, int> = 0>
    operator T() const {
        return std::is_unsigned<T>::value
            ? detail::as_unsigned<T>(m_ptr)
            : sizeof(T) <= sizeof(long)
              ? (T) PyLong_AsLong(m_ptr)
              : (T) PYBIND11_LONG_AS_LONGLONG(m_ptr);
    }
};

class float_ : public object {
public:
    PYBIND11_OBJECT_CVT(float_, object, PyFloat_Check, PyNumber_Float)
    // Allow implicit conversion from float/double:
    float_(float value) : object(PyFloat_FromDouble((double) value), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate float object!");
    }
    float_(double value = .0) : object(PyFloat_FromDouble((double) value), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate float object!");
    }
    operator float() const { return (float) PyFloat_AsDouble(m_ptr); }
    operator double() const { return (double) PyFloat_AsDouble(m_ptr); }
};

class weakref : public object {
public:
    PYBIND11_OBJECT_DEFAULT(weakref, object, PyWeakref_Check)
    explicit weakref(handle obj, handle callback = {})
        : object(PyWeakref_NewRef(obj.ptr(), callback.ptr()), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate weak reference!");
    }
};

class slice : public object {
public:
    PYBIND11_OBJECT_DEFAULT(slice, object, PySlice_Check)
    slice(ssize_t start_, ssize_t stop_, ssize_t step_) {
        int_ start(start_), stop(stop_), step(step_);
        m_ptr = PySlice_New(start.ptr(), stop.ptr(), step.ptr());
        if (!m_ptr) pybind11_fail("Could not allocate slice object!");
    }
    bool compute(size_t length, size_t *start, size_t *stop, size_t *step,
                 size_t *slicelength) const {
        return PySlice_GetIndicesEx((PYBIND11_SLICE_OBJECT *) m_ptr,
                                    (ssize_t) length, (ssize_t *) start,
                                    (ssize_t *) stop, (ssize_t *) step,
                                    (ssize_t *) slicelength) == 0;
    }
    bool compute(ssize_t length, ssize_t *start, ssize_t *stop, ssize_t *step,
      ssize_t *slicelength) const {
      return PySlice_GetIndicesEx((PYBIND11_SLICE_OBJECT *) m_ptr,
          length, start,
          stop, step,
          slicelength) == 0;
    }
};

class capsule : public object {
public:
    PYBIND11_OBJECT_DEFAULT(capsule, object, PyCapsule_CheckExact)
    PYBIND11_DEPRECATED("Use reinterpret_borrow<capsule>() or reinterpret_steal<capsule>()")
    capsule(PyObject *ptr, bool is_borrowed) : object(is_borrowed ? object(ptr, borrowed_t{}) : object(ptr, stolen_t{})) { }

    explicit capsule(const void *value, const char *name = nullptr, void (*destructor)(PyObject *) = nullptr)
        : object(PyCapsule_New(const_cast<void *>(value), name, destructor), stolen_t{}) {
        if (!m_ptr)
            pybind11_fail("Could not allocate capsule object!");
    }

    PYBIND11_DEPRECATED("Please pass a destructor that takes a void pointer as input")
    capsule(const void *value, void (*destruct)(PyObject *))
        : object(PyCapsule_New(const_cast<void*>(value), nullptr, destruct), stolen_t{}) {
        if (!m_ptr)
            pybind11_fail("Could not allocate capsule object!");
    }

    capsule(const void *value, void (*destructor)(void *)) {
        m_ptr = PyCapsule_New(const_cast<void *>(value), nullptr, [](PyObject *o) {
            auto destructor = reinterpret_cast<void (*)(void *)>(PyCapsule_GetContext(o));
            void *ptr = PyCapsule_GetPointer(o, nullptr);
            destructor(ptr);
        });

        if (!m_ptr)
            pybind11_fail("Could not allocate capsule object!");

        if (PyCapsule_SetContext(m_ptr, (void *) destructor) != 0)
            pybind11_fail("Could not set capsule context!");
    }

    capsule(void (*destructor)()) {
        m_ptr = PyCapsule_New(reinterpret_cast<void *>(destructor), nullptr, [](PyObject *o) {
            auto destructor = reinterpret_cast<void (*)()>(PyCapsule_GetPointer(o, nullptr));
            destructor();
        });

        if (!m_ptr)
            pybind11_fail("Could not allocate capsule object!");
    }

    template <typename T> operator T *() const {
        return get_pointer<T>();
    }

    /// Get the pointer the capsule holds.
    template<typename T = void>
    T* get_pointer() const {
        auto name = this->name();
        T *result = static_cast<T *>(PyCapsule_GetPointer(m_ptr, name));
        if (!result) pybind11_fail("Unable to extract capsule contents!");
        return result;
    }

    /// Replaces a capsule's pointer *without* calling the destructor on the existing one.
    void set_pointer(const void *value) {
        if (PyCapsule_SetPointer(m_ptr, const_cast<void *>(value)) != 0)
            pybind11_fail("Could not set capsule pointer");
    }

    const char *name() const { return PyCapsule_GetName(m_ptr); }
};

class tuple : public object {
public:
    PYBIND11_OBJECT_CVT(tuple, object, PyTuple_Check, PySequence_Tuple)
    explicit tuple(size_t size = 0) : object(PyTuple_New((ssize_t) size), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate tuple object!");
    }
    size_t size() const { return (size_t) PyTuple_Size(m_ptr); }
    bool empty() const { return size() == 0; }
    detail::tuple_accessor operator[](size_t index) const { return {*this, index}; }
    detail::item_accessor operator[](handle h) const { return object::operator[](h); }
    detail::tuple_iterator begin() const { return {*this, 0}; }
    detail::tuple_iterator end() const { return {*this, PyTuple_GET_SIZE(m_ptr)}; }
};

class dict : public object {
public:
    PYBIND11_OBJECT_CVT(dict, object, PyDict_Check, raw_dict)
    dict() : object(PyDict_New(), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate dict object!");
    }
    template <typename... Args,
              typename = detail::enable_if_t<detail::all_of<detail::is_keyword_or_ds<Args>...>::value>,
              // MSVC workaround: it can't compile an out-of-line definition, so defer the collector
              typename collector = detail::deferred_t<detail::unpacking_collector<>, Args...>>
    explicit dict(Args &&...args) : dict(collector(std::forward<Args>(args)...).kwargs()) { }

    size_t size() const { return (size_t) PyDict_Size(m_ptr); }
    bool empty() const { return size() == 0; }
    detail::dict_iterator begin() const { return {*this, 0}; }
    detail::dict_iterator end() const { return {}; }
    void clear() const { PyDict_Clear(ptr()); }
    template <typename T> bool contains(T &&key) const {
        return PyDict_Contains(m_ptr, detail::object_or_cast(std::forward<T>(key)).ptr()) == 1;
    }

private:
    /// Call the `dict` Python type -- always returns a new reference
    static PyObject *raw_dict(PyObject *op) {
        if (PyDict_Check(op))
            return handle(op).inc_ref().ptr();
        return PyObject_CallFunctionObjArgs((PyObject *) &PyDict_Type, op, nullptr);
    }
};

class sequence : public object {
public:
    PYBIND11_OBJECT_DEFAULT(sequence, object, PySequence_Check)
    size_t size() const {
        ssize_t result = PySequence_Size(m_ptr);
        if (result == -1)
            throw error_already_set();
        return (size_t) result;
    }
    bool empty() const { return size() == 0; }
    detail::sequence_accessor operator[](size_t index) const { return {*this, index}; }
    detail::item_accessor operator[](handle h) const { return object::operator[](h); }
    detail::sequence_iterator begin() const { return {*this, 0}; }
    detail::sequence_iterator end() const { return {*this, PySequence_Size(m_ptr)}; }
};

class list : public object {
public:
    PYBIND11_OBJECT_CVT(list, object, PyList_Check, PySequence_List)
    explicit list(size_t size = 0) : object(PyList_New((ssize_t) size), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate list object!");
    }
    size_t size() const { return (size_t) PyList_Size(m_ptr); }
    bool empty() const { return size() == 0; }
    detail::list_accessor operator[](size_t index) const { return {*this, index}; }
    detail::item_accessor operator[](handle h) const { return object::operator[](h); }
    detail::list_iterator begin() const { return {*this, 0}; }
    detail::list_iterator end() const { return {*this, PyList_GET_SIZE(m_ptr)}; }
    template <typename T> void append(T &&val) const {
        PyList_Append(m_ptr, detail::object_or_cast(std::forward<T>(val)).ptr());
    }
    template <typename T> void insert(size_t index, T &&val) const {
        PyList_Insert(m_ptr, static_cast<ssize_t>(index),
            detail::object_or_cast(std::forward<T>(val)).ptr());
    }
};

class args : public tuple { PYBIND11_OBJECT_DEFAULT(args, tuple, PyTuple_Check) };
class kwargs : public dict { PYBIND11_OBJECT_DEFAULT(kwargs, dict, PyDict_Check)  };

class set : public object {
public:
    PYBIND11_OBJECT_CVT(set, object, PySet_Check, PySet_New)
    set() : object(PySet_New(nullptr), stolen_t{}) {
        if (!m_ptr) pybind11_fail("Could not allocate set object!");
    }
    size_t size() const { return (size_t) PySet_Size(m_ptr); }
    bool empty() const { return size() == 0; }
    template <typename T> bool add(T &&val) const {
        return PySet_Add(m_ptr, detail::object_or_cast(std::forward<T>(val)).ptr()) == 0;
    }
    void clear() const { PySet_Clear(m_ptr); }
    template <typename T> bool contains(T &&val) const {
        return PySet_Contains(m_ptr, detail::object_or_cast(std::forward<T>(val)).ptr()) == 1;
    }
};

class function : public object {
public:
    PYBIND11_OBJECT_DEFAULT(function, object, PyCallable_Check)
    handle cpp_function() const {
        handle fun = detail::get_function(m_ptr);
        if (fun && PyCFunction_Check(fun.ptr()))
            return fun;
        return handle();
    }
    bool is_cpp_function() const { return (bool) cpp_function(); }
};

class staticmethod : public object {
public:
    PYBIND11_OBJECT_CVT(staticmethod, object, detail::PyStaticMethod_Check, PyStaticMethod_New)
};

class buffer : public object {
public:
    PYBIND11_OBJECT_DEFAULT(buffer, object, PyObject_CheckBuffer)

    buffer_info request(bool writable = false) const {
        int flags = PyBUF_STRIDES | PyBUF_FORMAT;
        if (writable) flags |= PyBUF_WRITABLE;
        auto *view = new Py_buffer();
        if (PyObject_GetBuffer(m_ptr, view, flags) != 0) {
            delete view;
            throw error_already_set();
        }
        return buffer_info(view);
    }
};

class memoryview : public object {
public:
    PYBIND11_OBJECT_CVT(memoryview, object, PyMemoryView_Check, PyMemoryView_FromObject)

    /** \rst
        Creates ``memoryview`` from ``buffer_info``.

        ``buffer_info`` must be created from ``buffer::request()``. Otherwise
        throws an exception.

        For creating a ``memoryview`` from objects that support buffer protocol,
        use ``memoryview(const object& obj)`` instead of this constructor.
     \endrst */
    explicit memoryview(const buffer_info& info) {
        if (!info.view())
            pybind11_fail("Prohibited to create memoryview without Py_buffer");
        // Note: PyMemoryView_FromBuffer never increments obj reference.
        m_ptr = (info.view()->obj) ?
            PyMemoryView_FromObject(info.view()->obj) :
            PyMemoryView_FromBuffer(info.view());
        if (!m_ptr)
            pybind11_fail("Unable to create memoryview from buffer descriptor");
    }

    /** \rst
        Creates ``memoryview`` from static buffer.

        This method is meant for providing a ``memoryview`` for C/C++ buffer not
        managed by Python. The caller is responsible for managing the lifetime
        of ``ptr`` and ``format``, which MUST outlive the memoryview constructed
        here.

        See also: Python C API documentation for `PyMemoryView_FromBuffer`_.

        .. _PyMemoryView_FromBuffer: https://docs.python.org/c-api/memoryview.html#c.PyMemoryView_FromBuffer

        :param ptr: Pointer to the buffer.
        :param itemsize: Byte size of an element.
        :param format: Pointer to the null-terminated format string. For
            homogeneous Buffers, this should be set to
            ``format_descriptor<T>::value``.
        :param shape: Shape of the tensor (1 entry per dimension).
        :param strides: Number of bytes between adjacent entries (for each
            per dimension).
        :param readonly: Flag to indicate if the underlying storage may be
            written to.
     \endrst */
    static memoryview from_buffer(
        void *ptr, ssize_t itemsize, const char *format,
        detail::any_container<ssize_t> shape,
        detail::any_container<ssize_t> strides, bool readonly = false);

    static memoryview from_buffer(
        const void *ptr, ssize_t itemsize, const char *format,
        detail::any_container<ssize_t> shape,
        detail::any_container<ssize_t> strides) {
        return memoryview::from_buffer(
            const_cast<void*>(ptr), itemsize, format, shape, strides, true);
    }

    template<typename T>
    static memoryview from_buffer(
        T *ptr, detail::any_container<ssize_t> shape,
        detail::any_container<ssize_t> strides, bool readonly = false) {
        return memoryview::from_buffer(
            reinterpret_cast<void*>(ptr), sizeof(T),
            format_descriptor<T>::value, shape, strides, readonly);
    }

    template<typename T>
    static memoryview from_buffer(
        const T *ptr, detail::any_container<ssize_t> shape,
        detail::any_container<ssize_t> strides) {
        return memoryview::from_buffer(
            const_cast<T*>(ptr), shape, strides, true);
    }

#if PY_MAJOR_VERSION >= 3
    /** \rst
        Creates ``memoryview`` from static memory.

        This method is meant for providing a ``memoryview`` for C/C++ buffer not
        managed by Python. The caller is responsible for managing the lifetime
        of ``mem``, which MUST outlive the memoryview constructed here.

        This method is not available in Python 2.

        See also: Python C API documentation for `PyMemoryView_FromBuffer`_.

        .. _PyMemoryView_FromMemory: https://docs.python.org/c-api/memoryview.html#c.PyMemoryView_FromMemory
     \endrst */
    static memoryview from_memory(void *mem, ssize_t size, bool readonly = false) {
        PyObject* ptr = PyMemoryView_FromMemory(
            reinterpret_cast<char*>(mem), size,
            (readonly) ? PyBUF_READ : PyBUF_WRITE);
        if (!ptr)
            pybind11_fail("Could not allocate memoryview object!");
        return memoryview(object(ptr, stolen_t{}));
    }

    static memoryview from_memory(const void *mem, ssize_t size) {
        return memoryview::from_memory(const_cast<void*>(mem), size, true);
    }
#endif
};

#ifndef DOXYGEN_SHOULD_SKIP_THIS
inline memoryview memoryview::from_buffer(
    void *ptr, ssize_t itemsize, const char* format,
    detail::any_container<ssize_t> shape,
    detail::any_container<ssize_t> strides, bool readonly) {
    size_t ndim = shape->size();
    if (ndim != strides->size())
        pybind11_fail("memoryview: shape length doesn't match strides length");
    ssize_t size = ndim ? 1 : 0;
    for (size_t i = 0; i < ndim; ++i)
        size *= (*shape)[i];
    Py_buffer view;
    view.buf = ptr;
    view.obj = nullptr;
    view.len = size * itemsize;
    view.readonly = static_cast<int>(readonly);
    view.itemsize = itemsize;
    view.format = const_cast<char*>(format);
    view.ndim = static_cast<int>(ndim);
    view.shape = shape->data();
    view.strides = strides->data();
    view.suboffsets = nullptr;
    view.internal = nullptr;
    PyObject* obj = PyMemoryView_FromBuffer(&view);
    if (!obj)
        throw error_already_set();
    return memoryview(object(obj, stolen_t{}));
}
#endif  // DOXYGEN_SHOULD_SKIP_THIS
/// @} pytypes

/// \addtogroup python_builtins
/// @{

/// Get the length of a Python object.
inline size_t len(handle h) {
    ssize_t result = PyObject_Length(h.ptr());
    if (result < 0)
        throw error_already_set();
    return (size_t) result;
}

/// Get the length hint of a Python object.
/// Returns 0 when this cannot be determined.
inline size_t len_hint(handle h) {
#if PY_VERSION_HEX >= 0x03040000
    ssize_t result = PyObject_LengthHint(h.ptr(), 0);
#else
    ssize_t result = PyObject_Length(h.ptr());
#endif
    if (result < 0) {
        // Sometimes a length can't be determined at all (eg generators)
        // In which case simply return 0
        PyErr_Clear();
        return 0;
    }
    return (size_t) result;
}

inline str repr(handle h) {
    PyObject *str_value = PyObject_Repr(h.ptr());
    if (!str_value) throw error_already_set();
#if PY_MAJOR_VERSION < 3
    PyObject *unicode = PyUnicode_FromEncodedObject(str_value, "utf-8", nullptr);
    Py_XDECREF(str_value); str_value = unicode;
    if (!str_value) throw error_already_set();
#endif
    return reinterpret_steal<str>(str_value);
}

inline iterator iter(handle obj) {
    PyObject *result = PyObject_GetIter(obj.ptr());
    if (!result) { throw error_already_set(); }
    return reinterpret_steal<iterator>(result);
}
/// @} python_builtins

PYBIND11_NAMESPACE_BEGIN(detail)
template <typename D> iterator object_api<D>::begin() const { return iter(derived()); }
template <typename D> iterator object_api<D>::end() const { return iterator::sentinel(); }
template <typename D> item_accessor object_api<D>::operator[](handle key) const {
    return {derived(), reinterpret_borrow<object>(key)};
}
template <typename D> item_accessor object_api<D>::operator[](const char *key) const {
    return {derived(), pybind11::str(key)};
}
template <typename D> obj_attr_accessor object_api<D>::attr(handle key) const {
    return {derived(), reinterpret_borrow<object>(key)};
}
template <typename D> str_attr_accessor object_api<D>::attr(const char *key) const {
    return {derived(), key};
}
template <typename D> args_proxy object_api<D>::operator*() const {
    return args_proxy(derived().ptr());
}
template <typename D> template <typename T> bool object_api<D>::contains(T &&item) const {
    return attr("__contains__")(std::forward<T>(item)).template cast<bool>();
}

template <typename D>
pybind11::str object_api<D>::str() const { return pybind11::str(derived()); }

template <typename D>
str_attr_accessor object_api<D>::doc() const { return attr("__doc__"); }

template <typename D>
handle object_api<D>::get_type() const { return type::handle_of(derived()); }

template <typename D>
bool object_api<D>::rich_compare(object_api const &other, int value) const {
    int rv = PyObject_RichCompareBool(derived().ptr(), other.derived().ptr(), value);
    if (rv == -1)
        throw error_already_set();
    return rv == 1;
}

#define PYBIND11_MATH_OPERATOR_UNARY(op, fn)                                   \
    template <typename D> object object_api<D>::op() const {                   \
        object result = reinterpret_steal<object>(fn(derived().ptr()));        \
        if (!result.ptr())                                                     \
            throw error_already_set();                                         \
        return result;                                                         \
    }

#define PYBIND11_MATH_OPERATOR_BINARY(op, fn)                                  \
    template <typename D>                                                      \
    object object_api<D>::op(object_api const &other) const {                  \
        object result = reinterpret_steal<object>(                             \
            fn(derived().ptr(), other.derived().ptr()));                       \
        if (!result.ptr())                                                     \
            throw error_already_set();                                         \
        return result;                                                         \
    }

PYBIND11_MATH_OPERATOR_UNARY (operator~,   PyNumber_Invert)
PYBIND11_MATH_OPERATOR_UNARY (operator-,   PyNumber_Negative)
PYBIND11_MATH_OPERATOR_BINARY(operator+,   PyNumber_Add)
PYBIND11_MATH_OPERATOR_BINARY(operator+=,  PyNumber_InPlaceAdd)
PYBIND11_MATH_OPERATOR_BINARY(operator-,   PyNumber_Subtract)
PYBIND11_MATH_OPERATOR_BINARY(operator-=,  PyNumber_InPlaceSubtract)
PYBIND11_MATH_OPERATOR_BINARY(operator*,   PyNumber_Multiply)
PYBIND11_MATH_OPERATOR_BINARY(operator*=,  PyNumber_InPlaceMultiply)
PYBIND11_MATH_OPERATOR_BINARY(operator/,   PyNumber_TrueDivide)
PYBIND11_MATH_OPERATOR_BINARY(operator/=,  PyNumber_InPlaceTrueDivide)
PYBIND11_MATH_OPERATOR_BINARY(operator|,   PyNumber_Or)
PYBIND11_MATH_OPERATOR_BINARY(operator|=,  PyNumber_InPlaceOr)
PYBIND11_MATH_OPERATOR_BINARY(operator&,   PyNumber_And)
PYBIND11_MATH_OPERATOR_BINARY(operator&=,  PyNumber_InPlaceAnd)
PYBIND11_MATH_OPERATOR_BINARY(operator^,   PyNumber_Xor)
PYBIND11_MATH_OPERATOR_BINARY(operator^=,  PyNumber_InPlaceXor)
PYBIND11_MATH_OPERATOR_BINARY(operator<<,  PyNumber_Lshift)
PYBIND11_MATH_OPERATOR_BINARY(operator<<=, PyNumber_InPlaceLshift)
PYBIND11_MATH_OPERATOR_BINARY(operator>>,  PyNumber_Rshift)
PYBIND11_MATH_OPERATOR_BINARY(operator>>=, PyNumber_InPlaceRshift)

#undef PYBIND11_MATH_OPERATOR_UNARY
#undef PYBIND11_MATH_OPERATOR_BINARY

PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)