aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/satgen.h
blob: ea04cb409434adf505034d9ecefd5b204b0700ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
generated by cgit v1.2.3 (git 2.25.1) at 2025-09-11 18:51:47 +0000
 


#n539'>539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *  
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *  
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#ifndef SATGEN_H
#define SATGEN_H

#include "kernel/rtlil.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"

#include "libs/ezsat/ezminisat.h"
typedef ezMiniSAT ezDefaultSAT;

struct SatGen
{
	ezSAT *ez;
	SigMap *sigmap;
	std::string prefix;
	SigPool initial_state;
	std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en;
	bool ignore_div_by_zero;
	bool model_undef;

	SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) :
			ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
	{
	}

	void setContext(SigMap *sigmap, std::string prefix = std::string())
	{
		this->sigmap = sigmap;
		this->prefix = prefix;
	}

	std::vector<int> importSigSpecWorker(RTLIL::SigSpec &sig, std::string &pf, bool undef_mode, bool dup_undef)
	{
		log_assert(!undef_mode || model_undef);
		sigmap->apply(sig);

		std::vector<int> vec;
		vec.reserve(SIZE(sig));

		for (auto &bit : sig)
			if (bit.wire == NULL) {
				if (model_undef && dup_undef && bit == RTLIL::State::Sx)
					vec.push_back(ez->frozen_literal());
				else
					vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->TRUE : ez->FALSE);
			} else {
				std::string name = pf + stringf(bit.wire->width == 1 ?  "%s" : "%s [%d]", RTLIL::id2cstr(bit.wire->name), bit.offset);
				vec.push_back(ez->frozen_literal(name));
			}
		return vec;
	}

	std::vector<int> importSigSpec(RTLIL::SigSpec sig, int timestep = -1)
	{
		log_assert(timestep != 0);
		std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
		return importSigSpecWorker(sig, pf, false, false);
	}

	std::vector<int> importDefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
	{
		log_assert(timestep != 0);
		std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
		return importSigSpecWorker(sig, pf, false, true);
	}

	std::vector<int> importUndefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
	{
		log_assert(timestep != 0);
		std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
		return importSigSpecWorker(sig, pf, true, false);
	}

	void getAsserts(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1)
	{
		std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
		sig_a = asserts_a[pf];
		sig_en = asserts_en[pf];
	}

	int importAsserts(int timestep = -1)
	{
		std::vector<int> check_bits, enable_bits;
		std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
		if (model_undef) {
			check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_a[pf], timestep)), importDefSigSpec(asserts_a[pf], timestep));
			enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_en[pf], timestep)), importDefSigSpec(asserts_en[pf], timestep));
		} else {
			check_bits = importDefSigSpec(asserts_a[pf], timestep);
			enable_bits = importDefSigSpec(asserts_en[pf], timestep);
		}
		return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits)));
	}

	int signals_eq(RTLIL::SigSpec lhs, RTLIL::SigSpec rhs, int timestep_lhs = -1, int timestep_rhs = -1)
	{
		if (timestep_rhs < 0)
			timestep_rhs = timestep_lhs;

		assert(lhs.size() == rhs.size());

		std::vector<int> vec_lhs = importSigSpec(lhs, timestep_lhs);
		std::vector<int> vec_rhs = importSigSpec(rhs, timestep_rhs);

		if (!model_undef)
			return ez->vec_eq(vec_lhs, vec_rhs);

		std::vector<int> undef_lhs = importUndefSigSpec(lhs, timestep_lhs);
		std::vector<int> undef_rhs = importUndefSigSpec(rhs, timestep_rhs);

		std::vector<int> eq_bits;
		for (int i = 0; i < lhs.size(); i++)
			eq_bits.push_back(ez->AND(ez->IFF(undef_lhs.at(i), undef_rhs.at(i)),
					ez->IFF(ez->OR(vec_lhs.at(i), undef_lhs.at(i)), ez->OR(vec_rhs.at(i), undef_rhs.at(i)))));
		return ez->expression(ezSAT::OpAnd, eq_bits);
	}

	void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, RTLIL::Cell *cell, size_t y_width = 0, bool forced_signed = false)
	{
		bool is_signed = forced_signed;
		if (!forced_signed && cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters.count("\\B_SIGNED") > 0)
			is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool();
		while (vec_a.size() < vec_b.size() || vec_a.size() < y_width)
			vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->FALSE);
		while (vec_b.size() < vec_a.size() || vec_b.size() < y_width)
			vec_b.push_back(is_signed && vec_b.size() > 0 ? vec_b.back() : ez->FALSE);
	}

	void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
	{
		extendSignalWidth(vec_a, vec_b, cell, vec_y.size(), forced_signed);
		while (vec_y.size() < vec_a.size())
			vec_y.push_back(ez->literal());
	}

	void extendSignalWidthUnary(std::vector<int> &vec_a, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
	{
		bool is_signed = forced_signed || (cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters["\\A_SIGNED"].as_bool());
		while (vec_a.size() < vec_y.size())
			vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->FALSE);
		while (vec_y.size() < vec_a.size())
			vec_y.push_back(ez->literal());
	}

	void undefGating(std::vector<int> &vec_y, std::vector<int> &vec_yy, std::vector<int> &vec_undef)
	{
		assert(model_undef);
		assert(vec_y.size() == vec_yy.size());
		if (vec_y.size() > vec_undef.size()) {
			std::vector<int> trunc_y(vec_y.begin(), vec_y.begin() + vec_undef.size());
			std::vector<int> trunc_yy(vec_yy.begin(), vec_yy.begin() + vec_undef.size());
			ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(trunc_y, trunc_yy))));
		} else {
			assert(vec_y.size() == vec_undef.size());
			ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(vec_y, vec_yy))));
		}
	}

	bool importCell(RTLIL::Cell *cell, int timestep = -1)
	{
		bool arith_undef_handled = false;
		bool is_arith_compare = cell->type == "$lt" || cell->type == "$le" || cell->type == "$ge" || cell->type == "$gt";

		if (model_undef && (cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod" || is_arith_compare))
		{
			std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
			std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
			if (is_arith_compare)
				extendSignalWidth(undef_a, undef_b, cell, true);
			else
				extendSignalWidth(undef_a, undef_b, undef_y, cell, true);

			int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
			int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
			int undef_y_bit = ez->OR(undef_any_a, undef_any_b);

			if (cell->type == "$div" || cell->type == "$mod") {
				std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
				undef_y_bit = ez->OR(undef_y_bit, ez->NOT(ez->expression(ezSAT::OpOr, b)));
			}

			if (is_arith_compare) {
				for (size_t i = 1; i < undef_y.size(); i++)
					ez->SET(ez->FALSE, undef_y.at(i));
				ez->SET(undef_y_bit, undef_y.at(0));
			} else {
				std::vector<int> undef_y_bits(undef_y.size(), undef_y_bit);
				ez->assume(ez->vec_eq(undef_y_bits, undef_y));
			}

			arith_undef_handled = true;
		}

		if (cell->type == "$_AND_" || cell->type == "$_OR_" || cell->type == "$_XOR_" ||
				cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" ||
				cell->type == "$add" || cell->type == "$sub")
		{
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
			extendSignalWidth(a, b, y, cell);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;

			if (cell->type == "$and" || cell->type == "$_AND_")
				ez->assume(ez->vec_eq(ez->vec_and(a, b), yy));
			if (cell->type == "$or" || cell->type == "$_OR_")
				ez->assume(ez->vec_eq(ez->vec_or(a, b), yy));
			if (cell->type == "$xor" || cell->type == "$_XOR_")
				ez->assume(ez->vec_eq(ez->vec_xor(a, b), yy));
			if (cell->type == "$xnor")
				ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), yy));
			if (cell->type == "$add")
				ez->assume(ez->vec_eq(ez->vec_add(a, b), yy));
			if (cell->type == "$sub")
				ez->assume(ez->vec_eq(ez->vec_sub(a, b), yy));

			if (model_undef && !arith_undef_handled)
			{
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
				extendSignalWidth(undef_a, undef_b, undef_y, cell, false);

				if (cell->type == "$and" || cell->type == "$_AND_") {
					std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a));
					std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b));
					std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b0)));
					ez->assume(ez->vec_eq(yX, undef_y));
				}
				else if (cell->type == "$or" || cell->type == "$_OR_") {
					std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a));
					std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b));
					std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b1)));
					ez->assume(ez->vec_eq(yX, undef_y));
				}
				else if (cell->type == "$xor" || cell->type == "$_XOR_" || cell->type == "$xnor") {
					std::vector<int> yX = ez->vec_or(undef_a, undef_b);
					ez->assume(ez->vec_eq(yX, undef_y));
				}
				else
					log_abort();

				undefGating(y, yy, undef_y);
			}
			else if (model_undef)
			{
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$_INV_" || cell->type == "$not")
		{
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
			extendSignalWidthUnary(a, y, cell);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
			ez->assume(ez->vec_eq(ez->vec_not(a), yy));

			if (model_undef) {
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
				extendSignalWidthUnary(undef_a, undef_y, cell, true);
				ez->assume(ez->vec_eq(undef_a, undef_y));
				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$_MUX_" || cell->type == "$mux")
		{
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
			std::vector<int> s = importDefSigSpec(cell->connections.at("\\S"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
			ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), yy));

			if (model_undef)
			{
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
				std::vector<int> undef_s = importUndefSigSpec(cell->connections.at("\\S"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);

				std::vector<int> unequal_ab = ez->vec_not(ez->vec_iff(a, b));
				std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b));
				std::vector<int> yX = ez->vec_ite(undef_s.at(0), undef_ab, ez->vec_ite(s.at(0), undef_b, undef_a));
				ez->assume(ez->vec_eq(yX, undef_y));
				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$pmux" || cell->type == "$safe_pmux")
		{
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
			std::vector<int> s = importDefSigSpec(cell->connections.at("\\S"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;

			std::vector<int> tmp = a;
			for (size_t i = 0; i < s.size(); i++) {
				std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
				tmp = ez->vec_ite(s.at(i), part_of_b, tmp);
			}
			if (cell->type == "$safe_pmux")
				tmp = ez->vec_ite(ez->onehot(s, true), tmp, a);
			ez->assume(ez->vec_eq(tmp, yy));

			if (model_undef)
			{
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
				std::vector<int> undef_s = importUndefSigSpec(cell->connections.at("\\S"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);

				int maybe_one_hot = ez->FALSE;
				int maybe_many_hot = ez->FALSE;

				int sure_one_hot = ez->FALSE;
				int sure_many_hot = ez->FALSE;

				std::vector<int> bits_set = std::vector<int>(undef_y.size(), ez->FALSE);
				std::vector<int> bits_clr = std::vector<int>(undef_y.size(), ez->FALSE);

				for (size_t i = 0; i < s.size(); i++)
				{
					std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
					std::vector<int> part_of_undef_b(undef_b.begin()+i*a.size(), undef_b.begin()+(i+1)*a.size());

					int maybe_s = ez->OR(s.at(i), undef_s.at(i));
					int sure_s = ez->AND(s.at(i), ez->NOT(undef_s.at(i)));

					maybe_one_hot = ez->OR(maybe_one_hot, maybe_s);
					maybe_many_hot = ez->OR(maybe_many_hot, ez->AND(maybe_one_hot, maybe_s));

					sure_one_hot = ez->OR(sure_one_hot, sure_s);
					sure_many_hot = ez->OR(sure_many_hot, ez->AND(sure_one_hot, sure_s));

					bits_set = ez->vec_ite(maybe_s, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(part_of_b, part_of_undef_b))), bits_set);
					bits_clr = ez->vec_ite(maybe_s, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(part_of_b), part_of_undef_b))), bits_clr);
				}

				int maybe_a = ez->NOT(maybe_one_hot);

				if (cell->type == "$safe_pmux") {
					maybe_a = ez->OR(maybe_a, maybe_many_hot);
					bits_set = ez->vec_ite(sure_many_hot, ez->vec_or(a, undef_a), bits_set);
					bits_clr = ez->vec_ite(sure_many_hot, ez->vec_or(ez->vec_not(a), undef_a), bits_clr);
				}

				bits_set = ez->vec_ite(maybe_a, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(a, undef_a))), bits_set);
				bits_clr = ez->vec_ite(maybe_a, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(a), undef_a))), bits_clr);

				ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(bits_set, bits_clr)), undef_y));
				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$pos" || cell->type == "$bu0" || cell->type == "$neg")
		{
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
			extendSignalWidthUnary(a, y, cell);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;

			if (cell->type == "$pos" || cell->type == "$bu0") {
				ez->assume(ez->vec_eq(a, yy));
			} else {
				std::vector<int> zero(a.size(), ez->FALSE);
				ez->assume(ez->vec_eq(ez->vec_sub(zero, a), yy));
			}

			if (model_undef)
			{
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
				extendSignalWidthUnary(undef_a, undef_y, cell, cell->type != "$bu0");

				if (cell->type == "$pos" || cell->type == "$bu0") {
					ez->assume(ez->vec_eq(undef_a, undef_y));
				} else {
					int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
					std::vector<int> undef_y_bits(undef_y.size(), undef_any_a);
					ez->assume(ez->vec_eq(undef_y_bits, undef_y));
				}

				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" ||
				cell->type == "$reduce_xnor" || cell->type == "$reduce_bool" || cell->type == "$logic_not")
		{
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;

			if (cell->type == "$reduce_and")
				ez->SET(ez->expression(ez->OpAnd, a), yy.at(0));
			if (cell->type == "$reduce_or" || cell->type == "$reduce_bool")
				ez->SET(ez->expression(ez->OpOr, a), yy.at(0));
			if (cell->type == "$reduce_xor")
				ez->SET(ez->expression(ez->OpXor, a), yy.at(0));
			if (cell->type == "$reduce_xnor")
				ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), yy.at(0));
			if (cell->type == "$logic_not")
				ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), yy.at(0));
			for (size_t i = 1; i < y.size(); i++)
				ez->SET(ez->FALSE, yy.at(i));

			if (model_undef)
			{
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
				int aX = ez->expression(ezSAT::OpOr, undef_a);

				if (cell->type == "$reduce_and") {
					int a0 = ez->expression(ezSAT::OpOr, ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)));
					ez->assume(ez->IFF(ez->AND(ez->NOT(a0), aX), undef_y.at(0)));
				}
				else if (cell->type == "$reduce_or" || cell->type == "$reduce_bool" || cell->type == "$logic_not") {
					int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(a, ez->vec_not(undef_a)));
					ez->assume(ez->IFF(ez->AND(ez->NOT(a1), aX), undef_y.at(0)));
				}
				else if (cell->type == "$reduce_xor" || cell->type == "$reduce_xnor") {
					ez->assume(ez->IFF(aX, undef_y.at(0)));
				} else
					log_abort();

				for (size_t i = 1; i < undef_y.size(); i++)
					ez->SET(ez->FALSE, undef_y.at(i));

				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$logic_and" || cell->type == "$logic_or")
		{
			std::vector<int> vec_a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> vec_b = importDefSigSpec(cell->connections.at("\\B"), timestep);

			int a = ez->expression(ez->OpOr, vec_a);
			int b = ez->expression(ez->OpOr, vec_b);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;

			if (cell->type == "$logic_and")
				ez->SET(ez->expression(ez->OpAnd, a, b), yy.at(0));
			else
				ez->SET(ez->expression(ez->OpOr, a, b), yy.at(0));
			for (size_t i = 1; i < y.size(); i++)
				ez->SET(ez->FALSE, yy.at(i));

			if (model_undef)
			{
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);

				int a0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_a), ez->expression(ezSAT::OpOr, undef_a)));
				int b0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_b), ez->expression(ezSAT::OpOr, undef_b)));
				int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_a, ez->vec_not(undef_a)));
				int b1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_b, ez->vec_not(undef_b)));
				int aX = ez->expression(ezSAT::OpOr, undef_a);
				int bX = ez->expression(ezSAT::OpOr, undef_b);

				if (cell->type == "$logic_and")
					ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a1, b1)), ez->NOT(a0), ez->NOT(b0)), undef_y.at(0));
				else if (cell->type == "$logic_or")
					ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a0, b0)), ez->NOT(a1), ez->NOT(b1)), undef_y.at(0));
				else
					log_abort();

				for (size_t i = 1; i < undef_y.size(); i++)
					ez->SET(ez->FALSE, undef_y.at(i));

				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt")
		{
			bool is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool();
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
			extendSignalWidth(a, b, cell);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;

			if (model_undef && (cell->type == "$eqx" || cell->type == "$nex")) {
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
				extendSignalWidth(undef_a, undef_b, cell, true);
				a = ez->vec_or(a, undef_a);
				b = ez->vec_or(b, undef_b);
			}

			if (cell->type == "$lt")
				ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), yy.at(0));
			if (cell->type == "$le")
				ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), yy.at(0));
			if (cell->type == "$eq" || cell->type == "$eqx")
				ez->SET(ez->vec_eq(a, b), yy.at(0));
			if (cell->type == "$ne" || cell->type == "$nex")
				ez->SET(ez->vec_ne(a, b), yy.at(0));
			if (cell->type == "$ge")
				ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), yy.at(0));
			if (cell->type == "$gt")
				ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), yy.at(0));
			for (size_t i = 1; i < y.size(); i++)
				ez->SET(ez->FALSE, yy.at(i));

			if (model_undef && (cell->type == "$eqx" || cell->type == "$nex"))
			{
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
				extendSignalWidth(undef_a, undef_b, cell, true);

				if (cell->type == "$eqx")
					yy.at(0) = ez->AND(yy.at(0), ez->vec_eq(undef_a, undef_b));
				else
					yy.at(0) = ez->OR(yy.at(0), ez->vec_ne(undef_a, undef_b));

				for (size_t i = 0; i < y.size(); i++)
					ez->SET(ez->FALSE, undef_y.at(i));

				ez->assume(ez->vec_eq(y, yy));
			}
			else if (model_undef && (cell->type == "$eq" || cell->type == "$ne"))
			{
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
				extendSignalWidth(undef_a, undef_b, cell, true);

				int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
				int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
				int undef_any = ez->OR(undef_any_a, undef_any_b);

				std::vector<int> masked_a_bits = ez->vec_or(a, ez->vec_or(undef_a, undef_b));
				std::vector<int> masked_b_bits = ez->vec_or(b, ez->vec_or(undef_a, undef_b));

				int masked_ne = ez->vec_ne(masked_a_bits, masked_b_bits);
				int undef_y_bit = ez->AND(undef_any, ez->NOT(masked_ne));

				for (size_t i = 1; i < undef_y.size(); i++)
					ez->SET(ez->FALSE, undef_y.at(i));
				ez->SET(undef_y_bit, undef_y.at(0));

				undefGating(y, yy, undef_y);
			}
			else
			{
				if (model_undef) {
					std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
					undefGating(y, yy, undef_y);
				}
				log_assert(!model_undef || arith_undef_handled);
			}
			return true;
		}

		if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr")
		{
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);

			char shift_left = cell->type == "$shl" || cell->type == "$sshl";
			bool sign_extend = cell->type == "$sshr" && cell->parameters["\\A_SIGNED"].as_bool();

			while (y.size() < a.size())
				y.push_back(ez->literal());
			while (y.size() > a.size())
				a.push_back(cell->parameters["\\A_SIGNED"].as_bool() ? a.back() : ez->FALSE);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;

			std::vector<int> tmp = a;
			for (size_t i = 0; i < b.size(); i++)
			{
				std::vector<int> tmp_shifted(tmp.size());
				for (size_t j = 0; j < tmp.size(); j++) {
					int idx = j + (1 << (i > 30 ? 30 : i)) * (shift_left ? -1 : +1);
					tmp_shifted.at(j) = (0 <= idx && idx < int(tmp.size())) ? tmp.at(idx) : sign_extend ? tmp.back() : ez->FALSE;
				}
				tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp);
			}
			ez->assume(ez->vec_eq(tmp, yy));

			if (model_undef)
			{
				std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
				std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);

				while (undef_y.size() < undef_a.size())
					undef_y.push_back(ez->literal());
				while (undef_y.size() > undef_a.size())
					undef_a.push_back(cell->parameters["\\A_SIGNED"].as_bool() ? undef_a.back() : ez->FALSE);

				tmp = undef_a;
				for (size_t i = 0; i < b.size(); i++)
				{
					std::vector<int> tmp_shifted(tmp.size());
					for (size_t j = 0; j < tmp.size(); j++) {
						int idx = j + (1 << (i > 30 ? 30 : i)) * (shift_left ? -1 : +1);
						tmp_shifted.at(j) = (0 <= idx && idx < int(tmp.size())) ? tmp.at(idx) : sign_extend ? tmp.back() : ez->FALSE;
					}
					tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp);
				}

				int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
				std::vector<int> undef_all_y_bits(undef_y.size(), undef_any_b);
				ez->assume(ez->vec_eq(ez->vec_or(tmp, undef_all_y_bits), undef_y));
				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$mul")
		{
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
			extendSignalWidth(a, b, y, cell);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;

			std::vector<int> tmp(a.size(), ez->FALSE);
			for (int i = 0; i < int(a.size()); i++)
			{
				std::vector<int> shifted_a(a.size(), ez->FALSE);
				for (int j = i; j < int(a.size()); j++)
					shifted_a.at(j) = a.at(j-i);
				tmp = ez->vec_ite(b.at(i), ez->vec_add(tmp, shifted_a), tmp);
			}
			ez->assume(ez->vec_eq(tmp, yy));

			if (model_undef) {
				log_assert(arith_undef_handled);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$div" || cell->type == "$mod")
		{
			std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
			std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
			std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
			extendSignalWidth(a, b, y, cell);

			std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;

			std::vector<int> a_u, b_u;
			if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) {
				a_u = ez->vec_ite(a.back(), ez->vec_neg(a), a);
				b_u = ez->vec_ite(b.back(), ez->vec_neg(b), b);
			} else {
				a_u = a;
				b_u = b;
			}

			std::vector<int> chain_buf = a_u;
			std::vector<int> y_u(a_u.size(), ez->FALSE);
			for (int i = int(a.size())-1; i >= 0; i--)
			{
				chain_buf.insert(chain_buf.end(), chain_buf.size(), ez->FALSE);

				std::vector<int> b_shl(i, ez->FALSE);
				b_shl.insert(b_shl.end(), b_u.begin(), b_u.end());
				b_shl.insert(b_shl.end(), chain_buf.size()-b_shl.size(), ez->FALSE);

				y_u.at(i) = ez->vec_ge_unsigned(chain_buf, b_shl);
				chain_buf = ez->vec_ite(y_u.at(i), ez->vec_sub(chain_buf, b_shl), chain_buf);

				chain_buf.erase(chain_buf.begin() + a_u.size(), chain_buf.end());
			}

			std::vector<int> y_tmp = ignore_div_by_zero ? yy : ez->vec_var(y.size());
			if (cell->type == "$div") {
				if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
					ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(ez->XOR(a.back(), b.back()), ez->vec_neg(y_u), y_u)));
				else
					ez->assume(ez->vec_eq(y_tmp, y_u));
			} else {
				if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
					ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(a.back(), ez->vec_neg(chain_buf), chain_buf)));
				else
					ez->assume(ez->vec_eq(y_tmp, chain_buf));
			}

			if (ignore_div_by_zero) {
				ez->assume(ez->expression(ezSAT::OpOr, b));
			} else {
				std::vector<int> div_zero_result;
				if (cell->type == "$div") {
					if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) {
						std::vector<int> all_ones(y.size(), ez->TRUE);
						std::vector<int> only_first_one(y.size(), ez->FALSE);
						only_first_one.at(0) = ez->TRUE;
						div_zero_result = ez->vec_ite(a.back(), only_first_one, all_ones);
					} else {
						div_zero_result.insert(div_zero_result.end(), cell->connections.at("\\A").size(), ez->TRUE);
						div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->FALSE);
					}
				} else {
					int copy_a_bits = std::min(cell->connections.at("\\A").size(), cell->connections.at("\\B").size());
					div_zero_result.insert(div_zero_result.end(), a.begin(), a.begin() + copy_a_bits);
					if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
						div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), div_zero_result.back());
					else
						div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->FALSE);
				}
				ez->assume(ez->vec_eq(yy, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result)));
			}

			if (model_undef) {
				log_assert(arith_undef_handled);
				std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
				undefGating(y, yy, undef_y);
			}
			return true;
		}

		if (cell->type == "$slice")
		{
			RTLIL::SigSpec a = cell->connections.at("\\A");
			RTLIL::SigSpec y = cell->connections.at("\\Y");
			ez->assume(signals_eq(a.extract(cell->parameters.at("\\OFFSET").as_int(), y.size()), y, timestep));
			return true;
		}

		if (cell->type == "$concat")
		{
			RTLIL::SigSpec a = cell->connections.at("\\A");
			RTLIL::SigSpec b = cell->connections.at("\\B");
			RTLIL::SigSpec y = cell->connections.at("\\Y");

			RTLIL::SigSpec ab = a;
			ab.append(b);

			ez->assume(signals_eq(ab, y, timestep));
			return true;
		}

		if (timestep > 0 && (cell->type == "$dff" || cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_"))
		{
			if (timestep == 1)
			{
				initial_state.add((*sigmap)(cell->connections.at("\\Q")));
			}
			else
			{
				std::vector<int> d = importDefSigSpec(cell->connections.at("\\D"), timestep-1);
				std::vector<int> q = importDefSigSpec(cell->connections.at("\\Q"), timestep);

				std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q;
				ez->assume(ez->vec_eq(d, qq));

				if (model_undef)
				{
					std::vector<int> undef_d = importUndefSigSpec(cell->connections.at("\\D"), timestep-1);
					std::vector<int> undef_q = importUndefSigSpec(cell->connections.at("\\Q"), timestep);

					ez->assume(ez->vec_eq(undef_d, undef_q));
					undefGating(q, qq, undef_q);
				}
			}
			return true;
		}

		if (cell->type == "$assert")
		{
			std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
			asserts_a[pf].append((*sigmap)(cell->connections.at("\\A")));
			asserts_en[pf].append((*sigmap)(cell->connections.at("\\EN")));
			return true;
		}

		// Unsupported internal cell types: $pow $lut
		// .. and all sequential cells except $dff and $_DFF_[NP]_
		return false;
	}
};

#endif