aboutsummaryrefslogtreecommitdiffstats
path: root/libs/minisat/00_PATCH_no_fpu_control.patch
blob: 6c754b1ed6af83205998dc619895a77e7a2dc6b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
--- System.cc
+++ System.cc
@@ -97,17 +97,6 @@ double Minisat::memUsedPeak(bool) { return 0; }
 #endif
 
 
-void Minisat::setX86FPUPrecision()
-{
-#if defined(__linux__) && defined(_FPU_EXTENDED) && defined(_FPU_DOUBLE) && defined(_FPU_GETCW)
-    // Only correct FPU precision on Linux architectures that needs and supports it:
-    fpu_control_t oldcw, newcw;
-    _FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
-    printf("WARNING: for repeatability, setting FPU to use double precision\n");
-#endif
-}
-
-
 #if !defined(_MSC_VER) && !defined(__MINGW32__)
 void Minisat::limitMemory(uint64_t max_mem_mb)
 {
--- System.h
+++ System.h
@@ -21,10 +21,6 @@ OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWA
 #ifndef Minisat_System_h
 #define Minisat_System_h
 
-#if defined(__linux__)
-#include <fpu_control.h>
-#endif
-
 #include "IntTypes.h"
 
 //-------------------------------------------------------------------------------------------------
@@ -36,9 +32,6 @@ static inline double cpuTime(void); // CPU-time in seconds.
 extern double memUsed();            // Memory in mega bytes (returns 0 for unsupported architectures).
 extern double memUsedPeak(bool strictlyPeak = false); // Peak-memory in mega bytes (returns 0 for unsupported architectures).
 
-extern void   setX86FPUPrecision(); // Make sure double's are represented with the same precision
-                                    // in memory and registers.
-
 extern void   limitMemory(uint64_t max_mem_mb); // Set a limit on total memory usage. The exact
                                                 // semantics varies depending on architecture.
 
a id='n290' href='#n290'>290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/sigtools.h"
#include "kernel/rtlil.h"
#include "kernel/log.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct dff_map_info_t {
	RTLIL::SigSpec sig_d, sig_clk, sig_arst;
	bool clk_polarity, arst_polarity;
	RTLIL::Const arst_value;
	std::vector<RTLIL::IdString> cells;
};

struct dff_map_bit_info_t {
	RTLIL::SigBit bit_d, bit_clk, bit_arst;
	bool clk_polarity, arst_polarity;
	RTLIL::State arst_value;
	RTLIL::Cell *cell;
};

bool consider_wire(RTLIL::Wire *wire, std::map<RTLIL::IdString, dff_map_info_t> &dff_dq_map)
{
	if (wire->name[0] == '$' || dff_dq_map.count(wire->name))
		return false;
	if (wire->port_input)
		return false;
	return true;
}

bool consider_cell(RTLIL::Design *design, std::set<RTLIL::IdString> &dff_cells, RTLIL::Cell *cell)
{
	if (cell->name[0] == '$' || dff_cells.count(cell->name))
		return false;
	if (cell->type[0] == '\\' && !design->modules_.count(cell->type))
		return false;
	return true;
}

bool compare_wires(RTLIL::Wire *wire1, RTLIL::Wire *wire2)
{
	log_assert(wire1->name == wire2->name);
	if (wire1->width != wire2->width)
		return false;
	return true;
}

bool compare_cells(RTLIL::Cell *cell1, RTLIL::Cell *cell2)
{
	log_assert(cell1->name == cell2->name);
	if (cell1->type != cell2->type)
		return false;
	if (cell1->parameters != cell2->parameters)
		return false;
	return true;
}

void find_dff_wires(std::set<RTLIL::IdString> &dff_wires, RTLIL::Module *module)
{
	CellTypes ct;
	ct.setup_internals_mem();
	ct.setup_stdcells_mem();

	SigMap sigmap(module);
	SigPool dffsignals;

	for (auto &it : module->cells_) {
		if (ct.cell_known(it.second->type) && it.second->hasPort("\\Q"))
			dffsignals.add(sigmap(it.second->getPort("\\Q")));
	}

	for (auto &it : module->wires_) {
		if (dffsignals.check_any(it.second))
			dff_wires.insert(it.first);
	}
}

void create_dff_dq_map(std::map<RTLIL::IdString, dff_map_info_t> &map, RTLIL::Design *design, RTLIL::Module *module)
{
	std::map<RTLIL::SigBit, dff_map_bit_info_t> bit_info;
	SigMap sigmap(module);

	for (auto &it : module->cells_)
	{
		if (!design->selected(module, it.second))
			continue;

		dff_map_bit_info_t info;
		info.bit_d = RTLIL::State::Sm;
		info.bit_clk = RTLIL::State::Sm;
		info.bit_arst = RTLIL::State::Sm;
		info.clk_polarity = false;
		info.arst_polarity = false;
		info.arst_value = RTLIL::State::Sm;
		info.cell = it.second;

		if (info.cell->type == "$dff") {
			info.bit_clk = sigmap(info.cell->getPort("\\CLK")).as_bit();
			info.clk_polarity = info.cell->parameters.at("\\CLK_POLARITY").as_bool();
			std::vector<RTLIL::SigBit> sig_d = sigmap(info.cell->getPort("\\D")).to_sigbit_vector();
			std::vector<RTLIL::SigBit> sig_q = sigmap(info.cell->getPort("\\Q")).to_sigbit_vector();
			for (size_t i = 0; i < sig_d.size(); i++) {
				info.bit_d = sig_d.at(i);
				bit_info[sig_q.at(i)] = info;
			}
			continue;
		}

		if (info.cell->type == "$adff") {
			info.bit_clk = sigmap(info.cell->getPort("\\CLK")).as_bit();
			info.bit_arst = sigmap(info.cell->getPort("\\ARST")).as_bit();
			info.clk_polarity = info.cell->parameters.at("\\CLK_POLARITY").as_bool();
			info.arst_polarity = info.cell->parameters.at("\\ARST_POLARITY").as_bool();
			std::vector<RTLIL::SigBit> sig_d = sigmap(info.cell->getPort("\\D")).to_sigbit_vector();
			std::vector<RTLIL::SigBit> sig_q = sigmap(info.cell->getPort("\\Q")).to_sigbit_vector();
			std::vector<RTLIL::State> arst_value = info.cell->parameters.at("\\ARST_VALUE").bits;
			for (size_t i = 0; i < sig_d.size(); i++) {
				info.bit_d = sig_d.at(i);
				info.arst_value = arst_value.at(i);
				bit_info[sig_q.at(i)] = info;
			}
			continue;
		}

		if (info.cell->type == "$_DFF_N_" || info.cell->type == "$_DFF_P_") {
			info.bit_clk = sigmap(info.cell->getPort("\\C")).as_bit();
			info.clk_polarity = info.cell->type == "$_DFF_P_";
			info.bit_d = sigmap(info.cell->getPort("\\D")).as_bit();
			bit_info[sigmap(info.cell->getPort("\\Q")).as_bit()] = info;
			continue;
		}

		if (info.cell->type.size() == 10 && info.cell->type.substr(0, 6) == "$_DFF_") {
			info.bit_clk = sigmap(info.cell->getPort("\\C")).as_bit();
			info.bit_arst = sigmap(info.cell->getPort("\\R")).as_bit();
			info.clk_polarity = info.cell->type[6] == 'P';
			info.arst_polarity = info.cell->type[7] == 'P';
			info.arst_value = info.cell->type[0] == '1' ? RTLIL::State::S1 : RTLIL::State::S0;
			info.bit_d = sigmap(info.cell->getPort("\\D")).as_bit();
			bit_info[sigmap(info.cell->getPort("\\Q")).as_bit()] = info;
			continue;
		}
	}

	std::map<RTLIL::IdString, dff_map_info_t> empty_dq_map;
	for (auto &it : module->wires_)
	{
		if (!consider_wire(it.second, empty_dq_map))
			continue;

		std::vector<RTLIL::SigBit> bits_q = sigmap(it.second).to_sigbit_vector();
		std::vector<RTLIL::SigBit> bits_d;
		std::vector<RTLIL::State> arst_value;
		std::set<RTLIL::Cell*> cells;

		if (bits_q.empty() || !bit_info.count(bits_q.front()))
			continue;

		dff_map_bit_info_t ref_info = bit_info.at(bits_q.front());
		for (auto &bit : bits_q) {
			if (!bit_info.count(bit))
				break;
			dff_map_bit_info_t info = bit_info.at(bit);
			if (info.bit_clk != ref_info.bit_clk)
				break;
			if (info.bit_arst != ref_info.bit_arst)
				break;
			if (info.clk_polarity != ref_info.clk_polarity)
				break;
			if (info.arst_polarity != ref_info.arst_polarity)
				break;
			bits_d.push_back(info.bit_d);
			arst_value.push_back(info.arst_value);
			cells.insert(info.cell);
		}

		if (bits_d.size() != bits_q.size())
			continue;

		dff_map_info_t info;
		info.sig_d = bits_d;
		info.sig_clk = ref_info.bit_clk;
		info.sig_arst = ref_info.bit_arst;
		info.clk_polarity = ref_info.clk_polarity;
		info.arst_polarity = ref_info.arst_polarity;
		info.arst_value = arst_value;
		for (auto it : cells)
			info.cells.push_back(it->name);
		map[it.first] = info;
	}
}

RTLIL::Wire *add_new_wire(RTLIL::Module *module, RTLIL::IdString name, int width = 1)
{
	if (module->count_id(name))
		log_error("Attempting to create wire %s, but a wire of this name exists already! Hint: Try another value for -sep.\n", log_id(name));
	return module->addWire(name, width);
}

struct ExposePass : public Pass {
	ExposePass() : Pass("expose", "convert internal signals to module ports") { }
	void help() YS_OVERRIDE
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    expose [options] [selection]\n");
		log("\n");
		log("This command exposes all selected internal signals of a module as additional\n");
		log("outputs.\n");
		log("\n");
		log("    -dff\n");
		log("        only consider wires that are directly driven by register cell.\n");
		log("\n");
		log("    -cut\n");
		log("        when exposing a wire, create an input/output pair and cut the internal\n");
		log("        signal path at that wire.\n");
		log("\n");
		log("    -input\n");
		log("        when exposing a wire, create an input port and disconnect the internal\n");
		log("        driver.\n");
		log("\n");
		log("    -shared\n");
		log("        only expose those signals that are shared among the selected modules.\n");
		log("        this is useful for preparing modules for equivalence checking.\n");
		log("\n");
		log("    -evert\n");
		log("        also turn connections to instances of other modules to additional\n");
		log("        inputs and outputs and remove the module instances.\n");
		log("\n");
		log("    -evert-dff\n");
		log("        turn flip-flops to sets of inputs and outputs.\n");
		log("\n");
		log("    -sep <separator>\n");
		log("        when creating new wire/port names, the original object name is suffixed\n");
		log("        with this separator (default: '.') and the port name or a type\n");
		log("        designator for the exposed signal.\n");
		log("\n");
	}
	void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
	{
		bool flag_shared = false;
		bool flag_evert = false;
		bool flag_dff = false;
		bool flag_cut = false;
		bool flag_input = false;
		bool flag_evert_dff = false;
		std::string sep = ".";

		log_header(design, "Executing EXPOSE pass (exposing internal signals as outputs).\n");

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++)
		{
			if (args[argidx] == "-shared") {
				flag_shared = true;
				continue;
			}
			if (args[argidx] == "-evert") {
				flag_evert = true;
				continue;
			}
			if (args[argidx] == "-dff") {
				flag_dff = true;
				continue;
			}
			if (args[argidx] == "-cut" && !flag_input) {
				flag_cut = true;
				continue;
			}
			if (args[argidx] == "-input" && !flag_cut) {
				flag_input = true;
				continue;
			}
			if (args[argidx] == "-evert-dff") {
				flag_evert_dff = true;
				continue;
			}
			if (args[argidx] == "-sep" && argidx+1 < args.size()) {
				sep = args[++argidx];
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		CellTypes ct(design);

		std::map<RTLIL::Module*, std::map<RTLIL::IdString, dff_map_info_t>> dff_dq_maps;
		std::map<RTLIL::Module*, std::set<RTLIL::IdString>> dff_cells;

		if (flag_evert_dff)
		{
			RTLIL::Module *first_module = NULL;
			std::set<RTLIL::IdString> shared_dff_wires;

			for (auto &mod_it : design->modules_)
			{
				if (!design->selected(mod_it.second))
					continue;

				create_dff_dq_map(dff_dq_maps[mod_it.second], design, mod_it.second);

				if (!flag_shared)
					continue;

				if (first_module == NULL) {
					for (auto &it : dff_dq_maps[mod_it.second])
						shared_dff_wires.insert(it.first);
					first_module = mod_it.second;
				} else {
					std::set<RTLIL::IdString> new_shared_dff_wires;
					for (auto &it : shared_dff_wires) {
						if (!dff_dq_maps[mod_it.second].count(it))
							continue;
						if (!compare_wires(first_module->wires_.at(it), mod_it.second->wires_.at(it)))
							continue;
						new_shared_dff_wires.insert(it);
					}
					shared_dff_wires.swap(new_shared_dff_wires);
				}
			}

			if (flag_shared)
				for (auto &map_it : dff_dq_maps)
				{
					std::map<RTLIL::IdString, dff_map_info_t> new_map;
					for (auto &it : map_it.second)
						if (shared_dff_wires.count(it.first))
							new_map[it.first] = it.second;
					map_it.second.swap(new_map);
				}

			for (auto &it1 : dff_dq_maps)
			for (auto &it2 : it1.second)
			for (auto &it3 : it2.second.cells)
				dff_cells[it1.first].insert(it3);
		}

		std::set<RTLIL::IdString> shared_wires, shared_cells;
		std::set<RTLIL::IdString> used_names;

		if (flag_shared)
		{
			RTLIL::Module *first_module = NULL;

			for (auto &mod_it : design->modules_)
			{
				RTLIL::Module *module = mod_it.second;

				if (!design->selected(module))
					continue;

				std::set<RTLIL::IdString> dff_wires;
				if (flag_dff)
					find_dff_wires(dff_wires, module);

				if (first_module == NULL)
				{
					for (auto &it : module->wires_)
						if (design->selected(module, it.second) && consider_wire(it.second, dff_dq_maps[module]))
							if (!flag_dff || dff_wires.count(it.first))
								shared_wires.insert(it.first);

					if (flag_evert)
						for (auto &it : module->cells_)
							if (design->selected(module, it.second) && consider_cell(design, dff_cells[module], it.second))
								shared_cells.insert(it.first);

					first_module = module;
				}
				else
				{
					std::vector<RTLIL::IdString> delete_shared_wires, delete_shared_cells;

					for (auto &it : shared_wires)
					{
						RTLIL::Wire *wire;

						if (module->wires_.count(it) == 0)
							goto delete_shared_wire;

						wire = module->wires_.at(it);

						if (!design->selected(module, wire))
							goto delete_shared_wire;
						if (!consider_wire(wire, dff_dq_maps[module]))
							goto delete_shared_wire;
						if (!compare_wires(first_module->wires_.at(it), wire))
							goto delete_shared_wire;
						if (flag_dff && !dff_wires.count(it))
							goto delete_shared_wire;

						if (0)
					delete_shared_wire:
							delete_shared_wires.push_back(it);
					}

					if (flag_evert)
						for (auto &it : shared_cells)
						{
							RTLIL::Cell *cell;

							if (module->cells_.count(it) == 0)
								goto delete_shared_cell;

							cell = module->cells_.at(it);

							if (!design->selected(module, cell))
								goto delete_shared_cell;
							if (!consider_cell(design, dff_cells[module], cell))
								goto delete_shared_cell;
							if (!compare_cells(first_module->cells_.at(it), cell))
								goto delete_shared_cell;

							if (0)
						delete_shared_cell:
								delete_shared_cells.push_back(it);
						}

					for (auto &it : delete_shared_wires)
						shared_wires.erase(it);
					for (auto &it : delete_shared_cells)
						shared_cells.erase(it);
				}
			}
		}

		for (auto &mod_it : design->modules_)
		{
			RTLIL::Module *module = mod_it.second;

			if (!design->selected(module))
				continue;

			std::set<RTLIL::IdString> dff_wires;
			if (flag_dff && !flag_shared)
				find_dff_wires(dff_wires, module);

			SigMap sigmap(module);

			SigMap out_to_in_map;

			for (auto &it : module->wires_)
			{
				if (flag_shared) {
					if (shared_wires.count(it.first) == 0)
						continue;
				} else {
					if (!design->selected(module, it.second) || !consider_wire(it.second, dff_dq_maps[module]))
						continue;
					if (flag_dff && !dff_wires.count(it.first))
						continue;
				}

				if (flag_input)
				{
					if (!it.second->port_input) {
						it.second->port_input = true;
						log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(it.second->name));
						RTLIL::Wire *w = module->addWire(NEW_ID, GetSize(it.second));
						out_to_in_map.add(it.second, w);
					}
				}
				else
				{
					if (!it.second->port_output) {
						it.second->port_output = true;
						log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(it.second->name));
					}

					if (flag_cut) {
						RTLIL::Wire *in_wire = add_new_wire(module, it.second->name.str() + sep + "i", it.second->width);
						in_wire->port_input = true;
						out_to_in_map.add(sigmap(it.second), in_wire);
					}
				}
			}

			if (flag_input)
			{
				for (auto &it : module->cells_) {
					if (!ct.cell_known(it.second->type))
						continue;
					for (auto &conn : it.second->connections_)
						if (ct.cell_output(it.second->type, conn.first))
							conn.second = out_to_in_map(sigmap(conn.second));
				}

				for (auto &conn : module->connections_)
					conn.first = out_to_in_map(sigmap(conn.first));
			}

			if (flag_cut)
			{
				for (auto &it : module->cells_) {
					if (!ct.cell_known(it.second->type))
						continue;
					for (auto &conn : it.second->connections_)
						if (ct.cell_input(it.second->type, conn.first))
							conn.second = out_to_in_map(sigmap(conn.second));
				}

				for (auto &conn : module->connections_)
					conn.second = out_to_in_map(sigmap(conn.second));
			}

			std::set<RTLIL::SigBit> set_q_bits;

			for (auto &dq : dff_dq_maps[module])
			{
				if (!module->wires_.count(dq.first))
					continue;

				RTLIL::Wire *wire = module->wires_.at(dq.first);
				std::set<RTLIL::SigBit> wire_bits_set = sigmap(wire).to_sigbit_set();
				std::vector<RTLIL::SigBit> wire_bits_vec = sigmap(wire).to_sigbit_vector();

				dff_map_info_t &info = dq.second;

				RTLIL::Wire *wire_dummy_q = add_new_wire(module, NEW_ID, 0);

				for (auto &cell_name : info.cells) {
					RTLIL::Cell *cell = module->cells_.at(cell_name);
					std::vector<RTLIL::SigBit> cell_q_bits = sigmap(cell->getPort("\\Q")).to_sigbit_vector();
					for (auto &bit : cell_q_bits)
						if (wire_bits_set.count(bit))
							bit = RTLIL::SigBit(wire_dummy_q, wire_dummy_q->width++);
					cell->setPort("\\Q", cell_q_bits);
				}

				RTLIL::Wire *wire_q = add_new_wire(module, wire->name.str() + sep + "q", wire->width);
				wire_q->port_input = true;
				log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_q->name));

				RTLIL::SigSig connect_q;
				for (size_t i = 0; i < wire_bits_vec.size(); i++) {
					if (set_q_bits.count(wire_bits_vec[i]))
						continue;
					connect_q.first.append(wire_bits_vec[i]);
					connect_q.second.append(RTLIL::SigBit(wire_q, i));
					set_q_bits.insert(wire_bits_vec[i]);
				}
				module->connect(connect_q);

				RTLIL::Wire *wire_d = add_new_wire(module, wire->name.str() + sep + "d", wire->width);
				wire_d->port_output = true;
				log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_d->name));
				module->connect(RTLIL::SigSig(wire_d, info.sig_d));

				RTLIL::Wire *wire_c = add_new_wire(module, wire->name.str() + sep + "c");
				wire_c->port_output = true;
				log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_c->name));
				if (info.clk_polarity) {
					module->connect(RTLIL::SigSig(wire_c, info.sig_clk));
				} else {
					RTLIL::Cell *c = module->addCell(NEW_ID, "$not");
					c->parameters["\\A_SIGNED"] = 0;
					c->parameters["\\A_WIDTH"] = 1;
					c->parameters["\\Y_WIDTH"] = 1;
					c->setPort("\\A", info.sig_clk);
					c->setPort("\\Y", wire_c);
				}

				if (info.sig_arst != RTLIL::State::Sm)
				{
					RTLIL::Wire *wire_r = add_new_wire(module, wire->name.str() + sep + "r");
					wire_r->port_output = true;
					log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_r->name));
					if (info.arst_polarity) {
						module->connect(RTLIL::SigSig(wire_r, info.sig_arst));
					} else {
						RTLIL::Cell *c = module->addCell(NEW_ID, "$not");
						c->parameters["\\A_SIGNED"] = 0;
						c->parameters["\\A_WIDTH"] = 1;
						c->parameters["\\Y_WIDTH"] = 1;
						c->setPort("\\A", info.sig_arst);
						c->setPort("\\Y", wire_r);
					}

					RTLIL::Wire *wire_v = add_new_wire(module, wire->name.str() + sep + "v", wire->width);
					wire_v->port_output = true;
					log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_v->name));
					module->connect(RTLIL::SigSig(wire_v, info.arst_value));
				}
			}

			if (flag_evert)
			{
				std::vector<RTLIL::Cell*> delete_cells;

				for (auto &it : module->cells_)
				{
					if (flag_shared) {
						if (shared_cells.count(it.first) == 0)
							continue;
					} else {
						if (!design->selected(module, it.second) || !consider_cell(design, dff_cells[module], it.second))
							continue;
					}

					RTLIL::Cell *cell = it.second;

					if (design->modules_.count(cell->type))
					{
						RTLIL::Module *mod = design->modules_.at(cell->type);

						for (auto &it : mod->wires_)
						{
							RTLIL::Wire *p = it.second;
							if (!p->port_input && !p->port_output)
								continue;

							RTLIL::Wire *w = add_new_wire(module, cell->name.str() + sep + RTLIL::unescape_id(p->name), p->width);
							if (p->port_input)
								w->port_output = true;
							if (p->port_output)
								w->port_input = true;

							log("New module port: %s/%s (%s)\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(w->name), RTLIL::id2cstr(cell->type));

							RTLIL::SigSpec sig;
							if (cell->hasPort(p->name))
								sig = cell->getPort(p->name);
							sig.extend_u0(w->width);
							if (w->port_input)
								module->connect(RTLIL::SigSig(sig, w));
							else
								module->connect(RTLIL::SigSig(w, sig));
						}
					}
					else
					{
						for (auto &it : cell->connections())
						{
							RTLIL::Wire *w = add_new_wire(module, cell->name.str() + sep + RTLIL::unescape_id(it.first), it.second.size());
							if (ct.cell_input(cell->type, it.first))
								w->port_output = true;
							if (ct.cell_output(cell->type, it.first))
								w->port_input = true;

							log("New module port: %s/%s (%s)\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(w->name), RTLIL::id2cstr(cell->type));

							if (w->port_input)
								module->connect(RTLIL::SigSig(it.second, w));
							else
								module->connect(RTLIL::SigSig(w, it.second));
						}
					}

					delete_cells.push_back(cell);
				}

				for (auto cell : delete_cells) {
					log("Removing cell: %s/%s (%s)\n", log_id(module), log_id(cell), log_id(cell->type));
					module->remove(cell);
				}
			}

			module->fixup_ports();
		}
	}
} ExposePass;

PRIVATE_NAMESPACE_END