aboutsummaryrefslogtreecommitdiffstats
path: root/libs/ezsat/puzzle3d.cc
blob: 59f840f9ec0a30af7d678b634117b71cc9ae4e11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
generated by cgit v1.2.3 (git 2.25.1) at 2025-09-03 23:33:39 +0000
 


ref='#n255'>255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/*
 *  ezSAT -- A simple and easy to use CNF generator for SAT solvers
 *
 *  Copyright (C) 2013  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "ezminisat.h"
#include <stdio.h>
#include <assert.h>

#define DIM_X 5
#define DIM_Y 5
#define DIM_Z 5

#define NUM_124 6
#define NUM_223 6

ezMiniSAT ez;
int blockidx = 0;
std::map<int, std::string> blockinfo;
std::vector<int> grid[DIM_X][DIM_Y][DIM_Z];

struct blockgeom_t
{
	int center_x, center_y, center_z;
	int size_x, size_y, size_z;
	int var;

	void mirror_x() { center_x *= -1; }
	void mirror_y() { center_y *= -1; }
	void mirror_z() { center_z *= -1; }

	void rotate_x() { int tmp[4] = { center_y, center_z, size_y, size_z }; center_y = tmp[1]; center_z = -tmp[0]; size_y = tmp[3]; size_z = tmp[2]; }
	void rotate_y() { int tmp[4] = { center_x, center_z, size_x, size_z }; center_x = tmp[1]; center_z = -tmp[0]; size_x = tmp[3]; size_z = tmp[2]; }
	void rotate_z() { int tmp[4] = { center_x, center_y, size_x, size_y }; center_x = tmp[1]; center_y = -tmp[0]; size_x = tmp[3]; size_y = tmp[2]; }

	bool operator< (const blockgeom_t &other) const {
		if (center_x != other.center_x) return center_x < other.center_x;
		if (center_y != other.center_y) return center_y < other.center_y;
		if (center_z != other.center_z) return center_z < other.center_z;
		if (size_x != other.size_x) return size_x < other.size_x;
		if (size_y != other.size_y) return size_y < other.size_y;
		if (size_z != other.size_z) return size_z < other.size_z;
		if (var != other.var) return var < other.var;
		return false;
	}
};

// geometry data for spatial symmetry constraints
std::set<blockgeom_t> blockgeom;

int add_block(int pos_x, int pos_y, int pos_z, int size_x, int size_y, int size_z, int blockidx)
{
	char buffer[1024];
	snprintf(buffer, 1024, "block(%d,%d,%d,%d,%d,%d,%d);", size_x, size_y, size_z, pos_x, pos_y, pos_z, blockidx);

	int var = ez.literal();
	blockinfo[var] = buffer;

	for (int ix = pos_x; ix < pos_x+size_x; ix++)
	for (int iy = pos_y; iy < pos_y+size_y; iy++)
	for (int iz = pos_z; iz < pos_z+size_z; iz++)
		grid[ix][iy][iz].push_back(var);

	blockgeom_t bg;
	bg.size_x = 2*size_x;
	bg.size_y = 2*size_y;
	bg.size_z = 2*size_z;
	bg.center_x = (2*pos_x + size_x) - DIM_X;
	bg.center_y = (2*pos_y + size_y) - DIM_Y;
	bg.center_z = (2*pos_z + size_z) - DIM_Z;
	bg.var = var;

	assert(blockgeom.count(bg) == 0);
	blockgeom.insert(bg);

	return var;
}

void add_block_positions_124(std::vector<int> &block_positions_124)
{
	block_positions_124.clear();
	for (int size_x = 1; size_x <= 4; size_x *= 2)
	for (int size_y = 1; size_y <= 4; size_y *= 2)
	for (int size_z = 1; size_z <= 4; size_z *= 2) {
		if (size_x == size_y || size_y == size_z || size_z == size_x)
			continue;
		for (int ix = 0; ix <= DIM_X-size_x; ix++)
		for (int iy = 0; iy <= DIM_Y-size_y; iy++)
		for (int iz = 0; iz <= DIM_Z-size_z; iz++)
			block_positions_124.push_back(add_block(ix, iy, iz, size_x, size_y, size_z, blockidx++));
	}
}

void add_block_positions_223(std::vector<int> &block_positions_223)
{
	block_positions_223.clear();
	for (int orientation = 0; orientation < 3; orientation++) {
		int size_x = orientation == 0 ? 3 : 2;
		int size_y = orientation == 1 ? 3 : 2;
		int size_z = orientation == 2 ? 3 : 2;
		for (int ix = 0; ix <= DIM_X-size_x; ix++)
		for (int iy = 0; iy <= DIM_Y-size_y; iy++)
		for (int iz = 0; iz <= DIM_Z-size_z; iz++)
			block_positions_223.push_back(add_block(ix, iy, iz, size_x, size_y, size_z, blockidx++));
	}
}

// use simple built-in random number generator to
// ensure determinism of the program across platforms
uint32_t xorshift32() {
	static uint32_t x = 314159265;
	x ^= x << 13;
	x ^= x >> 17;
	x ^= x << 5;
	return x;
}

void condense_exclusives(std::vector<int> &vars)
{
	std::map<int, std::set<int>> exclusive;

	for (int ix = 0; ix < DIM_X; ix++)
	for (int iy = 0; iy < DIM_Y; iy++)
	for (int iz = 0; iz < DIM_Z; iz++) {
		for (int a : grid[ix][iy][iz])
		for (int b : grid[ix][iy][iz])
			if (a != b)
				exclusive[a].insert(b);
	}

	std::vector<std::vector<int>> pools;

	for (int a : vars)
	{
		std::vector<int> candidate_pools;
		for (size_t i = 0; i < pools.size(); i++)
		{
			for (int b : pools[i])
				if (exclusive[a].count(b) == 0)
					goto no_candidate_pool;
			candidate_pools.push_back(i);
		no_candidate_pool:;
		}

		if (candidate_pools.size() > 0) {
			int p = candidate_pools[xorshift32() % candidate_pools.size()];
			pools[p].push_back(a);
		} else {
			pools.push_back(std::vector<int>());
			pools.back().push_back(a);
		}
	}

	std::vector<int> new_vars;
	for (auto &pool : pools)
	{
		std::vector<int> formula;
		int var = ez.literal();

		for (int a : pool)
			formula.push_back(ez.OR(ez.NOT(a), var));
		formula.push_back(ez.OR(ez.expression(ezSAT::OpOr, pool), ez.NOT(var)));

		ez.assume(ez.onehot(pool, true));
		ez.assume(ez.expression(ezSAT::OpAnd, formula));
		new_vars.push_back(var);
	}

	printf("Condensed %d variables into %d one-hot pools.\n", int(vars.size()), int(new_vars.size()));
	vars.swap(new_vars);
}

int main()
{
	printf("\nCreating SAT encoding..\n");

	// add 1x2x4 blocks
	std::vector<int> block_positions_124;
	add_block_positions_124(block_positions_124);
	condense_exclusives(block_positions_124);
	ez.assume(ez.manyhot(block_positions_124, NUM_124));

	// add 2x2x3 blocks
	std::vector<int> block_positions_223;
	add_block_positions_223(block_positions_223);
	condense_exclusives(block_positions_223);
	ez.assume(ez.manyhot(block_positions_223, NUM_223));

	// add constraint for max one block per grid element
	for (int ix = 0; ix < DIM_X; ix++)
	for (int iy = 0; iy < DIM_Y; iy++)
	for (int iz = 0; iz < DIM_Z; iz++) {
		assert(grid[ix][iy][iz].size() > 0);
		ez.assume(ez.onehot(grid[ix][iy][iz], true));
	}

	printf("Found %d possible block positions.\n", int(blockgeom.size()));

	// look for spatial symmetries
	std::set<std::set<blockgeom_t>> symmetries;
	symmetries.insert(blockgeom);
	bool keep_running = true;
	while (keep_running) {
		keep_running = false;
		std::set<std::set<blockgeom_t>> old_sym;
		old_sym.swap(symmetries);
		for (auto &old_sym_set : old_sym)
		{
			std::set<blockgeom_t> mx, my, mz;
			std::set<blockgeom_t> rx, ry, rz;
			for (auto &bg : old_sym_set) {
				blockgeom_t bg_mx = bg, bg_my = bg, bg_mz = bg;
				blockgeom_t bg_rx = bg, bg_ry = bg, bg_rz = bg;
				bg_mx.mirror_x(), bg_my.mirror_y(), bg_mz.mirror_z();
				bg_rx.rotate_x(), bg_ry.rotate_y(), bg_rz.rotate_z();
				mx.insert(bg_mx), my.insert(bg_my), mz.insert(bg_mz);
				rx.insert(bg_rx), ry.insert(bg_ry), rz.insert(bg_rz);
			}
			if (!old_sym.count(mx) || !old_sym.count(my) || !old_sym.count(mz) ||
					!old_sym.count(rx) || !old_sym.count(ry) || !old_sym.count(rz))
				keep_running = true;
			symmetries.insert(old_sym_set);
			symmetries.insert(mx);
			symmetries.insert(my);
			symmetries.insert(mz);
			symmetries.insert(rx);
			symmetries.insert(ry);
			symmetries.insert(rz);
		}
	}

	// add constraints to eliminate all the spatial symmetries
	std::vector<std::vector<int>> vecvec;
	for (auto &sym : symmetries) {
		std::vector<int> vec;
		for (auto &bg : sym)
			vec.push_back(bg.var);
		vecvec.push_back(vec);
	}
	for (size_t i = 1; i < vecvec.size(); i++)
		ez.assume(ez.ordered(vecvec[0], vecvec[1]));

	printf("Found and eliminated %d spatial symmetries.\n", int(symmetries.size()));
	printf("Generated %d clauses over %d variables.\n", ez.numCnfClauses(), ez.numCnfVariables());

	std::vector<int> modelExpressions;
	std::vector<bool> modelValues;

	for (auto &it : blockinfo) {
		ez.freeze(it.first);
		modelExpressions.push_back(it.first);
	}

	int solution_counter = 0;
	while (1)
	{
		printf("\nSolving puzzle..\n");
		bool ok = ez.solve(modelExpressions, modelValues);

		if (!ok) {
			printf("No more solutions found!\n");
			break;
		}

		printf("Puzzle solution:\n");
		std::vector<int> constraint;
		for (size_t i = 0; i < modelExpressions.size(); i++)
			if (modelValues[i]) {
				constraint.push_back(ez.NOT(modelExpressions[i]));
				printf("%s\n", blockinfo.at(modelExpressions[i]).c_str());
			}
		ez.assume(ez.expression(ezSAT::OpOr, constraint));
		solution_counter++;
	}

	printf("\nFound %d distinct solutions.\n", solution_counter);
	printf("Have a nice day.\n\n");

	return 0;
}