aboutsummaryrefslogtreecommitdiffstats
path: root/manual/CHAPTER_Appnotes.tex
blob: e0d093290e400622decdfc06e4925a7f453d5154 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
\chapter{Application Notes}
\label{chapter:appnotes}

% \begin{fixme}
% This appendix will cover some typical use-cases of Yosys in the form of application notes.
% \end{fixme}
%
% \section{Synthesizing using a Cell Library in Liberty Format}
% \section{Reverse Engineering the MOS6502 from an NMOS Transistor Netlist}
% \section{Reconfigurable Coarse-Grain Synthesis using Intersynth}

This appendix contains copies of the Yosys application notes.

\begin{itemize}
\item Yosys AppNote 010: Converting Verilog to BLIF \dotfill Page \pageref{app:010} \hskip2cm\null
\item Yosys AppNote 011: Interactive Design Investigation \dotfill Page \pageref{app:011} \hskip2cm\null
\item Yosys AppNote 012: Converting Verilog to BTOR \dotfill Page \pageref{app:012} \hskip2cm\null
\end{itemize}

\eject\label{app:010}
\includepdf[pages=-,pagecommand=\thispagestyle{plain}]{APPNOTE_010_Verilog_to_BLIF.pdf}

\eject\label{app:011}
\includepdf[pages=-,pagecommand=\thispagestyle{plain}]{APPNOTE_011_Design_Investigation.pdf}

\eject\label{app:012}
\includepdf[pages=-,pagecommand=\thispagestyle{plain}]{APPNOTE_012_Verilog_to_BTOR.pdf}
272'>272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/******************************************************************************
 * i8259.c
 * 
 * Well, this is required for SMP systems as well, as it build interrupt
 * tables for IO APICS as well as uniprocessor 8259-alikes.
 */

#include <xen/config.h>
#include <xen/init.h>
#include <xen/types.h>
#include <asm/regs.h>
#include <xen/errno.h>
#include <xen/sched.h>
#include <xen/irq.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/desc.h>
#include <asm/bitops.h>
#include <xen/delay.h>
#include <asm/apic.h>
#include <asm/asm_defns.h>
#include <io_ports.h>

/*
 * Common place to define all x86 IRQ vectors
 *
 * This builds up the IRQ handler stubs using some ugly macros in irq.h
 *
 * These macros create the low-level assembly IRQ routines that save
 * register context and call do_IRQ(). do_IRQ() then does all the
 * operations that are needed to keep the AT (or SMP IOAPIC)
 * interrupt-controller happy.
 */

BUILD_COMMON_IRQ()

#define BI(x,y) \
    BUILD_IRQ(x##y)

#define BUILD_16_IRQS(x) \
    BI(x,0) BI(x,1) BI(x,2) BI(x,3) \
    BI(x,4) BI(x,5) BI(x,6) BI(x,7) \
    BI(x,8) BI(x,9) BI(x,a) BI(x,b) \
    BI(x,c) BI(x,d) BI(x,e) BI(x,f)

BUILD_16_IRQS(0x0) BUILD_16_IRQS(0x1) BUILD_16_IRQS(0x2) BUILD_16_IRQS(0x3)
BUILD_16_IRQS(0x4) BUILD_16_IRQS(0x5) BUILD_16_IRQS(0x6) BUILD_16_IRQS(0x7)
BUILD_16_IRQS(0x8) BUILD_16_IRQS(0x9) BUILD_16_IRQS(0xa) BUILD_16_IRQS(0xb)
BUILD_16_IRQS(0xc) BUILD_16_IRQS(0xd) BUILD_16_IRQS(0xe) BUILD_16_IRQS(0xf)

#undef BUILD_16_IRQS
#undef BI


#define IRQ(x,y) \
    IRQ##x##y##_interrupt

#define IRQLIST_16(x) \
    IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \
    IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \
    IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \
    IRQ(x,c), IRQ(x,d), IRQ(x,e), IRQ(x,f)

    static void (*interrupt[])(void) = {
        IRQLIST_16(0x0), IRQLIST_16(0x1), IRQLIST_16(0x2), IRQLIST_16(0x3),
        IRQLIST_16(0x4), IRQLIST_16(0x5), IRQLIST_16(0x6), IRQLIST_16(0x7),
        IRQLIST_16(0x8), IRQLIST_16(0x9), IRQLIST_16(0xa), IRQLIST_16(0xb),
        IRQLIST_16(0xc), IRQLIST_16(0xd), IRQLIST_16(0xe), IRQLIST_16(0xf)
    };

#undef IRQ
#undef IRQLIST_16

/*
 * This is the 'legacy' 8259A Programmable Interrupt Controller,
 * present in the majority of PC/AT boxes.
 * plus some generic x86 specific things if generic specifics makes
 * any sense at all.
 * this file should become arch/i386/kernel/irq.c when the old irq.c
 * moves to arch independent land
 */

static DEFINE_SPINLOCK(i8259A_lock);

static void mask_and_ack_8259A_irq(unsigned int irq);

static unsigned int startup_8259A_irq(unsigned int irq)
{
    enable_8259A_irq(irq);
    return 0; /* never anything pending */
}

static void end_8259A_irq(unsigned int irq)
{
    if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
        enable_8259A_irq(irq);
}

static struct hw_interrupt_type __read_mostly i8259A_irq_type = {
    .typename = "XT-PIC",
    .startup  = startup_8259A_irq,
    .shutdown = disable_8259A_irq,
    .enable   = enable_8259A_irq,
    .disable  = disable_8259A_irq,
    .ack      = mask_and_ack_8259A_irq,
    .end      = end_8259A_irq
};

/*
 * 8259A PIC functions to handle ISA devices:
 */

/*
 * This contains the irq mask for both 8259A irq controllers,
 */
static unsigned int cached_irq_mask = 0xffff;

#define __byte(x,y) (((unsigned char *)&(y))[x])
#define cached_21   (__byte(0,cached_irq_mask))
#define cached_A1   (__byte(1,cached_irq_mask))

/*
 * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
 * boards the timer interrupt is not really connected to any IO-APIC pin,
 * it's fed to the master 8259A's IR0 line only.
 *
 * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
 * this 'mixed mode' IRQ handling costs nothing because it's only used
 * at IRQ setup time.
 */
unsigned long io_apic_irqs;

void disable_8259A_irq(unsigned int irq)
{
    unsigned int mask = 1 << irq;
    unsigned long flags;

    spin_lock_irqsave(&i8259A_lock, flags);
    cached_irq_mask |= mask;
    if (irq & 8)
        outb(cached_A1,0xA1);
    else
        outb(cached_21,0x21);
    spin_unlock_irqrestore(&i8259A_lock, flags);
}

void enable_8259A_irq(unsigned int irq)
{
    unsigned int mask = ~(1 << irq);
    unsigned long flags;

    spin_lock_irqsave(&i8259A_lock, flags);
    cached_irq_mask &= mask;
    if (irq & 8)
        outb(cached_A1,0xA1);
    else
        outb(cached_21,0x21);
    spin_unlock_irqrestore(&i8259A_lock, flags);
}

int i8259A_irq_pending(unsigned int irq)
{
    unsigned int mask = 1<<irq;
    unsigned long flags;
    int ret;

    spin_lock_irqsave(&i8259A_lock, flags);
    if (irq < 8)
        ret = inb(0x20) & mask;
    else
        ret = inb(0xA0) & (mask >> 8);
    spin_unlock_irqrestore(&i8259A_lock, flags);

    return ret;
}

void mask_8259A(void)
{
    unsigned long flags;

    spin_lock_irqsave(&i8259A_lock, flags);
    outb(0xff, 0xA1);
    outb(0xff, 0x21);
    spin_unlock_irqrestore(&i8259A_lock, flags);
}

void unmask_8259A(void)
{
    unsigned long flags;

    spin_lock_irqsave(&i8259A_lock, flags);
    outb(cached_A1, 0xA1);
    outb(cached_21, 0x21);
    spin_unlock_irqrestore(&i8259A_lock, flags);
}

/*
 * This function assumes to be called rarely. Switching between
 * 8259A registers is slow.
 * This has to be protected by the irq controller spinlock
 * before being called.
 */
static inline int i8259A_irq_real(unsigned int irq)
{
    int value;
    int irqmask = 1<<irq;

    if (irq < 8) {
        outb(0x0B,0x20);                /* ISR register */
        value = inb(0x20) & irqmask;
        outb(0x0A,0x20);                /* back to the IRR register */
        return value;
    }
    outb(0x0B,0xA0);                    /* ISR register */
    value = inb(0xA0) & (irqmask >> 8);
    outb(0x0A,0xA0);                    /* back to the IRR register */
    return value;
}

/*
 * Careful! The 8259A is a fragile beast, it pretty
 * much _has_ to be done exactly like this (mask it
 * first, _then_ send the EOI, and the order of EOI
 * to the two 8259s is important!
 */
static void mask_and_ack_8259A_irq(unsigned int irq)
{
    unsigned int irqmask = 1 << irq;
    unsigned long flags;

    spin_lock_irqsave(&i8259A_lock, flags);
    /*
     * Lightweight spurious IRQ detection. We do not want
     * to overdo spurious IRQ handling - it's usually a sign
     * of hardware problems, so we only do the checks we can
     * do without slowing down good hardware unnecesserily.
     *
     * Note that IRQ7 and IRQ15 (the two spurious IRQs
     * usually resulting from the 8259A-1|2 PICs) occur
     * even if the IRQ is masked in the 8259A. Thus we
     * can check spurious 8259A IRQs without doing the
     * quite slow i8259A_irq_real() call for every IRQ.
     * This does not cover 100% of spurious interrupts,
     * but should be enough to warn the user that there
     * is something bad going on ...
     */
    if (cached_irq_mask & irqmask)
        goto spurious_8259A_irq;
    cached_irq_mask |= irqmask;

 handle_real_irq:
    if (irq & 8) {
        inb(0xA1);              /* DUMMY - (do we need this?) */
        outb(cached_A1,0xA1);
        outb(0x60+(irq&7),0xA0);/* 'Specific EOI' to slave */
        outb(0x62,0x20);        /* 'Specific EOI' to master-IRQ2 */
    } else {
        inb(0x21);              /* DUMMY - (do we need this?) */
        outb(cached_21,0x21);
        outb(0x60+irq,0x20);    /* 'Specific EOI' to master */
    }
    spin_unlock_irqrestore(&i8259A_lock, flags);
    return;

 spurious_8259A_irq:
    /*
     * this is the slow path - should happen rarely.
     */
    if (i8259A_irq_real(irq))
        /*
         * oops, the IRQ _is_ in service according to the
         * 8259A - not spurious, go handle it.
         */
        goto handle_real_irq;

    {
        static int spurious_irq_mask;
        /*
         * At this point we can be sure the IRQ is spurious,
         * lets ACK and report it. [once per IRQ]
         */
        if (!(spurious_irq_mask & irqmask)) {
            printk("spurious 8259A interrupt: IRQ%d.\n", irq);
            spurious_irq_mask |= irqmask;
        }
        atomic_inc(&irq_err_count);
        /*
         * Theoretically we do not have to handle this IRQ,
         * but in Linux this does not cause problems and is
         * simpler for us.
         */
        goto handle_real_irq;
    }
}

static char irq_trigger[2];
/**
 * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ
 */
static void restore_ELCR(char *trigger)
{
    outb(trigger[0], 0x4d0);
    outb(trigger[1], 0x4d1);
}

static void save_ELCR(char *trigger)
{
    /* IRQ 0,1,2,8,13 are marked as reserved */
    trigger[0] = inb(0x4d0) & 0xF8;
    trigger[1] = inb(0x4d1) & 0xDE;
}

int i8259A_resume(void)
{
    init_8259A(0);
    restore_ELCR(irq_trigger);
    return 0;
}

int i8259A_suspend(void)
{
    save_ELCR(irq_trigger);
    return 0;
}

void __devinit init_8259A(int auto_eoi)
{
    unsigned long flags;

    spin_lock_irqsave(&i8259A_lock, flags);

    outb(0xff, 0x21);   /* mask all of 8259A-1 */
    outb(0xff, 0xA1);   /* mask all of 8259A-2 */

    /*
     * outb_p - this has to work on a wide range of PC hardware.
     */
    outb_p(0x11, 0x20);     /* ICW1: select 8259A-1 init */
    outb_p(FIRST_LEGACY_VECTOR + 0, 0x21); /* ICW2: 8259A-1 IR0-7 */
    outb_p(0x04, 0x21);     /* 8259A-1 (the master) has a slave on IR2 */
    if (auto_eoi)
        outb_p(0x03, 0x21); /* master does Auto EOI */
    else
        outb_p(0x01, 0x21); /* master expects normal EOI */

    outb_p(0x11, 0xA0);     /* ICW1: select 8259A-2 init */
    outb_p(FIRST_LEGACY_VECTOR + 8, 0xA1); /* ICW2: 8259A-2 IR0-7 */
    outb_p(0x02, 0xA1);     /* 8259A-2 is a slave on master's IR2 */
    outb_p(0x01, 0xA1);     /* (slave's support for AEOI in flat mode
                               is to be investigated) */

    if (auto_eoi)
        /*
         * in AEOI mode we just have to mask the interrupt
         * when acking.
         */
        i8259A_irq_type.ack = disable_8259A_irq;
    else
        i8259A_irq_type.ack = mask_and_ack_8259A_irq;

    udelay(100);            /* wait for 8259A to initialize */

    outb(cached_21, 0x21);  /* restore master IRQ mask */
    outb(cached_A1, 0xA1);  /* restore slave IRQ mask */

    spin_unlock_irqrestore(&i8259A_lock, flags);
}

void __init make_8259A_irq(unsigned int irq)
{
    io_apic_irqs &= ~(1 << irq);
    irq_to_desc(irq)->handler = &i8259A_irq_type;
}

static struct irqaction __read_mostly cascade = { no_action, "cascade", NULL};

void __init init_IRQ(void)
{
    int vector, irq, cpu = smp_processor_id();

    init_bsp_APIC();

    init_8259A(0);

    BUG_ON(init_irq_data() < 0);

    for ( vector = FIRST_DYNAMIC_VECTOR; vector < NR_VECTORS; vector++ )
    {
        if (vector == HYPERCALL_VECTOR || vector == LEGACY_SYSCALL_VECTOR)
            continue;
        set_intr_gate(vector, interrupt[vector]);
    }

    for (irq = 0; platform_legacy_irq(irq); irq++) {
        struct irq_desc *desc = irq_to_desc(irq);
        struct irq_cfg *cfg = desc->chip_data;
        
        desc->handler = &i8259A_irq_type;
        per_cpu(vector_irq, cpu)[FIRST_LEGACY_VECTOR + irq] = irq;
        cfg->domain = cpumask_of_cpu(cpu);
        cfg->vector = FIRST_LEGACY_VECTOR + irq;
    }
    
    per_cpu(vector_irq, cpu)[FIRST_HIPRIORITY_VECTOR] = 0;

    apic_intr_init();

    /* Set the clock to HZ Hz */
#define CLOCK_TICK_RATE 1193182 /* crystal freq (Hz) */
#define LATCH (((CLOCK_TICK_RATE)+(HZ/2))/HZ)
    outb_p(0x34, PIT_MODE);        /* binary, mode 2, LSB/MSB, ch 0 */
    outb_p(LATCH & 0xff, PIT_CH0); /* LSB */
    outb(LATCH >> 8, PIT_CH0);     /* MSB */

    setup_irq(2, &cascade);
}