aboutsummaryrefslogtreecommitdiffstats
path: root/libs/sha1/sha1.cpp
blob: 51bbd85c88da44913f13e8cdc81b0765ad349f45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
    sha1.cpp - source code of

    ============
    SHA-1 in C++
    ============

    100% Public Domain.

    Original C Code
        -- Steve Reid <steve@edmweb.com>
    Small changes to fit into bglibs
        -- Bruce Guenter <bruce@untroubled.org>
    Translation to simpler C++ Code
        -- Volker Grabsch <vog@notjusthosting.com>
    Fixing bugs and improving style
        -- Eugene Hopkinson <slowriot at voxelstorm dot com>
*/

#include "sha1.h"
#include <sstream>
#include <iomanip>
#include <fstream>

/* Help macros */
#define SHA1_ROL(value, bits) (((value) << (bits)) | (((value) & 0xffffffff) >> (32 - (bits))))
#define SHA1_BLK(i) (block[i&15] = SHA1_ROL(block[(i+13)&15] ^ block[(i+8)&15] ^ block[(i+2)&15] ^ block[i&15],1))

/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define SHA1_R0(v,w,x,y,z,i) z += ((w&(x^y))^y)     + block[i]    + 0x5a827999 + SHA1_ROL(v,5); w=SHA1_ROL(w,30);
#define SHA1_R1(v,w,x,y,z,i) z += ((w&(x^y))^y)     + SHA1_BLK(i) + 0x5a827999 + SHA1_ROL(v,5); w=SHA1_ROL(w,30);
#define SHA1_R2(v,w,x,y,z,i) z += (w^x^y)           + SHA1_BLK(i) + 0x6ed9eba1 + SHA1_ROL(v,5); w=SHA1_ROL(w,30);
#define SHA1_R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + SHA1_BLK(i) + 0x8f1bbcdc + SHA1_ROL(v,5); w=SHA1_ROL(w,30);
#define SHA1_R4(v,w,x,y,z,i) z += (w^x^y)           + SHA1_BLK(i) + 0xca62c1d6 + SHA1_ROL(v,5); w=SHA1_ROL(w,30);

SHA1::SHA1()
{
    reset();
}


void SHA1::update(const std::string &s)
{
    std::istringstream is(s);
    update(is);
}


void SHA1::update(std::istream &is)
{
    std::string rest_of_buffer;
    read(is, rest_of_buffer, BLOCK_BYTES - buffer.size());
    buffer += rest_of_buffer;

    while (is)
    {
        uint32_t block[BLOCK_INTS];
        buffer_to_block(buffer, block);
        transform(block);
        read(is, buffer, BLOCK_BYTES);
    }
}


/*
 * Add padding and return the message digest.
 */

std::string SHA1::final()
{
    /* Total number of hashed bits */
    uint64_t total_bits = (transforms*BLOCK_BYTES + buffer.size()) * 8;

    /* Padding */
    buffer += 0x80;
    unsigned int orig_size = buffer.size();
    while (buffer.size() < BLOCK_BYTES)
    {
        buffer += (char)0x00;
    }

    uint32_t block[BLOCK_INTS];
    buffer_to_block(buffer, block);

    if (orig_size > BLOCK_BYTES - 8)
    {
        transform(block);
        for (unsigned int i = 0; i < BLOCK_INTS - 2; i++)
        {
            block[i] = 0;
        }
    }

    /* Append total_bits, split this uint64_t into two uint32_t */
    block[BLOCK_INTS - 1] = total_bits;
    block[BLOCK_INTS - 2] = (total_bits >> 32);
    transform(block);

    /* Hex std::string */
    std::ostringstream result;
    for (unsigned int i = 0; i < DIGEST_INTS; i++)
    {
        result << std::hex << std::setfill('0') << std::setw(8);
        result << (digest[i] & 0xffffffff);
    }

    /* Reset for next run */
    reset();

    return result.str();
}


std::string SHA1::from_file(const std::string &filename)
{
    std::ifstream stream(filename.c_str(), std::ios::binary);
    SHA1 checksum;
    checksum.update(stream);
    return checksum.final();
}


void SHA1::reset()
{
    /* SHA1 initialization constants */
    digest[0] = 0x67452301;
    digest[1] = 0xefcdab89;
    digest[2] = 0x98badcfe;
    digest[3] = 0x10325476;
    digest[4] = 0xc3d2e1f0;

    /* Reset counters */
    transforms = 0;
    buffer = "";
}


/*
 * Hash a single 512-bit block. This is the core of the algorithm.
 */

void SHA1::transform(uint32_t block[BLOCK_BYTES])
{
    /* Copy digest[] to working vars */
    uint32_t a = digest[0];
    uint32_t b = digest[1];
    uint32_t c = digest[2];
    uint32_t d = digest[3];
    uint32_t e = digest[4];


    /* 4 rounds of 20 operations each. Loop unrolled. */
    SHA1_R0(a,b,c,d,e, 0);
    SHA1_R0(e,a,b,c,d, 1);
    SHA1_R0(d,e,a,b,c, 2);
    SHA1_R0(c,d,e,a,b, 3);
    SHA1_R0(b,c,d,e,a, 4);
    SHA1_R0(a,b,c,d,e, 5);
    SHA1_R0(e,a,b,c,d, 6);
    SHA1_R0(d,e,a,b,c, 7);
    SHA1_R0(c,d,e,a,b, 8);
    SHA1_R0(b,c,d,e,a, 9);
    SHA1_R0(a,b,c,d,e,10);
    SHA1_R0(e,a,b,c,d,11);
    SHA1_R0(d,e,a,b,c,12);
    SHA1_R0(c,d,e,a,b,13);
    SHA1_R0(b,c,d,e,a,14);
    SHA1_R0(a,b,c,d,e,15);
    SHA1_R1(e,a,b,c,d,16);
    SHA1_R1(d,e,a,b,c,17);
    SHA1_R1(c,d,e,a,b,18);
    SHA1_R1(b,c,d,e,a,19);
    SHA1_R2(a,b,c,d,e,20);
    SHA1_R2(e,a,b,c,d,21);
    SHA1_R2(d,e,a,b,c,22);
    SHA1_R2(c,d,e,a,b,23);
    SHA1_R2(b,c,d,e,a,24);
    SHA1_R2(a,b,c,d,e,25);
    SHA1_R2(e,a,b,c,d,26);
    SHA1_R2(d,e,a,b,c,27);
    SHA1_R2(c,d,e,a,b,28);
    SHA1_R2(b,c,d,e,a,29);
    SHA1_R2(a,b,c,d,e,30);
    SHA1_R2(e,a,b,c,d,31);
    SHA1_R2(d,e,a,b,c,32);
    SHA1_R2(c,d,e,a,b,33);
    SHA1_R2(b,c,d,e,a,34);
    SHA1_R2(a,b,c,d,e,35);
    SHA1_R2(e,a,b,c,d,36);
    SHA1_R2(d,e,a,b,c,37);
    SHA1_R2(c,d,e,a,b,38);
    SHA1_R2(b,c,d,e,a,39);
    SHA1_R3(a,b,c,d,e,40);
    SHA1_R3(e,a,b,c,d,41);
    SHA1_R3(d,e,a,b,c,42);
    SHA1_R3(c,d,e,a,b,43);
    SHA1_R3(b,c,d,e,a,44);
    SHA1_R3(a,b,c,d,e,45);
    SHA1_R3(e,a,b,c,d,46);
    SHA1_R3(d,e,a,b,c,47);
    SHA1_R3(c,d,e,a,b,48);
    SHA1_R3(b,c,d,e,a,49);
    SHA1_R3(a,b,c,d,e,50);
    SHA1_R3(e,a,b,c,d,51);
    SHA1_R3(d,e,a,b,c,52);
    SHA1_R3(c,d,e,a,b,53);
    SHA1_R3(b,c,d,e,a,54);
    SHA1_R3(a,b,c,d,e,55);
    SHA1_R3(e,a,b,c,d,56);
    SHA1_R3(d,e,a,b,c,57);
    SHA1_R3(c,d,e,a,b,58);
    SHA1_R3(b,c,d,e,a,59);
    SHA1_R4(a,b,c,d,e,60);
    SHA1_R4(e,a,b,c,d,61);
    SHA1_R4(d,e,a,b,c,62);
    SHA1_R4(c,d,e,a,b,63);
    SHA1_R4(b,c,d,e,a,64);
    SHA1_R4(a,b,c,d,e,65);
    SHA1_R4(e,a,b,c,d,66);
    SHA1_R4(d,e,a,b,c,67);
    SHA1_R4(c,d,e,a,b,68);
    SHA1_R4(b,c,d,e,a,69);
    SHA1_R4(a,b,c,d,e,70);
    SHA1_R4(e,a,b,c,d,71);
    SHA1_R4(d,e,a,b,c,72);
    SHA1_R4(c,d,e,a,b,73);
    SHA1_R4(b,c,d,e,a,74);
    SHA1_R4(a,b,c,d,e,75);
    SHA1_R4(e,a,b,c,d,76);
    SHA1_R4(d,e,a,b,c,77);
    SHA1_R4(c,d,e,a,b,78);
    SHA1_R4(b,c,d,e,a,79);

    /* Add the working vars back into digest[] */
    digest[0] += a;
    digest[1] += b;
    digest[2] += c;
    digest[3] += d;
    digest[4] += e;

    /* Count the number of transformations */
    transforms++;
}


void SHA1::buffer_to_block(const std::string &buffer, uint32_t block[BLOCK_INTS])
{
    /* Convert the std::string (byte buffer) to a uint32_t array (MSB) */
    for (unsigned int i = 0; i < BLOCK_INTS; i++)
    {
        block[i] = (buffer[4*i+3] & 0xff)
                   | (buffer[4*i+2] & 0xff)<<8
                   | (buffer[4*i+1] & 0xff)<<16
                   | (buffer[4*i+0] & 0xff)<<24;
    }
}


void SHA1::read(std::istream &is, std::string &s, size_t max)
{
    char* sbuf = new char[max];

    is.read(sbuf, max);
    s.assign(sbuf, is.gcount());

    delete[] sbuf;
}


std::string sha1(const std::string &string)
{
    SHA1 checksum;
    checksum.update(string);
    return checksum.final();
}
>, getsockname, int, fd, struct sockaddr *, usockaddr, int *, usockaddr_len); #endif /* __ARCH_WANT_SYS_SOCKETCALL */ /*============================================================================*/ /** Socket flags. */ enum VsockFlag { VSOCK_REUSE = 1, VSOCK_BIND = 2, VSOCK_CONNECT = 4, VSOCK_BROADCAST = 8, VSOCK_MULTICAST = 16, VSOCK_NONBLOCK = 32, }; /** Convert socket flags to a string. * * @param flags flags * @return static string */ char * socket_flags(int flags){ static char s[7]; int i = 0; s[i++] = (flags & VSOCK_CONNECT ? 'c' : '-'); s[i++] = (flags & VSOCK_BIND ? 'b' : '-'); s[i++] = (flags & VSOCK_REUSE ? 'r' : '-'); s[i++] = (flags & VSOCK_BROADCAST ? 'B' : '-'); s[i++] = (flags & VSOCK_MULTICAST ? 'M' : '-'); s[i++] = (flags & VSOCK_NONBLOCK ? 'N' : '-'); s[i++] = '\0'; return s; } /** Control flag for whether varp should be running. * If this is set 0 then the varp thread will notice and * (eventually) exit. */ atomic_t varp_run = ATOMIC_INIT(0); enum { VARP_STATE_EXITED = 2, VARP_STATE_RUNNING = 1, VARP_STATE_NONE = 0, VARP_STATE_ERROR = -1, }; /** State indicating whether the varp thread is running. */ atomic_t varp_state = ATOMIC_INIT(VARP_STATE_NONE); int varp_thread_err = 0; /** The varp multicast socket. */ int varp_mcast_sock = -1; /** The varp unicast socket. */ int varp_ucast_sock = -1; /** Set socket option to reuse address. * * @param sock socket * @param reuse flag * @return 0 on success, error code otherwise */ int setsock_reuse(int sock, int reuse){ int err = 0; err = setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse)); if(err < 0){ eprintf("> setsockopt SO_REUSEADDR: %d %d\n", err, errno); } return err; } /** Set socket broadcast option. * * @param sock socket * @param bcast flag * @return 0 on success, error code otherwise */ int setsock_broadcast(int sock, int bcast){ int err = 0; err = setsockopt(sock, SOL_SOCKET, SO_BROADCAST, &bcast, sizeof(bcast)); if(err < 0){ eprintf("> setsockopt SO_BROADCAST: %d %d\n", err, errno); } return err; } /** Join a socket to a multicast group. * * @param sock socket * @param saddr multicast address * @return 0 on success, error code otherwise */ int setsock_multicast(int sock, uint32_t saddr){ int err = 0; struct ip_mreqn mreq = {}; int mloop = 0; // See 'man 7 ip' for these options. mreq.imr_multiaddr.s_addr = saddr; // IP multicast address. mreq.imr_address.s_addr = INADDR_ANY; // Interface IP address. mreq.imr_ifindex = 0; // Interface index (0 means any). err = setsockopt(sock, SOL_IP, IP_MULTICAST_LOOP, &mloop, sizeof(mloop)); if(err < 0){ eprintf("> setsockopt IP_MULTICAST_LOOP: %d %d\n", err, errno); goto exit; } err = setsockopt(sock, SOL_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq)); if(err < 0){ eprintf("> setsockopt IP_ADD_MEMBERSHIP: %d %d\n", err, errno); goto exit; } exit: return err; } /** Set a socket's multicast ttl (default is 1). * @param sock socket * @param ttl ttl * @return 0 on success, error code otherwise */ int setsock_multicast_ttl(int sock, uint8_t ttl){ int err = 0; err = setsockopt(sock, SOL_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl)); return err; } /** Create a socket. * The flags can include values from enum VsockFlag. * * @param socktype socket type * @param saddr address * @param port port * @param flags flags * @param val return value for the socket connection * @return 0 on success, error code otherwise */ int create_socket(int socktype, uint32_t saddr, uint32_t port, int flags, int *val){ int err = 0; int sock; struct sockaddr_in addr_in; struct sockaddr *addr = (struct sockaddr *)&addr_in; int addr_n = sizeof(addr_in); int sockproto = 0; //dprintf(">\n"); addr_in.sin_family = AF_INET; addr_in.sin_addr.s_addr = saddr; addr_in.sin_port = port; dprintf("> flags=%s addr=%u.%u.%u.%u port=%d\n", socket_flags(flags), NIPQUAD(saddr), ntohs(port)); switch(socktype){ case SOCK_DGRAM: sockproto = IPPROTO_UDP; break; case SOCK_STREAM: sockproto = IPPROTO_TCP; break; } sock = socket(AF_INET, socktype, sockproto); if(sock < 0) goto exit; if(flags & VSOCK_REUSE){ err = setsock_reuse(sock, 1); if(err < 0) goto exit; } if(flags & VSOCK_BROADCAST){ err = setsock_broadcast(sock, 1); if(err < 0) goto exit; } if(flags & VSOCK_MULTICAST){ err = setsock_multicast(sock, saddr); if(err < 0) goto exit; } if(flags & VSOCK_CONNECT){ err = connect(sock, addr, addr_n); if(err < 0) goto exit; } if(flags & VSOCK_BIND){ err = bind(sock, addr, addr_n); if(err < 0) goto exit; } if(flags & VSOCK_NONBLOCK){ err = fcntl(sock, F_SETFL, O_NONBLOCK); if(err < 0) goto exit; } exit: *val = (err ? -1 : sock); if(err) eprintf("> err=%d errno=%d\n", err, errno); return err; } /** Open the varp multicast socket. * * @param mcaddr multicast address * @param port port * @param val return parameter for the socket * @return 0 on success, error code otherwise */ int varp_mcast_open(uint32_t mcaddr, uint16_t port, int *val){ int err = 0; int flags = VSOCK_REUSE; int sock = 0; dprintf(">\n"); flags |= VSOCK_MULTICAST; flags |= VSOCK_BROADCAST; err = create_socket(SOCK_DGRAM, mcaddr, port, flags, &sock); if(err < 0) goto exit; if(MULTICAST(mcaddr)){ err = setsock_multicast_ttl(sock, 1); if(err < 0) goto exit; } exit: if(err){ shutdown(sock, 2); } *val = (err ? -1 : sock); dprintf("< err=%d val=%d\n", err, *val); return err; } /** Open the varp unicast socket. * * @param addr address * @param port port * @param val return parameter for the socket * @return 0 on success, error code otherwise */ int varp_ucast_open(uint32_t addr, u16 port, int *val){ int err = 0; int flags = (VSOCK_BIND | VSOCK_REUSE); dprintf(">\n"); err = create_socket(SOCK_DGRAM, addr, port, flags, val); dprintf("< err=%d val=%d\n", err, *val); return err; } /** * Return code > 0 means the handler owns the packet. * Return code <= 0 means we still own it, with < 0 meaning * an error. */ static int handle_varp_skb(struct sk_buff *skb){ int err = 0; switch(skb->pkt_type){ case PACKET_BROADCAST: case PACKET_MULTICAST: vnet_forward_send(skb); /* Fall through. */ case PACKET_HOST: err = varp_handle_message(skb); break; case PACKET_OTHERHOST: dprintf("> PACKET_OTHERHOST\n"); break; case PACKET_OUTGOING: dprintf("> PACKET_OUTGOING\n"); break; case PACKET_FASTROUTE: dprintf("> PACKET_FASTROUTE\n"); break; case PACKET_LOOPBACK: // Outbound mcast/bcast are echoed with this type. Drop. dprintf("> LOOP src=" IPFMT " dst=" IPFMT " dev=%s\n", NIPQUAD(skb->nh.iph->saddr), NIPQUAD(skb->nh.iph->daddr), (skb->dev ? skb->dev->name : "??")); default: // Drop. break; } if(err <= 0){ kfree_skb(skb); } return (err < 0 ? err : 0); } /** Handle some skbs on a varp socket (if any). * * @param fd socket file descriptor * @param n maximum number of skbs to handle * @return number of skbs handled */ static int handle_varp_sock(int fd, int n){ int ret = 0; int err = 0; struct sk_buff *skb; struct socket *sock = NULL; sock = sockfd_lookup(fd, &err); if (!sock){ wprintf("> no sock for fd=%d\n", fd); goto exit; } for( ; ret < n; ret++){ if(!sock->sk) break; skb = skb_dequeue(&sock->sk->sk_receive_queue); if(!skb) break; // Call the skb destructor so it isn't charged to the socket anymore. // An skb from a socket receive queue is charged to the socket // by skb_set_owner_r() until its destructor is called. // If the destructor is not called the socket will run out of // receive queue space and be unable to accept incoming skbs. // The destructor used is sock_rfree(), see 'include/net/sock.h'. // Other destructors: sock_wfree, sk_stream_rfree. skb_orphan(skb); handle_varp_skb(skb); } sockfd_put(sock); exit: dprintf("< ret=%d\n", ret); return ret; } /** Add a wait queue to a socket. * * @param fd socket file descriptor * @param waitq queue * @return 0 on success, error code otherwise */ int sock_add_wait_queue(int fd, wait_queue_t *waitq){ int err = -EINVAL; struct socket *sock = NULL; if(fd < 0) goto exit; sock = sockfd_lookup(fd, &err); if (!sock) goto exit; add_wait_queue(sock->sk->sk_sleep, waitq); sockfd_put(sock); err = 0; exit: return err; } /** Remove a wait queue from a socket. * * @param fd socket file descriptor * @param waitq queue * @return 0 on success, error code otherwise */ int sock_remove_wait_queue(int fd, wait_queue_t *waitq){ int err = -EINVAL; struct socket *sock = NULL; if(fd < 0) goto exit; sock = sockfd_lookup(fd, &err); if (!sock) goto exit; remove_wait_queue(sock->sk->sk_sleep, waitq); sockfd_put(sock); err = 0; exit: return err; } #if 0 // Default data ready function on a socket. static void sock_def_readable(struct sock *sk, int len) { read_lock(&sk->sk_callback_lock); if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) wake_up_interruptible(sk->sk_sleep); sk_wake_async(sk,1,POLL_IN); read_unlock(&sk->sk_callback_lock); } #endif static void sock_data_ready(struct sock *sk, int len){ struct sk_buff *skb; //read_lock(&sk->sk_callback_lock); skb = skb_dequeue(&sk->sk_receive_queue); if(skb){ skb_orphan(skb); } //read_unlock(&sk->sk_callback_lock); if(skb){ handle_varp_skb(skb); } } /** Set the data ready callback on a socket. */ int sock_set_callback(int fd){ int err = -EINVAL; struct socket *sock = NULL; if(fd < 0) goto exit; sock = sockfd_lookup(fd, &err); if (!sock) goto exit; sock->sk->sk_data_ready = sock_data_ready; sockfd_put(sock); err = 0; exit: return err; } /** Open the sockets. */ int varp_sockets_open(u32 mcaddr, u16 port){ int err = 0; mm_segment_t oldfs; dprintf("> mcaddr=%u.%u.%u.%u port=%u\n", NIPQUAD(mcaddr), ntohs(port)); oldfs = change_fs(KERNEL_DS); err = varp_mcast_open(mcaddr, port, &varp_mcast_sock); if(err < 0 ) goto exit; err = varp_ucast_open(INADDR_ANY, port, &varp_ucast_sock); if(err < 0 ) goto exit; sock_set_callback(varp_ucast_sock); sock_set_callback(varp_mcast_sock); exit: set_fs(oldfs); dprintf("< err=%d\n", err); return err; } /** Close the sockets. */ void varp_sockets_close(void){ mm_segment_t oldfs; oldfs = change_fs(KERNEL_DS); if(varp_mcast_sock >= 0){ shutdown(varp_mcast_sock, 2); varp_mcast_sock = -1; } if(varp_ucast_sock >= 0){ shutdown(varp_ucast_sock, 2); varp_ucast_sock = -1; } set_fs(oldfs); } /** Loop handling the varp sockets. * We use kernel API for this (waitqueue, schedule_timeout) instead * of select because the select syscall was returning EFAULT. Oh well. * * @param arg arguments * @return exit code */ int varp_main(void *arg){ int err = 0; long timeout = 1 * HZ; int count = 0; DECLARE_WAITQUEUE(mcast_wait, current); DECLARE_WAITQUEUE(ucast_wait, current); dprintf("> start\n"); snprintf(current->comm, sizeof(current->comm), "varp_main"); err = sock_add_wait_queue(varp_mcast_sock, &mcast_wait); if(err) goto exit_mcast_sock; err = sock_add_wait_queue(varp_ucast_sock, &ucast_wait); if(err) goto exit_ucast_sock; atomic_set(&varp_state, VARP_STATE_RUNNING); for( ; atomic_read(&varp_run); ){ count = 0; count += handle_varp_sock(varp_mcast_sock, 1); count += handle_varp_sock(varp_ucast_sock, 16); if(!count){ if(!atomic_read(&varp_run)) break; // No skbs were handled, go to sleep. set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(timeout); __set_current_state(TASK_RUNNING); } } exit_ucast_sock: sock_remove_wait_queue(varp_ucast_sock, &ucast_wait); exit_mcast_sock: sock_remove_wait_queue(varp_mcast_sock, &mcast_wait); varp_sockets_close(); if(err){ eprintf("%s< err=%d\n", __FUNCTION__, err); } varp_thread_err = err; atomic_set(&varp_state, VARP_STATE_EXITED); //MOD_DEC_USE_COUNT; return err; } /** Close the varp sockets and stop the thread handling them. */ void varp_close(void){ int tries = 10; dprintf(">\n"); // Tell the varp thread to stop and wait a while for it. atomic_set(&varp_run, 0); while(atomic_read(&varp_state) == VARP_STATE_RUNNING && tries-- > 0){ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ / 2); __set_current_state(TASK_RUNNING); } //MOD_DEC_USE_COUNT; dprintf("<\n"); } /** Open the varp sockets and start the thread handling them. * * @param mcaddr multicast address * @param port port * @return 0 on success, error code otherwise */ int varp_open(u32 mcaddr, u16 port){ int err = 0; //MOD_INC_USE_COUNT; dprintf(">\n"); err = varp_sockets_open(mcaddr, port); if(err) goto exit; atomic_set(&varp_run, 1); atomic_set(&varp_state, VARP_STATE_NONE); kernel_thread(varp_main, NULL, (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)); #if 0 while(atomic_read(&varp_state) == VARP_STATE_NONE){ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1 * HZ); __set_current_state(TASK_RUNNING); } err = varp_thread_err; #endif exit: if(err){ wprintf("> err=%d\n", err); } return err; }