aboutsummaryrefslogtreecommitdiffstats
path: root/backends/verilog/verilog_backend.cc
blob: aa1d4558c34d51093c898d20207e28a49fab2b5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 *  ---
 *
 *  The Verilog frontend.
 *
 *  This frontend is using the AST frontend library (see frontends/ast/).
 *  Thus this frontend does not generate RTLIL code directly but creates an
 *  AST directly from the Verilog parse tree and then passes this AST to
 *  the AST frontend library.
 *
 */

#include "verilog_frontend.h"
#include "kernel/yosys.h"
#include "libs/sha1/sha1.h"
#include <stdarg.h>

YOSYS_NAMESPACE_BEGIN
using namespace VERILOG_FRONTEND;

// use the Verilog bison/flex parser to generate an AST and use AST::process() to convert it to RTLIL

static std::vector<std::string> verilog_defaults;
static std::list<std::vector<std::string>> verilog_defaults_stack;

static void error_on_dpi_function(AST::AstNode *node)
{
	if (node->type == AST::AST_DPI_FUNCTION)
		log_file_error(node->filename, node->linenum, "Found DPI function %s.\n", node->str.c_str());
	for (auto child : node->children)
		error_on_dpi_function(child);
}

struct VerilogFrontend : public Frontend {
	VerilogFrontend() : Frontend("verilog", "read modules from Verilog file") { }
	void help() YS_OVERRIDE
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    read_verilog [options] [filename]\n");
		log("\n");
		log("Load modules from a Verilog file to the current design. A large subset of\n");
		log("Verilog-2005 is supported.\n");
		log("\n");
		log("    -sv\n");
		log("        enable support for SystemVerilog features. (only a small subset\n");
		log("        of SystemVerilog is supported)\n");
		log("\n");
		log("    -formal\n");
		log("        enable support for SystemVerilog assertions and some Yosys extensions\n");
		log("        replace the implicit -D SYNTHESIS with -D FORMAL\n");
		log("\n");
		log("    -noassert\n");
		log("        ignore assert() statements\n");
		log("\n");
		log("    -noassume\n");
		log("        ignore assume() statements\n");
		log("\n");
		log("    -norestrict\n");
		log("        ignore restrict() statements\n");
		log("\n");
		log("    -assume-asserts\n");
		log("        treat all assert() statements like assume() statements\n");
		log("\n");
		log("    -assert-assumes\n");
		log("        treat all assume() statements like assert() statements\n");
		log("\n");
		log("    -debug\n");
		log("        alias for -dump_ast1 -dump_ast2 -dump_vlog1 -dump_vlog2 -yydebug\n");
		log("\n");
		log("    -dump_ast1\n");
		log("        dump abstract syntax tree (before simplification)\n");
		log("\n");
		log("    -dump_ast2\n");
		log("        dump abstract syntax tree (after simplification)\n");
		log("\n");
		log("    -no_dump_ptr\n");
		log("        do not include hex memory addresses in dump (easier to diff dumps)\n");
		log("\n");
		log("    -dump_vlog1\n");
		log("        dump ast as Verilog code (before simplification)\n");
		log("\n");
		log("    -dump_vlog2\n");
		log("        dump ast as Verilog code (after simplification)\n");
		log("\n");
		log("    -dump_rtlil\n");
		log("        dump generated RTLIL netlist\n");
		log("\n");
		log("    -yydebug\n");
		log("        enable parser debug output\n");
		log("\n");
		log("    -nolatches\n");
		log("        usually latches are synthesized into logic loops\n");
		log("        this option prohibits this and sets the output to 'x'\n");
		log("        in what would be the latches hold condition\n");
		log("\n");
		log("        this behavior can also be achieved by setting the\n");
		log("        'nolatches' attribute on the respective module or\n");
		log("        always block.\n");
		log("\n");
		log("    -nomem2reg\n");
		log("        under certain conditions memories are converted to registers\n");
		log("        early during simplification to ensure correct handling of\n");
		log("        complex corner cases. this option disables this behavior.\n");
		log("\n");
		log("        this can also be achieved by setting the 'nomem2reg'\n");
		log("        attribute on the respective module or register.\n");
		log("\n");
		log("        This is potentially dangerous. Usually the front-end has good\n");
		log("        reasons for converting an array to a list of registers.\n");
		log("        Prohibiting this step will likely result in incorrect synthesis\n");
		log("        results.\n");
		log("\n");
		log("    -mem2reg\n");
		log("        always convert memories to registers. this can also be\n");
		log("        achieved by setting the 'mem2reg' attribute on the respective\n");
		log("        module or register.\n");
		log("\n");
		log("    -nomeminit\n");
		log("        do not infer $meminit cells and instead convert initialized\n");
		log("        memories to registers directly in the front-end.\n");
		log("\n");
		log("    -ppdump\n");
		log("        dump Verilog code after pre-processor\n");
		log("\n");
		log("    -nopp\n");
		log("        do not run the pre-processor\n");
		log("\n");
		log("    -nodpi\n");
		log("        disable DPI-C support\n");
		log("\n");
		log("    -noblackbox\n");
		log("        do not automatically add a (* blackbox *) attribute to an\n");
		log("        empty module.\n");
		log("\n");
		log("    -lib\n");
		log("        only create empty blackbox modules. This implies -DBLACKBOX.\n");
		log("        modules with the (* whitebox *) attribute will be preserved.\n");
		log("        (* lib_whitebox *) will be treated like (* whitebox *).\n");
		log("\n");
		log("    -nowb\n");
		log("        delete (* whitebox *) and (* lib_whitebox *) attributes from\n");
		log("        all modules.\n");
		log("\n");
		log("    -specify\n");
		log("        parse and import specify blocks\n");
		log("\n");
		log("    -noopt\n");
		log("        don't perform basic optimizations (such as const folding) in the\n");
		log("        high-level front-end.\n");
		log("\n");
		log("    -icells\n");
		log("        interpret cell types starting with '$' as internal cell types\n");
		log("\n");
		log("    -pwires\n");
		log("        add a wire for each module parameter\n");
		log("\n");
		log("    -nooverwrite\n");
		log("        ignore re-definitions of modules. (the default behavior is to\n");
		log("        create an error message if the existing module is not a black box\n");
		log("        module, and overwrite the existing module otherwise.)\n");
		log("\n");
		log("    -overwrite\n");
		log("        overwrite existing modules with the same name\n");
		log("\n");
		log("    -defer\n");
		log("        only read the abstract syntax tree and defer actual compilation\n");
		log("        to a later 'hierarchy' command. Useful in cases where the default\n");
		log("        parameters of modules yield invalid or not synthesizable code.\n");
		log("\n");
		log("    -noautowire\n");
		log("        make the default of `default_nettype be \"none\" instead of \"wire\".\n");
		log("\n");
		log("    -setattr <attribute_name>\n");
		log("        set the specified attribute (to the value 1) on all loaded modules\n");
		log("\n");
		log("    -Dname[=definition]\n");
		log("        define the preprocessor symbol 'name' and set its optional value\n");
		log("        'definition'\n");
		log("\n");
		log("    -Idir\n");
		log("        add 'dir' to the directories which are used when searching include\n");
		log("        files\n");
		log("\n");
		log("The command 'verilog_defaults' can be used to register default options for\n");
		log("subsequent calls to 'read_verilog'.\n");
		log("\n");
		log("Note that the Verilog frontend does a pretty good job of processing valid\n");
		log("verilog input, but has not very good error reporting. It generally is\n");
		log("recommended to use a simulator (for example Icarus Verilog) for checking\n");
		log("the syntax of the code, rather than to rely on read_verilog for that.\n");
		log("\n");
		log("Depending on if read_verilog is run in -formal mode, either the macro\n");
		log("SYNTHESIS or FORMAL is defined automatically. In addition, read_verilog\n");
		log("always defines the macro YOSYS.\n");
		log("\n");
		log("See the Yosys README file for a list of non-standard Verilog features\n");
		log("supported by the Yosys Verilog front-end.\n");
		log("\n");
	}
	void execute(std::istream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
	{
		bool flag_dump_ast1 = false;
		bool flag_dump_ast2 = false;
		bool flag_no_dump_ptr = false;
		bool flag_dump_vlog1 = false;
		bool flag_dump_vlog2 = false;
		bool flag_dump_rtlil = false;
		bool flag_nolatches = false;
		bool flag_nomeminit = false;
		bool flag_nomem2reg = false;
		bool flag_mem2reg = false;
		bool flag_ppdump = false;
		bool flag_nopp = false;
		bool flag_nodpi = false;
		bool flag_noopt = false;
		bool flag_icells = false;
		bool flag_pwires = false;
		bool flag_nooverwrite = false;
		bool flag_overwrite = false;
		bool flag_defer = false;
		bool flag_noblackbox = false;
		bool flag_nowb = false;
		std::map<std::string, std::string> defines_map;
		std::list<std::string> include_dirs;
		std::list<std::string> attributes;

		frontend_verilog_yydebug = false;
		sv_mode = false;
		formal_mode = false;
		norestrict_mode = false;
		assume_asserts_mode = false;
		lib_mode = false;
		specify_mode = false;
		default_nettype_wire = true;

		args.insert(args.begin()+1, verilog_defaults.begin(), verilog_defaults.end());

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			std::string arg = args[argidx];
			if (arg == "-sv") {
				sv_mode = true;
				continue;
			}
			if (arg == "-formal") {
				formal_mode = true;
				continue;
			}
			if (arg == "-noassert") {
				noassert_mode = true;
				continue;
			}
			if (arg == "-noassume") {
				noassume_mode = true;
				continue;
			}
			if (arg == "-norestrict") {
				norestrict_mode = true;
				continue;
			}
			if (arg == "-assume-asserts") {
				assume_asserts_mode = true;
				continue;
			}
			if (arg == "-assert-assumes") {
				assert_assumes_mode = true;
				continue;
			}
			if (arg == "-debug") {
				flag_dump_ast1 = true;
				flag_dump_ast2 = true;
				flag_dump_vlog1 = true;
				flag_dump_vlog2 = true;
				frontend_verilog_yydebug = true;
				continue;
			}
			if (arg == "-dump_ast1") {
				flag_dump_ast1 = true;
				continue;
			}
			if (arg == "-dump_ast2") {
				flag_dump_ast2 = true;
				continue;
			}
			if (arg == "-no_dump_ptr") {
				flag_no_dump_ptr = true;
				continue;
			}
			if (arg == "-dump_vlog1") {
				flag_dump_vlog1 = true;
				continue;
			}
			if (arg == "-dump_vlog2") {
				flag_dump_vlog2 = true;
				continue;
			}
			if (arg == "-dump_rtlil") {
				flag_dump_rtlil = true;
				continue;
			}
			if (arg == "-yydebug") {
				frontend_verilog_yydebug = true;
				continue;
			}
			if (arg == "-nolatches") {
				flag_nolatches = true;
				continue;
			}
			if (arg == "-nomeminit") {
				flag_nomeminit = true;
				continue;
			}
			if (arg == "-nomem2reg") {
				flag_nomem2reg = true;
				continue;
			}
			if (arg == "-mem2reg") {
				flag_mem2reg = true;
				continue;
			}
			if (arg == "-ppdump") {
				flag_ppdump = true;
				continue;
			}
			if (arg == "-nopp") {
				flag_nopp = true;
				continue;
			}
			if (arg == "-nodpi") {
				flag_nodpi = true;
				continue;
			}
			if (arg == "-noblackbox") {
				flag_noblackbox = true;
				continue;
			}
			if (arg == "-lib") {
				lib_mode = true;
				defines_map["BLACKBOX"] = string();
				continue;
			}
			if (arg == "-nowb") {
				flag_nowb = true;
				continue;
			}
			if (arg == "-specify") {
				specify_mode = true;
				continue;
			}
			if (arg == "-noopt") {
				flag_noopt = true;
				continue;
			}
			if (arg == "-icells") {
				flag_icells = true;
				continue;
			}
			if (arg == "-pwires") {
				flag_pwires = true;
				continue;
			}
			if (arg == "-ignore_redef" || arg == "-nooverwrite") {
				flag_nooverwrite = true;
				flag_overwrite 
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 *  ---
 *
 *  A simple and straightforward Verilog backend.
 *
 */

#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"
#include "kernel/sigtools.h"
#include "kernel/ff.h"
#include "kernel/mem.h"
#include <string>
#include <sstream>
#include <set>
#include <map>

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

bool verbose, norename, noattr, attr2comment, noexpr, nodec, nohex, nostr, extmem, defparam, decimal, siminit, systemverilog, simple_lhs;
int auto_name_counter, auto_name_offset, auto_name_digits, extmem_counter;
std::map<RTLIL::IdString, int> auto_name_map;
std::set<RTLIL::IdString> reg_wires;
std::string auto_prefix, extmem_prefix;

RTLIL::Module *active_module;
dict<RTLIL::SigBit, RTLIL::State> active_initdata;
SigMap active_sigmap;
IdString initial_id;

void reset_auto_counter_id(RTLIL::IdString id, bool may_rename)
{
	const char *str = id.c_str();

	if (*str == '$' && may_rename && !norename)
		auto_name_map[id] = auto_name_counter++;

	if (str[0] != '\\' || str[1] != '_' || str[2] == 0)
		return;

	for (int i = 2; str[i] != 0; i++) {
		if (str[i] == '_' && str[i+1] == 0)
			continue;
		if (str[i] < '0' || str[i] > '9')
			return;
	}

	int num = atoi(str+2);
	if (num >= auto_name_offset)
		auto_name_offset = num + 1;
}

void reset_auto_counter(RTLIL::Module *module)
{
	auto_name_map.clear();
	auto_name_counter = 0;
	auto_name_offset = 0;

	reset_auto_counter_id(module->name, false);

	for (auto w : module->wires())
		reset_auto_counter_id(w->name, true);

	for (auto cell : module->cells()) {
		reset_auto_counter_id(cell->name, true);
		reset_auto_counter_id(cell->type, false);
	}

	for (auto it = module->processes.begin(); it != module->processes.end(); ++it)
		reset_auto_counter_id(it->second->name, false);

	auto_name_digits = 1;
	for (size_t i = 10; i < auto_name_offset + auto_name_map.size(); i = i*10)
		auto_name_digits++;

	if (verbose)
		for (auto it = auto_name_map.begin(); it != auto_name_map.end(); ++it)
			log("  renaming `%s' to `%s_%0*d_'.\n", it->first.c_str(), auto_prefix.c_str(), auto_name_digits, auto_name_offset + it->second);
}

std::string next_auto_id()
{
	return stringf("%s_%0*d_", auto_prefix.c_str(), auto_name_digits, auto_name_offset + auto_name_counter++);
}

std::string id(RTLIL::IdString internal_id, bool may_rename = true)
{
	const char *str = internal_id.c_str();
	bool do_escape = false;

	if (may_rename && auto_name_map.count(internal_id) != 0)
		return stringf("%s_%0*d_", auto_prefix.c_str(), auto_name_digits, auto_name_offset + auto_name_map[internal_id]);

	if (*str == '\\')
		str++;

	if ('0' <= *str && *str <= '9')
		do_escape = true;

	for (int i = 0; str[i]; i++)
	{
		if ('0' <= str[i] && str[i] <= '9')
			continue;
		if ('a' <= str[i] && str[i] <= 'z')
			continue;
		if ('A' <= str[i] && str[i] <= 'Z')
			continue;
		if (str[i] == '_')
			continue;
		do_escape = true;
		break;
	}

	const pool<string> keywords = {
		// IEEE 1800-2017 Annex B
		"accept_on", "alias", "always", "always_comb", "always_ff", "always_latch", "and", "assert", "assign", "assume", "automatic", "before",
		"begin", "bind", "bins", "binsof", "bit", "break", "buf", "bufif0", "bufif1", "byte", "case", "casex", "casez", "cell", "chandle",
		"checker", "class", "clocking", "cmos", "config", "const", "constraint", "context", "continue", "cover", "covergroup", "coverpoint",
		"cross", "deassign", "default", "defparam", "design", "disable", "dist", "do", "edge", "else", "end", "endcase", "endchecker",
		"endclass", "endclocking", "endconfig", "endfunction", "endgenerate", "endgroup", "endinterface", "endmodule", "endpackage",
		"endprimitive", "endprogram", "endproperty", "endsequence", "endspecify", "endtable", "endtask", "enum", "event", "eventually",
		"expect", "export", "extends", "extern", "final", "first_match", "for", "force", "foreach", "forever", "fork", "forkjoin", "function",
		"generate", "genvar", "global", "highz0", "highz1", "if", "iff", "ifnone", "ignore_bins", "illegal_bins", "implements", "implies",
		"import", "incdir", "include", "initial", "inout", "input", "inside", "instance", "int", "integer", "interconnect", "interface",
		"intersect", "join", "join_any", "join_none", "large", "let", "liblist", "library", "local", "localparam", "logic", "longint",
		"macromodule", "matches", "medium", "modport", "module", "nand", "negedge", "nettype", "new", "nexttime", "nmos", "nor",
		"noshowcancelled", "not", "notif0", "notif1", "null", "or", "output", "package", "packed", "parameter", "pmos", "posedge", "primitive",
		"priority", "program", "property", "protected", "pull0", "pull1", "pulldown", "pullup", "pulsestyle_ondetect", "pulsestyle_onevent",
		"pure", "rand", "randc", "randcase", "randsequence", "rcmos", "real", "realtime", "ref", "reg", "reject_on", "release", "repeat",
		"restrict", "return", "rnmos", "rpmos", "rtran", "rtranif0", "rtranif1", "s_always", "s_eventually", "s_nexttime", "s_until",
		"s_until_with", "scalared", "sequence", "shortint", "shortreal", "showcancelled", "signed", "small", "soft", "solve", "specify",
		"specparam", "static", "string", "strong", "strong0", "strong1", "struct", "super", "supply0", "supply1", "sync_accept_on",
		"sync_reject_on", "table", "tagged", "task", "this", "throughout", "time", "timeprecision", "timeunit", "tran", "tranif0", "tranif1",
		"tri", "tri0", "tri1", "triand", "trior", "trireg", "type", "typedef", "union", "unique", "unique0", "unsigned", "until", "until_with",
		"untyped", "use", "uwire", "var", "vectored", "virtual", "void", "wait", "wait_order", "wand", "weak", "weak0", "weak1", "while",
		"wildcard", "wire", "with", "within", "wor", "xnor", "xor",
	};
	if (keywords.count(str))
		do_escape = true;

	if (do_escape)
		return "\\" + std::string(str) + " ";
	return std::string(str);
}

bool is_reg_wire(RTLIL::SigSpec sig, std::string &reg_name)
{
	if (!sig.is_chunk() || sig.as_chunk().wire == NULL)
		return false;

	RTLIL::SigChunk chunk = sig.as_chunk();

	if (reg_wires.count(chunk.wire->name) == 0)
		return false;

	reg_name = id(chunk.wire->name);
	if (sig.size() != chunk.wire->width) {
		if (sig.size() == 1)
			reg_name += stringf("[%d]", chunk.wire->start_offset +  chunk.offset);
		else if (chunk.wire->upto)
			reg_name += stringf("[%d:%d]", (chunk.wire->width - (chunk.offset + chunk.width - 1) - 1) + chunk.wire->start_offset,
					(chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset);
		else
			reg_name += stringf("[%d:%d]", chunk.wire->start_offset +  chunk.offset + chunk.width - 1,
					chunk.wire->start_offset +  chunk.offset);
	}

	return true;
}

void dump_const(std::ostream &f, const RTLIL::Const &data, int width = -1, int offset = 0, bool no_decimal = false, bool escape_comment = false)
{
	bool set_signed = (data.flags & RTLIL::CONST_FLAG_SIGNED) != 0;
	if (width < 0)
		width = data.bits.size() - offset;
	if (width == 0) {
		// See IEEE 1364-2005 Clause 5.1.14.
		f << "{0{1'b0}}";
		return;
	}
	if (nostr)
		goto dump_hex;
	if ((data.flags & RTLIL::CONST_FLAG_STRING) == 0 || width != (int)data.bits.size()) {
		if (width == 32 && !no_decimal && !nodec) {
			int32_t val = 0;
			for (int i = offset+width-1; i >= offset; i--) {
				log_assert(i < (int)data.bits.size());
				if (data.bits[i] != State::S0 && data.bits[i] != State::S1)
					goto dump_hex;
				if (data.bits[i] == State::S1)
					val |= 1 << (i - offset);
			}
			if (decimal)
				f << stringf("%d", val);
			else if (set_signed && val < 0)
				f << stringf("-32'sd%u", -val);
			else
				f << stringf("32'%sd%u", set_signed ? "s" : "", val);
		} else {
	dump_hex:
			if (nohex)
				goto dump_bin;
			vector<char> bin_digits, hex_digits;
			for (int i = offset; i < offset+width; i++) {
				log_assert(i < (int)data.bits.size());
				switch (data.bits[i]) {
				case State::S0: bin_digits.push_back('0'); break;
				case State::S1: bin_digits.push_back('1'); break;
				case RTLIL::Sx: bin_digits.push_back('x'); break;
				case RTLIL::Sz: bin_digits.push_back('z'); break;
				case RTLIL::Sa: bin_digits.push_back('?'); break;
				case RTLIL::Sm: log_error("Found marker state in final netlist.");
				}
			}
			if (GetSize(bin_digits) == 0)
				goto dump_bin;
			while (GetSize(bin_digits) % 4 != 0)
				if (bin_digits.back() == '1')
					bin_digits.push_back('0');
				else
					bin_digits.push_back(bin_digits.back());
			for (int i = 0; i < GetSize(bin_digits); i += 4)
			{
				char bit_3 = bin_digits[i+3];
				char bit_2 = bin_digits[i+2];
				char bit_1 = bin_digits[i+1];
				char bit_0 = bin_digits[i+0];
				if (bit_3 == 'x' || bit_2 == 'x' || bit_1 == 'x' || bit_0 == 'x') {
					if (bit_3 != 'x' || bit_2 != 'x' || bit_1 != 'x' || bit_0 != 'x')
						goto dump_bin;
					hex_digits.push_back('x');
					continue;
				}
				if (bit_3 == 'z' || bit_2 == 'z' || bit_1 == 'z' || bit_0 == 'z') {
					if (bit_3 != 'z' || bit_2 != 'z' || bit_1 != 'z' || bit_0 != 'z')
						goto dump_bin;
					hex_digits.push_back('z');
					continue;
				}
				if (bit_3 == '?' || bit_2 == '?' || bit_1 == '?' || bit_0 == '?') {
					if (bit_3 != '?' || bit_2 != '?' || bit_1 != '?' || bit_0 != '?')
						goto dump_bin;
					hex_digits.push_back('?');
					continue;
				}
				int val = 8*(bit_3 - '0') + 4*(bit_2 - '0') + 2*(bit_1 - '0') + (bit_0 - '0');
				hex_digits.push_back(val < 10 ? '0' + val : 'a' + val - 10);
			}
			f << stringf("%d'%sh", width, set_signed ? "s" : "");
			for (int i = GetSize(hex_digits)-1; i >= 0; i--)
				f << hex_digits[i];
		}
		if (0) {
	dump_bin:
			f << stringf("%d'%sb", width, set_signed ? "s" : "");
			if (width == 0)
				f << stringf("0");
			for (int i = offset+width-1; i >= offset; i--) {
				log_assert(i < (int)data.bits.size());
				switch (data.bits[i]) {
				case State::S0: f << stringf("0"); break;
				case State::S1: f << stringf("1"); break;
				case RTLIL::Sx: f << stringf("x"); break;
				case RTLIL::Sz: f << stringf("z"); break;
				case RTLIL::Sa: f << stringf("?"); break;
				case RTLIL::Sm: log_error("Found marker state in final netlist.");
				}
			}
		}
	} else {
		if ((data.flags & RTLIL::CONST_FLAG_REAL) == 0)
			f << stringf("\"");
		std::string str = data.decode_string();
		for (size_t i = 0; i < str.size(); i++) {
			if (str[i] == '\n')
				f << stringf("\\n");
			else if (str[i] == '\t')
				f << stringf("\\t");
			else if (str[i] < 32)
				f << stringf("\\%03o", str[i]);
			else if (str[i] == '"')
				f << stringf("\\\"");
			else if (str[i] == '\\')
				f << stringf("\\\\");
			else if (str[i] == '/' && escape_comment && i > 0 && str[i-1] == '*')
				f << stringf("\\/");
			else
				f << str[i];
		}
		if ((data.flags & RTLIL::CONST_FLAG_REAL) == 0)
			f << stringf("\"");
	}
}

void dump_reg_init(std::ostream &f, SigSpec sig)
{
	Const initval;
	bool gotinit = false;

	for (auto bit : active_sigmap(sig)) {
		if (active_initdata.count(bit)) {
			initval.bits.push_back(active_initdata.at(bit));
			gotinit = true;
		} else {
			initval.bits.push_back(State::Sx);
		}
	}

	if (gotinit) {
		f << " = ";
		dump_const(f, initval);
	}
}

void dump_sigchunk(std::ostream &f, const RTLIL::SigChunk &chunk, bool no_decimal = false)
{
	if (chunk.wire == NULL) {
		dump_const(f, chunk.data, chunk.width, chunk.offset, no_decimal);
	} else {
		if (chunk.width == chunk.wire->width && chunk.offset == 0) {
			f << stringf("%s", id(chunk.wire->name).c_str());
		} else if (chunk.width == 1) {
			if (chunk.wire->upto)
				f << stringf("%s[%d]", id(chunk.wire->name).c_str(), (chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset);
			else
				f << stringf("%s[%d]", id(chunk.wire->name).c_str(), chunk.offset + chunk.wire->start_offset);
		} else {
			if (chunk.wire->upto)
				f << stringf("%s[%d:%d]", id(chunk.wire->name).c_str(),
						(chunk.wire->width - (chunk.offset + chunk.width - 1) - 1) + chunk.wire->start_offset,
						(chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset);
			else
				f << stringf("%s[%d:%d]", id(chunk.wire->name).c_str(),
						(chunk.offset + chunk.width - 1) + chunk.wire->start_offset,
						chunk.offset + chunk.wire->start_offset);
		}
	}
}

void dump_sigspec(std::ostream &f, const RTLIL::SigSpec &sig)
{
	if (GetSize(sig) == 0) {
		// See IEEE 1364-2005 Clause 5.1.14.
		f << "{0{1'b0}}";
		return;
	}
	if (sig.is_chunk()) {
		dump_sigchunk(f, sig.as_chunk());
	} else {
		f << stringf("{ ");
		for (auto it = sig.chunks().rbegin(); it != sig.chunks().rend(); ++it) {
			if (it != sig.chunks().rbegin())
				f << stringf(", ");
			dump_sigchunk(f, *it, true);
		}
		f << stringf(" }");
	}
}

void dump_attributes(std::ostream &f, std::string indent, dict<RTLIL::IdString, RTLIL::Const> &attributes, char term = '\n', bool modattr = false, bool regattr = false, bool as_comment = false)
{
	if (noattr)
		return;
	if (attr2comment)
		as_comment = true;
	for (auto it = attributes.begin(); it != attributes.end(); ++it) {
		if (it->first == ID::init && regattr) continue;
		f << stringf("%s" "%s %s", indent.c_str(), as_comment ? "/*" : "(*", id(it->first).c_str());
		f << stringf(" = ");
		if (modattr && (it->second == State::S0 || it->second == Const(0)))
			f << stringf(" 0 ");
		else if (modattr && (it->second == State::S1 || it->second == Const(1)))
			f << stringf(" 1 ");
		else
			dump_const(f, it->second, -1, 0, false, as_comment);
		f << stringf(" %s%c", as_comment ? "*/" : "*)", term);
	}
}

void dump_wire(std::ostream &f, std::string indent, RTLIL::Wire *wire)
{
	dump_attributes(f, indent, wire->attributes, '\n', /*modattr=*/false, /*regattr=*/reg_wires.count(wire->name));
#if 0
	if (wire->port_input && !wire->port_output)
		f << stringf("%s" "input %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : "");
	else if (!wire->port_input && wire->port_output)
		f << stringf("%s" "output %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : "");
	else if (wire->port_input && wire->port_output)
		f << stringf("%s" "inout %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : "");
	else
		f << stringf("%s" "%s ", indent.c_str(), reg_wires.count(wire->name) ? "reg" : "wire");
	if (wire->width != 1)
		f << stringf("[%d:%d] ", wire->width - 1 + wire->start_offset, wire->start_offset);
	f << stringf("%s;\n", id(wire->name).c_str());
#else
	// do not use Verilog-2k "output reg" syntax in Verilog export
	std::string range = "";
	if (wire->width != 1) {
		if (wire->upto)
			range = stringf(" [%d:%d]", wire->start_offset, wire->width - 1 + wire->start_offset);
		else
			range = stringf(" [%d:%d]", wire->width - 1 + wire->start_offset, wire->start_offset);
	}
	if (wire->port_input && !wire->port_output)
		f << stringf("%s" "input%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
	if (!wire->port_input && wire->port_output)
		f << stringf("%s" "output%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
	if (wire->port_input && wire->port_output)
		f << stringf("%s" "inout%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
	if (reg_wires.count(wire->name)) {
		f << stringf("%s" "reg%s %s", indent.c_str(), range.c_str(), id(wire->name).c_str());
		if (wire->attributes.count(ID::init)) {
			f << stringf(" = ");
			dump_const(f, wire->attributes.at(ID::init));
		}
		f << stringf(";\n");
	} else
		f << stringf("%s" "wire%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
#endif
}

void dump_memory(std::ostream &f, std::string indent, Mem &mem)
{
	std::string mem_id = id(mem.memid);

	dump_attributes(f, indent, mem.attributes);
	f << stringf("%s" "reg [%d:0] %s [%d:%d];\n", indent.c_str(), mem.width-1, mem_id.c_str(), mem.size+mem.start_offset-1, mem.start_offset);

	// for memory block make something like:
	//  reg [7:0] memid [3:0];
	//  initial begin
	//    memid[0] = ...
	//  end
	if (!mem.inits.empty())
	{
		if (extmem)
		{
			std::string extmem_filename = stringf("%s-%d.mem", extmem_prefix.c_str(), extmem_counter++);

			std::string extmem_filename_esc;
			for (auto c : extmem_filename)
			{
				if (c == '\n')
					extmem_filename_esc += "\\n";
				else if (c == '\t')
					extmem_filename_esc += "\\t";
				else if (c < 32)
					extmem_filename_esc += stringf("\\%03o", c);
				else if (c == '"')
					extmem_filename_esc += "\\\"";
				else if (c == '\\')
					extmem_filename_esc += "\\\\";
				else
					extmem_filename_esc += c;
			}
			f << stringf("%s" "initial $readmemb(\"%s\", %s);\n", indent.c_str(), extmem_filename_esc.c_str(), mem_id.c_str());

			std::ofstream extmem_f(extmem_filename, std::ofstream::trunc);
			if (extmem_f.fail())
				log_error("Can't open file `%s' for writing: %s\n", extmem_filename.c_str(), strerror(errno));
			else
			{
				Const data = mem.get_init_data();
				for (int i=0; i<mem.size; i++)
				{
					RTLIL::Const element = data.extract(i*mem.width, mem.width);
					for (int j=0; j<element.size(); j++)
					{
						switch (element[element.size()-j-1])
						{
							case State::S0: extmem_f << '0'; break;
							case State::S1: extmem_f << '1'; break;
							case State::Sx: extmem_f << 'x'; break;
							case State::Sz: extmem_f << 'z'; break;
							case State::Sa: extmem_f << '_'; break;
							case State::Sm: log_error("Found marker state in final netlist.");
						}
					}
					extmem_f << '\n';
				}
			}
		}
		else
		{
			f << stringf("%s" "initial begin\n", indent.c_str());
			for (auto &init : mem.inits) {
				int words = GetSize(init.data) / mem.width;
				int start = init.addr.as_int();
				for (int i=0; i<words; i++)
				{
					for (int j = 0; j < mem.width; j++)
					{
						if (init.en[j] != State::S1)
							continue;

						int start_j = j, width = 1;

						while (j+1 < mem.width && init.en[j+1] == State::S1)
							j++, width++;

						if (width == mem.width) {
							f << stringf("%s" "  %s[%d] = ", indent.c_str(), mem_id.c_str(), i + start);
						} else {
							f << stringf("%s" "  %s[%d][%d:%d] = ", indent.c_str(), mem_id.c_str(), i + start, j, start_j);
						}
						dump_const(f, init.data.extract(i*mem.width+start_j, width));
						f << stringf(";\n");
					}
				}
			}
			f << stringf("%s" "end\n", indent.c_str());
		}
	}

	// create a map : "edge clk" -> expressions within that clock domain
	dict<std::string, std::vector<std::string>> clk_to_lof_body;
	dict<std::string, std::string> clk_to_arst_cond;
	dict<std::string, std::vector<std::string>> clk_to_arst_body;
	clk_to_lof_body[""] = std::vector<std::string>();
	std::string clk_domain_str;
	// create a list of reg declarations
	std::vector<std::string> lof_reg_declarations;

	// read ports
	for (auto &port : mem.rd_ports)
	{
		if (port.clk_enable)
		{
			{
				std::ostringstream os;
				dump_sigspec(os, port.clk);
				clk_domain_str = stringf("%sedge %s", port.clk_polarity ? "pos" : "neg", os.str().c_str());
				if (port.arst != State::S0) {
					std::ostringstream os2;
					dump_sigspec(os2, port.arst);
					clk_domain_str += stringf(", posedge %s", os2.str().c_str());
					clk_to_arst_cond[clk_domain_str] = os2.str();
				}
			}

			// Decide how to represent the transparency; same idea as Mem::extract_rdff.
			bool trans_use_addr = true;
			for (auto bit : port.transparency_mask)
				if (!bit)
					trans_use_addr = false;

			if (GetSize(mem.wr_ports) == 0)
				trans_use_addr = false;

			if (port.en != State::S1 || port.srst != State::S0 || port.arst != State::S0 || !port.init_value.is_fully_undef())
				trans_use_addr = false;

			if (!trans_use_addr)
			{
				// for clocked read ports make something like:
				//   reg [..] temp_id;
				//   always @(posedge clk)
				//      if (rd_en) temp_id <= array_reg[r_addr];
				//   assign r_data = temp_id;
				std::string temp_id = next_auto_id();
				lof_reg_declarations.push_back( stringf("reg [%d:0] %s;\n", port.data.size() - 1, temp_id.c_str()) );

				bool has_indent = false;

				if (port.arst != State::S0) {
					std::ostringstream os;
					os << stringf("%s <= ", temp_id.c_str());
					dump_sigspec(os, port.arst_value);
					os << ";\n";
					clk_to_arst_body[clk_domain_str].push_back(os.str());
				}

				if (port.srst != State::S0 && !port.ce_over_srst) {
					std::ostringstream os;
					os << stringf("if (");
					dump_sigspec(os, port.srst);
					os << stringf(")\n");
					clk_to_lof_body[clk_domain_str].push_back(os.str());
					std::ostringstream os2;
					os2 << stringf("%s" "%s <= ", indent.c_str(), temp_id.c_str());
					dump_sigspec(os2, port.srst_value);
					os2 << ";\n";
					clk_to_lof_body[clk_domain_str].push_back(os2.str());
					std::ostringstream os3;
					if (port.en == State::S1) {
						os3 << "else begin\n";
					} else {
						os3 << "else if (";
						dump_sigspec(os3, port.en);
						os3 << ") begin\n";
					}
					clk_to_lof_body[clk_domain_str].push_back(os3.str());
					has_indent = true;
				} else if (port.en != State::S1) {
					std::ostringstream os;
					os << stringf("if (");
					dump_sigspec(os, port.en);
					os << stringf(") begin\n");
					clk_to_lof_body[clk_domain_str].push_back(os.str());
					has_indent = true;
				}

				for (int sub = 0; sub < (1 << port.wide_log2); sub++)
				{
					SigSpec addr = port.sub_addr(sub);
					std::ostringstream os;
					if (has_indent)
						os << indent;
					os << temp_id;
					if (port.wide_log2)
						os << stringf("[%d:%d]", (sub + 1) * mem.width - 1, sub * mem.width);
					os << stringf(" <= %s[", mem_id.c_str());
					dump_sigspec(os, addr);
					os << stringf("];\n");
					clk_to_lof_body[clk_domain_str].push_back(os.str());
				}

				for (int i = 0; i < GetSize(mem.wr_ports); i++) {
					auto &wport = mem.wr_ports[i];
					if (!port.transparency_mask[i] && !port.collision_x_mask[i])
						continue;
					int min_wide_log2 = std::min(port.wide_log2, wport.wide_log2);
					int max_wide_log2 = std::max(port.wide_log2, wport.wide_log2);
					bool wide_write = wport.wide_log2 > port.wide_log2;
					for (int sub = 0; sub < (1 << max_wide_log2); sub += (1 << min_wide_log2)) {
						SigSpec raddr = port.addr;
						SigSpec waddr = wport.addr;
						if (wide_write)
							waddr = wport.sub_addr(sub);
						else
							raddr = port.sub_addr(sub);
						int pos = 0;
						int ewidth = mem.width << min_wide_log2;
						int wsub = wide_write ? sub : 0;
						int rsub = wide_write ? 0 : sub;
						while (pos < ewidth) {
							int epos = pos;
							while (epos < ewidth && wport.en[epos + wsub * mem.width] == wport.en[pos + wsub * mem.width])
								epos++;

							std::ostringstream os;
							if (has_indent)
								os << indent;
							os << "if (";
							dump_sigspec(os, wport.en[pos + wsub * mem.width]);
							if (raddr != waddr) {
								os << " && ";
								dump_sigspec(os, raddr);
								os << " == ";
								dump_sigspec(os, waddr);
							}
							os << ")\n";
							clk_to_lof_body[clk_domain_str].push_back(os.str());

							std::ostringstream os2;
							if (has_indent)
								os2 << indent;
							os2 << indent;
							os2 << temp_id;
							if (epos-pos != GetSize(port.data))
								os2 << stringf("[%d:%d]", rsub * mem.width + epos-1, rsub * mem.width + pos);
							os2 << " <= ";
							if (port.transparency_mask[i])
								dump_sigspec(os2, wport.data.extract(wsub * mem.width + pos, epos-pos));
							else
								dump_sigspec(os2, Const(State::Sx, epos - pos));
							os2 << ";\n";
							clk_to_lof_body[clk_domain_str].push_back(os2.str());

							pos = epos;
						}
					}
				}

				if (port.srst != State::S0 && port.ce_over_srst)
				{
					std::ostringstream os;
					if (has_indent)
						os << indent;
					os << stringf("if (");
					dump_sigspec(os, port.srst);
					os << stringf(")\n");
					clk_to_lof_body[clk_domain_str].push_back(os.str());
					std::ostringstream os2;
					if (has_indent)
						os2 << indent;
					os2 << stringf("%s" "%s <= ", indent.c_str(), temp_id.c_str());
					dump_sigspec(os2, port.srst_value);
					os2 << ";\n";
					clk_to_lof_body[clk_domain_str].push_back(os2.str());
				}

				if (has_indent)
					clk_to_lof_body[clk_domain_str].push_back("end\n");

				if (!port.init_value.is_fully_undef())
				{
					std::ostringstream os;
					dump_sigspec(os, port.init_value);
					std::string line = stringf("initial %s = %s;\n", temp_id.c_str(), os.str().c_str());
					clk_to_lof_body[""].push_back(line);
				}

				{
					std::ostringstream os;
					dump_sigspec(os, port.data);
					std::string line = stringf("assign %s = %s;\n", os.str().c_str(), temp_id.c_str());
					clk_to_lof_body[""].push_back(line);
				}
			}
			else
			{
				// for rd-transparent read-ports make something like:
				//   reg [..] temp_id;
				//   always @(posedge clk)
				//     temp_id <= r_addr;
				//   assign r_data = array_reg[temp_id];
				std::string temp_id = next_auto_id();
				lof_reg_declarations.push_back( stringf("reg [%d:0] %s;\n", port.addr.size() - 1 - port.wide_log2, temp_id.c_str()) );
				{
					std::ostringstream os;
					dump_sigspec(os, port.addr.extract_end(port.wide_log2));
					std::string line = stringf("%s <= %s;\n", temp_id.c_str(), os.str().c_str());
					clk_to_lof_body[clk_domain_str].push_back(line);
				}
				for (int sub = 0; sub < (1 << port.wide_log2); sub++)
				{
					std::ostringstream os;
					os << "assign ";
					dump_sigspec(os, port.data.extract(sub * mem.width, mem.width));
					os << stringf(" = %s[", mem_id.c_str());;
					if (port.wide_log2) {
						Const addr_lo;
						for (int i = 0; i < port.wide_log2; i++)
							addr_lo.bits.push_back(State(sub >> i & 1));
						os << "{";
						os << temp_id;
						os << ", ";
						dump_const(os, addr_lo);
						os << "}";
					} else {
						os << temp_id;
					}
					os << "];\n";
					clk_to_lof_body[""].push_back(os.str());
				}
			}
		} else {
			// for non-clocked read-ports make something like:
			//   assign r_data = array_reg[r_addr];
			for (int sub = 0; sub < (1 << port.wide_log2); sub++)
			{
				SigSpec addr = port.sub_addr(sub);

				std::ostringstream os, os2;
				dump_sigspec(os, port.data.extract(sub * mem.width, mem.width));
				dump_sigspec(os2, addr);
				std::string line = stringf("assign %s = %s[%s];\n", os.str().c_str(), mem_id.c_str(), os2.str().c_str());
				clk_to_lof_body[""].push_back(line);
			}
		}
	}

	// Write ports.  Those are messy because we try to preserve priority, as much as we can:
	//
	// 1. We split all ports into several disjoint processes.
	// 2. If a port has priority over another port, the two ports need to share
	//    a process, so that priority can be reconstructed on the other end.
	// 3. We want each process to be as small as possible, to avoid extra
	//    priorities inferred on the other end.
	pool<int> wr_ports_done;
	for (int ridx = 0; ridx < GetSize(mem.wr_ports); ridx++)
	{
		if (wr_ports_done.count(ridx))
			continue;

		auto &root = mem.wr_ports[ridx];

		// Start from a root.
		pool<int> wr_ports_now;
		wr_ports_now.insert(ridx);

		// Transitively fill list of ports in this process by following priority edges.
		while (true)
		{
			bool changed = false;

			for (int i = 0; i < GetSize(mem.wr_ports); i++)
			for (int j = 0; j < i; j++)
			if (mem.wr_ports[i].priority_mask[j])
			{
				if (wr_ports_now.count(i) && !wr_ports_now.count(j)) {
					wr_ports_now.insert(j);
					changed = true;
				}
				if (!wr_ports_now.count(i) && wr_ports_now.count(j)) {
					wr_ports_now.insert(i);
					changed = true;
				}
			}

			if (!changed)
				break;
		}

		if (root.clk_enable) {
			f << stringf("%s" "always%s @(%sedge ", indent.c_str(), systemverilog ? "_ff" : "", root.clk_polarity ? "pos" : "neg");
			dump_sigspec(f, root.clk);
			f << ") begin\n";
		} else {
			f << stringf("%s" "always%s begin\n", indent.c_str(), systemverilog ? "_latch" : " @*");
		}

		for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++)
		{
			if (!wr_ports_now.count(pidx))
				continue;
			wr_ports_done.insert(pidx);

			auto &port = mem.wr_ports[pidx];
			log_assert(port.clk_enable == root.clk_enable);
			if (port.clk_enable) {
				log_assert(port.clk == root.clk);
				log_assert(port.clk_polarity == root.clk_polarity);
			}

			//   make something like:
			//   always @(posedge clk)
			//      if (wr_en_bit) memid[w_addr][??] <= w_data[??];
			//   ...
			for (int sub = 0; sub < (1 << port.wide_log2); sub++)
			{
				SigSpec addr = port.sub_addr(sub);
				for (int i = 0; i < mem.width; i++)
				{
					int start_i = i, width = 1;
					SigBit wen_bit = port.en[sub * mem.width + i];

					while (i+1 < mem.width && active_sigmap(port.en[sub * mem.width + i+1]) == active_sigmap(wen_bit))
						i++, width++;

					if (wen_bit == State::S0)
						continue;

					f << stringf("%s%s", indent.c_str(), indent.c_str());
					if (wen_bit != State::S1)
					{
						f << stringf("if (");
						dump_sigspec(f, wen_bit);
						f << stringf(")\n");
						f << stringf("%s%s%s", indent.c_str(), indent.c_str(), indent.c_str());
					}
					f << stringf("%s[", mem_id.c_str());
					dump_sigspec(f, addr);
					if (width == GetSize(port.en))
						f << stringf("] <= ");
					else
						f << stringf("][%d:%d] <= ", i, start_i);
					dump_sigspec(f, port.data.extract(sub * mem.width + start_i, width));
					f << stringf(";\n");
				}
			}
		}

		f << stringf("%s" "end\n", indent.c_str());
	}
	// Output Verilog that looks something like this:
	// reg [..] _3_;
	// always @(posedge CLK2) begin
	//   _3_ <= memory[D1ADDR];
	//   if (A1EN)
	//     memory[A1ADDR] <= A1DATA;
	//   if (A2EN)
	//     memory[A2ADDR] <= A2DATA;
	//   ...
	// end
	// always @(negedge CLK1) begin
	//   if (C1EN)
	//     memory[C1ADDR] <= C1DATA;
	// end
	// ...
	// assign D1DATA = _3_;
	// assign D2DATA <= memory[D2ADDR];

	// the reg ... definitions
	for(auto &reg : lof_reg_declarations)
	{
		f << stringf("%s" "%s", indent.c_str(), reg.c_str());
	}
	// the block of expressions by clock domain
	for(auto &pair : clk_to_lof_body)
	{
		std::string clk_domain = pair.first;
		std::vector<std::string> lof_lines = pair.second;
		if( clk_domain != "")
		{
			f << stringf("%s" "always%s @(%s) begin\n", indent.c_str(), systemverilog ? "_ff" : "", clk_domain.c_str());
			bool has_arst = clk_to_arst_cond.count(clk_domain) != 0;
			if (has_arst) {
				f << stringf("%s%s" "if (%s) begin\n", indent.c_str(), indent.c_str(), clk_to_arst_cond[clk_domain].c_str());
				for(auto &line : clk_to_arst_body[clk_domain])
					f << stringf("%s%s%s" "%s", indent.c_str(), indent.c_str(), indent.c_str(), line.c_str());
				f << stringf("%s%s" "end else begin\n", indent.c_str(), indent.c_str());
				for(auto &line : lof_lines)
					f << stringf("%s%s%s" "%s", indent.c_str(), indent.c_str(), indent.c_str(), line.c_str());
				f << stringf("%s%s" "end\n", indent.c_str(), indent.c_str());
			} else {
				for(auto &line : lof_lines)
					f << stringf("%s%s" "%s", indent.c_str(), indent.c_str(), line.c_str());
			}
			f << stringf("%s" "end\n", indent.c_str());
		}
		else
		{
			// the non-clocked assignments
			for(auto &line : lof_lines)
				f << stringf("%s" "%s", indent.c_str(), line.c_str());
		}
	}
}

void dump_cell_expr_port(std::ostream &f, RTLIL::Cell *cell, std::string port, bool gen_signed = true)
{
	if (gen_signed && cell->parameters.count("\\" + port + "_SIGNED") > 0 && cell->parameters["\\" + port + "_SIGNED"].as_bool()) {
		f << stringf("$signed(");
		dump_sigspec(f, cell->getPort("\\" + port));
		f << stringf(")");
	} else
		dump_sigspec(f, cell->getPort("\\" + port));
}

std::string cellname(RTLIL::Cell *cell)
{
	if (!norename && cell->name[0] == '$' && RTLIL::builtin_ff_cell_types().count(cell->type) && cell->hasPort(ID::Q) && !cell->type.in(ID($ff), ID($_FF_)))
	{
		RTLIL::SigSpec sig = cell->getPort(ID::Q);
		if (GetSize(sig) != 1 || sig.is_fully_const())
			goto no_special_reg_name;

		RTLIL::Wire *wire = sig[0].wire;

		if (wire->name[0] != '\\')
			goto no_special_reg_name;

		std::string cell_name = wire->name.str();

		size_t pos = cell_name.find('[');
		if (pos != std::string::npos)
			cell_name = cell_name.substr(0, pos) + "_reg" + cell_name.substr(pos);
		else
			cell_name = cell_name + "_reg";

		if (wire->width != 1)
			cell_name += stringf("[%d]", wire->start_offset + sig[0].offset);

		if (active_module && active_module->count_id(cell_name) > 0)
				goto no_special_reg_name;

		return id(cell_name);
	}
	else
	{
no_special_reg_name:
		return id(cell->name).c_str();
	}
}

void dump_cell_expr_uniop(std::ostream &f, std::string indent, RTLIL::Cell *cell, std::string op)
{
	f << stringf("%s" "assign ", indent.c_str());
	dump_sigspec(f, cell->getPort(ID::Y));
	f << stringf(" = %s ", op.c_str());
	dump_attributes(f, "", cell->attributes, ' ');
	dump_cell_expr_port(f, cell, "A", true);
	f << stringf(";\n");
}

void dump_cell_expr_binop(std::ostream &f, std::string indent, RTLIL::Cell *cell, std::string op)
{
	f << stringf("%s" "assign ", indent.c_str());
	dump_sigspec(f, cell->getPort(ID::Y));
	f << stringf(" = ");
	dump_cell_expr_port(f, cell, "A", true);
	f << stringf(" %s ", op.c_str());
	dump_attributes(f, "", cell->attributes, ' ');
	dump_cell_expr_port(f, cell, "B", true);
	f << stringf(";\n");
}

bool dump_cell_expr(std::ostream &f, std::string indent, RTLIL::Cell *cell)
{
	if (cell->type == ID($_NOT_)) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ");
		f << stringf("~");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(";\n");
		return true;
	}

	if (cell->type.in(ID($_AND_), ID($_NAND_), ID($_OR_), ID($_NOR_), ID($_XOR_), ID($_XNOR_), ID($_ANDNOT_), ID($_ORNOT_))) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ");
		if (cell->type.in(ID($_NAND_), ID($_NOR_), ID($_XNOR_)))
			f << stringf("~(");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(" ");
		if (cell->type.in(ID($_AND_), ID($_NAND_), ID($_ANDNOT_)))
			f << stringf("&");
		if (cell->type.in(ID($_OR_), ID($_NOR_), ID($_ORNOT_)))
			f << stringf("|");
		if (cell->type.in(ID($_XOR_), ID($_XNOR_)))
			f << stringf("^");
		dump_attributes(f, "", cell->attributes, ' ');
		f << stringf(" ");
		if (cell->type.in(ID($_ANDNOT_), ID($_ORNOT_)))
			f << stringf("~(");
		dump_cell_expr_port(f, cell, "B", false);
		if (cell->type.in(ID($_NAND_), ID($_NOR_), ID($_XNOR_), ID($_ANDNOT_), ID($_ORNOT_)))
			f << stringf(")");
		f << stringf(";\n");
		return true;
	}

	if (cell->type == ID($_MUX_)) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ");
		dump_cell_expr_port(f, cell, "S", false);
		f << stringf(" ? ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(" : ");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(";\n");
		return true;
	}

	if (cell->type == ID($_NMUX_)) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = !(");
		dump_cell_expr_port(f, cell, "S", false);
		f << stringf(" ? ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(" : ");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(");\n");
		return true;
	}

	if (cell->type.in(ID($_AOI3_), ID($_OAI3_))) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ~((");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(cell->type == ID($_AOI3_) ? " & " : " | ");
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(cell->type == ID($_AOI3_) ? ") |" : ") &");
		dump_attributes(f, "", cell->attributes, ' ');
		f << stringf(" ");
		dump_cell_expr_port(f, cell, "C", false);
		f << stringf(");\n");
		return true;
	}

	if (cell->type.in(ID($_AOI4_), ID($_OAI4_))) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ~((");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(cell->type == ID($_AOI4_) ? " & " : " | ");
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(cell->type == ID($_AOI4_) ? ") |" : ") &");
		dump_attributes(f, "", cell->attributes, ' ');
		f << stringf(" (");
		dump_cell_expr_port(f, cell, "C", false);
		f << stringf(cell->type == ID($_AOI4_) ? " & " : " | ");
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf("));\n");
		return true;
	}

#define HANDLE_UNIOP(_type, _operator) \
	if (cell->type ==_type) { dump_cell_expr_uniop(f, indent, cell, _operator); return true; }
#define HANDLE_BINOP(_type, _operator) \
	if (cell->type ==_type) { dump_cell_expr_binop(f, indent, cell, _operator); return true; }

	HANDLE_UNIOP(ID($not), "~")
	HANDLE_UNIOP(ID($pos), "+")
	HANDLE_UNIOP(ID($neg), "-")

	HANDLE_BINOP(ID($and),  "&")
	HANDLE_BINOP(ID($or),   "|")
	HANDLE_BINOP(ID($xor),  "^")
	HANDLE_BINOP(ID($xnor), "~^")

	HANDLE_UNIOP(ID($reduce_and),  "&")
	HANDLE_UNIOP(ID($reduce_or),   "|")
	HANDLE_UNIOP(ID($reduce_xor),  "^")
	HANDLE_UNIOP(ID($reduce_xnor), "~^")
	HANDLE_UNIOP(ID($reduce_bool), "|")

	HANDLE_BINOP(ID($shl),  "<<")
	HANDLE_BINOP(ID($shr),  ">>")
	HANDLE_BINOP(ID($sshl), "<<<")
	HANDLE_BINOP(ID($sshr), ">>>")

	HANDLE_BINOP(ID($lt),  "<")
	HANDLE_BINOP(ID($le),  "<=")
	HANDLE_BINOP(ID($eq),  "==")
	HANDLE_BINOP(ID($ne),  "!=")
	HANDLE_BINOP(ID($eqx), "===")
	HANDLE_BINOP(ID($nex), "!==")
	HANDLE_BINOP(ID($ge),  ">=")
	HANDLE_BINOP(ID($gt),  ">")

	HANDLE_BINOP(ID($add), "+")
	HANDLE_BINOP(ID($sub), "-")
	HANDLE_BINOP(ID($mul), "*")
	HANDLE_BINOP(ID($div), "/")
	HANDLE_BINOP(ID($mod), "%")
	HANDLE_BINOP(ID($pow), "**")

	HANDLE_UNIOP(ID($logic_not), "!")
	HANDLE_BINOP(ID($logic_and), "&&")
	HANDLE_BINOP(ID($logic_or),  "||")

#undef HANDLE_UNIOP
#undef HANDLE_BINOP

	if (cell->type == ID($divfloor))
	{
		// wire [MAXLEN+1:0] _0_, _1_, _2_;
		// assign _0_ = $signed(A);
		// assign _1_ = $signed(B);
		// assign _2_ = (A[-1] == B[-1]) || A == 0 ? _0_ : $signed(_0_ - (B[-1] ? _1_ + 1 : _1_ - 1));
		// assign Y = $signed(_2_) / $signed(_1_);

		if (cell->getParam(ID::A_SIGNED).as_bool() && cell->getParam(ID::B_SIGNED).as_bool()) {
			SigSpec sig_a = cell->getPort(ID::A);
			SigSpec sig_b = cell->getPort(ID::B);

			std::string buf_a = next_auto_id();
			std::string buf_b = next_auto_id();
			std::string buf_num = next_auto_id();
			int size_a = GetSize(sig_a);
			int size_b = GetSize(sig_b);
			int size_y = GetSize(cell->getPort(ID::Y));
			int size_max = std::max(size_a, std::max(size_b, size_y));

			// intentionally one wider than maximum width
			f << stringf("%s" "wire [%d:0] %s, %s, %s;\n", indent.c_str(), size_max, buf_a.c_str(), buf_b.c_str(), buf_num.c_str());
			f << stringf("%s" "assign %s = ", indent.c_str(), buf_a.c_str());
			dump_cell_expr_port(f, cell, "A", true);
			f << stringf(";\n");
			f << stringf("%s" "assign %s = ", indent.c_str(), buf_b.c_str());
			dump_cell_expr_port(f, cell, "B", true);
			f << stringf(";\n");

			f << stringf("%s" "assign %s = ", indent.c_str(), buf_num.c_str());
			f << stringf("(");
			dump_sigspec(f, sig_a.extract(sig_a.size()-1));
			f << stringf(" == ");
			dump_sigspec(f, sig_b.extract(sig_b.size()-1));
			f << stringf(") || ");
			dump_sigspec(f, sig_a);
			f << stringf(" == 0 ? %s : ", buf_a.c_str());
			f << stringf("$signed(%s - (", buf_a.c_str());
			dump_sigspec(f, sig_b.extract(sig_b.size()-1));
			f << stringf(" ? %s + 1 : %s - 1));\n", buf_b.c_str(), buf_b.c_str());


			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort(ID::Y));
			f << stringf(" = $signed(%s) / ", buf_num.c_str());
			dump_attributes(f, "", cell->attributes, ' ');
			f << stringf("$signed(%s);\n", buf_b.c_str());
			return true;
		} else {
			// same as truncating division
			dump_cell_expr_binop(f, indent, cell, "/");
			return true;
		}
	}

	if (cell->type == ID($modfloor))
	{
		// wire truncated = $signed(A) % $signed(B);
		// assign Y = (A[-1] == B[-1]) || truncated == 0 ? truncated : $signed(B) + $signed(truncated);

		if (cell->getParam(ID::A_SIGNED).as_bool() && cell->getParam(ID::B_SIGNED).as_bool()) {
			SigSpec sig_a = cell->getPort(ID::A);
			SigSpec sig_b = cell->getPort(ID::B);

			std::string temp_id = next_auto_id();
			f << stringf("%s" "wire [%d:0] %s = ", indent.c_str(), GetSize(cell->getPort(ID::A))-1, temp_id.c_str());
			dump_cell_expr_port(f, cell, "A", true);
			f << stringf(" %% ");
			dump_attributes(f, "", cell->attributes, ' ');
			dump_cell_expr_port(f, cell, "B", true);
			f << stringf(";\n");

			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort(ID::Y));
			f << stringf(" = (");
			dump_sigspec(f, sig_a.extract(sig_a.size()-1));
			f << stringf(" == ");
			dump_sigspec(f, sig_b.extract(sig_b.size()-1));
			f << stringf(") || %s == 0 ? %s : ", temp_id.c_str(), temp_id.c_str());
			dump_cell_expr_port(f, cell, "B", true);
			f << stringf(" + $signed(%s);\n", temp_id.c_str());
			return true;
		} else {
			// same as truncating modulo
			dump_cell_expr_binop(f, indent, cell, "%");
			return true;
		}
	}

	if (cell->type == ID($shift))
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ");
		if (cell->getParam(ID::B_SIGNED).as_bool())
		{
			dump_cell_expr_port(f, cell, "B", true);
			f << stringf(" < 0 ? ");
			dump_cell_expr_port(f, cell, "A", true);
			f << stringf(" << - ");
			dump_sigspec(f, cell->getPort(ID::B));
			f << stringf(" : ");
			dump_cell_expr_port(f, cell, "A", true);
			f << stringf(" >> ");
			dump_sigspec(f, cell->getPort(ID::B));
		}
		else
		{
			dump_cell_expr_port(f, cell, "A", true);
			f << stringf(" >> ");
			dump_sigspec(f, cell->getPort(ID::B));
		}
		f << stringf(";\n");
		return true;
	}

	if (cell->type == ID($shiftx))
	{
		std::string temp_id = next_auto_id();
		f << stringf("%s" "wire [%d:0] %s = ", indent.c_str(), GetSize(cell->getPort(ID::A))-1, temp_id.c_str());
		dump_sigspec(f, cell->getPort(ID::A));
		f << stringf(";\n");

		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = %s[", temp_id.c_str());
		if (cell->getParam(ID::B_SIGNED).as_bool())
			f << stringf("$signed(");
		dump_sigspec(f, cell->getPort(ID::B));
		if (cell->getParam(ID::B_SIGNED).as_bool())
			f << stringf(")");
		f << stringf(" +: %d", cell->getParam(ID::Y_WIDTH).as_int());
		f << stringf("];\n");
		return true;
	}

	if (cell->type == ID($mux))
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ");
		dump_sigspec(f, cell->getPort(ID::S));
		f << stringf(" ? ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_sigspec(f, cell->getPort(ID::B));
		f << stringf(" : ");
		dump_sigspec(f, cell->getPort(ID::A));
		f << stringf(";\n");
		return true;
	}

	if (cell->type == ID($pmux))
	{
		int width = cell->parameters[ID::WIDTH].as_int();
		int s_width = cell->getPort(ID::S).size();
		std::string func_name = cellname(cell);

		f << stringf("%s" "function [%d:0] %s;\n", indent.c_str(), width-1, func_name.c_str());
		f << stringf("%s" "  input [%d:0] a;\n", indent.c_str(), width-1);
		f << stringf("%s" "  input [%d:0] b;\n", indent.c_str(), s_width*width-1);
		f << stringf("%s" "  input [%d:0] s;\n", indent.c_str(), s_width-1);

		dump_attributes(f, indent + "  ", cell->attributes);
		if (!noattr)
			f << stringf("%s" "  (* parallel_case *)\n", indent.c_str());
		f << stringf("%s" "  casez (s)", indent.c_str());
		f << stringf(noattr ? " // synopsys parallel_case\n" : "\n");

		for (int i = 0; i < s_width; i++)
		{
			f << stringf("%s" "    %d'b", indent.c_str(), s_width);

			for (int j = s_width-1; j >= 0; j--)
				f << stringf("%c", j == i ? '1' : '?');

			f << stringf(":\n");
			f << stringf("%s" "      %s = b[%d:%d];\n", indent.c_str(), func_name.c_str(), (i+1)*width-1, i*width);
		}

		f << stringf("%s" "    default:\n", indent.c_str());
		f << stringf("%s" "      %s = a;\n", indent.c_str(), func_name.c_str());

		f << stringf("%s" "  endcase\n", indent.c_str());
		f << stringf("%s" "endfunction\n", indent.c_str());

		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = %s(", func_name.c_str());
		dump_sigspec(f, cell->getPort(ID::A));
		f << stringf(", ");
		dump_sigspec(f, cell->getPort(ID::B));
		f << stringf(", ");
		dump_sigspec(f, cell->getPort(ID::S));
		f << stringf(");\n");
		return true;
	}

	if (cell->type == ID($tribuf))
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ");
		dump_sigspec(f, cell->getPort(ID::EN));
		f << stringf(" ? ");
		dump_sigspec(f, cell->getPort(ID::A));
		f << stringf(" : %d'bz;\n", cell->parameters.at(ID::WIDTH).as_int());
		return true;
	}

	if (cell->type == ID($slice))
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ");
		dump_sigspec(f, cell->getPort(ID::A));
		f << stringf(" >> %d;\n", cell->parameters.at(ID::OFFSET).as_int());
		return true;
	}

	if (cell->type == ID($concat))
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = { ");
		dump_sigspec(f, cell->getPort(ID::B));
		f << stringf(" , ");
		dump_sigspec(f, cell->getPort(ID::A));
		f << stringf(" };\n");
		return true;
	}

	if (cell->type == ID($lut))
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort(ID::Y));
		f << stringf(" = ");
		dump_const(f, cell->parameters.at(ID::LUT));
		f << stringf(" >> ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_sigspec(f, cell->getPort(ID::A));
		f << stringf(";\n");
		return true;
	}

	if (RTLIL::builtin_ff_cell_types().count(cell->type))
	{
		FfData ff(nullptr, cell);

		// $ff / $_FF_ cell: not supported.
		if (ff.has_gclk)
			return false;

		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(ff.sig_q, reg_name);

		if (!out_is_reg_wire) {
			if (ff.width == 1)
				f << stringf("%s" "reg %s", indent.c_str(), reg_name.c_str());
			else
				f << stringf("%s" "reg [%d:0] %s", indent.c_str(), ff.width-1, reg_name.c_str());
			dump_reg_init(f, ff.sig_q);
			f << ";\n";
		}

		// If the FF has CLR/SET inputs, emit every bit slice separately.
		int chunks = ff.has_sr ? ff.width : 1;
		bool chunky = ff.has_sr && ff.width != 1;

		for (int i = 0; i < chunks; i++)
		{
			SigSpec sig_d, sig_ad;
			Const val_arst, val_srst;
			std::string reg_bit_name, sig_set_name, sig_clr_name, sig_arst_name, sig_aload_name;
			if (chunky) {
				reg_bit_name = stringf("%s[%d]", reg_name.c_str(), i);
				if (ff.has_gclk || ff.has_clk)
					sig_d = ff.sig_d[i];
				if (ff.has_aload)
					sig_ad = ff.sig_ad[i];
			} else {
				reg_bit_name = reg_name;
				sig_d = ff.sig_d;
				sig_ad = ff.sig_ad;
			}
			if (ff.has_arst)
				val_arst = chunky ? ff.val_arst[i] : ff.val_arst;
			if (ff.has_srst)
				val_srst = chunky ? ff.val_srst[i] : ff.val_srst;

			// If there are constants in the sensitivity list, replace them with an intermediate wire
			if (ff.has_clk) {
				if (ff.has_sr) {
					if (ff.sig_set[i].wire == NULL)
					{
						sig_set_name = next_auto_id();
						f << stringf("%s" "wire %s = ", indent.c_str(), sig_set_name.c_str());
						dump_const(f, ff.sig_set[i].data);
						f << stringf(";\n");
					}
					if (ff.sig_clr[i].wire == NULL)
					{
						sig_clr_name = next_auto_id();
						f << stringf("%s" "wire %s = ", indent.c_str(), sig_clr_name.c_str());
						dump_const(f, ff.sig_clr[i].data);
						f << stringf(";\n");
					}
				} else if (ff.has_arst) {
					if (ff.sig_arst[0].wire == NULL)
					{
						sig_arst_name = next_auto_id();
						f << stringf("%s" "wire %s = ", indent.c_str(), sig_arst_name.c_str());
						dump_const(f, ff.sig_arst[0].data);
						f << stringf(";\n");
					}
				} else if (ff.has_aload) {
					if (ff.sig_aload[0].wire == NULL)
					{
						sig_aload_name = next_auto_id();
						f << stringf("%s" "wire %s = ", indent.c_str(), sig_aload_name.c_str());
						dump_const(f, ff.sig_aload[0].data);
						f << stringf(";\n");
					}
				}
			}

			dump_attributes(f, indent, cell->attributes);
			if (ff.has_clk)
			{
				// FFs.
				f << stringf("%s" "always%s @(%sedge ", indent.c_str(), systemverilog ? "_ff" : "", ff.pol_clk ? "pos" : "neg");
				dump_sigspec(f, ff.sig_clk);
				if (ff.has_sr) {
					f << stringf(", %sedge ", ff.pol_set ? "pos" : "neg");
					if (ff.sig_set[i].wire == NULL)
						f << stringf("%s", sig_set_name.c_str());
					else
						dump_sigspec(f, ff.sig_set[i]);

					f << stringf(", %sedge ", ff.pol_clr ? "pos" : "neg");
					if (ff.sig_clr[i].wire == NULL)
						f << stringf("%s", sig_clr_name.c_str());
					else
						dump_sigspec(f, ff.sig_clr[i]);
				} else if (ff.has_arst) {
					f << stringf(", %sedge ", ff.pol_arst ? "pos" : "neg");
					if (ff.sig_arst[0].wire == NULL)
						f << stringf("%s", sig_arst_name.c_str());
					else
						dump_sigspec(f, ff.sig_arst);
				} else if (ff.has_aload) {
					f << stringf(", %sedge ", ff.pol_aload ? "pos" : "neg");
					if (ff.sig_aload[0].wire == NULL)
						f << stringf("%s", sig_aload_name.c_str());
					else
						dump_sigspec(f, ff.sig_aload);
				}
				f << stringf(")\n");

				f << stringf("%s" "  ", indent.c_str());
				if (ff.has_sr) {
					f << stringf("if (%s", ff.pol_clr ? "" : "!");
					if (ff.sig_clr[i].wire == NULL)
						f << stringf("%s", sig_clr_name.c_str());
					else
						dump_sigspec(f, ff.sig_clr[i]);
					f << stringf(") %s <= 1'b0;\n", reg_bit_name.c_str());
					f << stringf("%s" "  else if (%s", indent.c_str(), ff.pol_set ? "" : "!");
					if (ff.sig_set[i].wire == NULL)
						f << stringf("%s", sig_set_name.c_str());
					else
						dump_sigspec(f, ff.sig_set[i]);
					f << stringf(") %s <= 1'b1;\n", reg_bit_name.c_str());
					f << stringf("%s" "  else ", indent.c_str());
				} else if (ff.has_arst) {
					f << stringf("if (%s", ff.pol_arst ? "" : "!");
					if (ff.sig_arst[0].wire == NULL)
						f << stringf("%s", sig_arst_name.c_str());
					else
						dump_sigspec(f, ff.sig_arst);
					f << stringf(") %s <= ", reg_bit_name.c_str());
					dump_sigspec(f, val_arst);
					f << stringf(";\n");
					f << stringf("%s" "  else ", indent.c_str());
				} else if (ff.has_aload) {
					f << stringf("if (%s", ff.pol_aload ? "" : "!");
					if (ff.sig_aload[0].wire == NULL)
						f << stringf("%s", sig_aload_name.c_str());
					else
						dump_sigspec(f, ff.sig_aload);
					f << stringf(") %s <= ", reg_bit_name.c_str());
					dump_sigspec(f, sig_ad);
					f << stringf(";\n");
					f << stringf("%s" "  else ", indent.c_str());
				}

				if (ff.has_srst && ff.has_ce && ff.ce_over_srst) {
					f << stringf("if (%s", ff.pol_ce ? "" : "!");
					dump_sigspec(f, ff.sig_ce);
					f << stringf(")\n");
					f << stringf("%s" "    if (%s", indent.c_str(), ff.pol_srst ? "" : "!");
					dump_sigspec(f, ff.sig_srst);
					f << stringf(") %s <= ", reg_bit_name.c_str());
					dump_sigspec(f, val_srst);
					f << stringf(";\n");
					f << stringf("%s" "    else ", indent.c_str());
				} else {
					if (ff.has_srst) {
						f << stringf("if (%s", ff.pol_srst ? "" : "!");
						dump_sigspec(f, ff.sig_srst);
						f << stringf(") %s <= ", reg_bit_name.c_str());
						dump_sigspec(f, val_srst);
						f << stringf(";\n");
						f << stringf("%s" "  else ", indent.c_str());
					}
					if (ff.has_ce) {
						f << stringf("if (%s", ff.pol_ce ? "" : "!");
						dump_sigspec(f, ff.sig_ce);
						f << stringf(") ");
					}
				}

				f << stringf("%s <= ", reg_bit_name.c_str());
				dump_sigspec(f, sig_d);
				f << stringf(";\n");
			}
			else
			{
				// Latches.
				f << stringf("%s" "always%s\n", indent.c_str(), systemverilog ? "_latch" : " @*");

				f << stringf("%s" "  ", indent.c_str());
				if (ff.has_sr) {
					f << stringf("if (%s", ff.pol_clr ? "" : "!");
					dump_sigspec(f, ff.sig_clr[i]);
					f << stringf(") %s = 1'b0;\n", reg_bit_name.c_str());
					f << stringf("%s" "  else if (%s", indent.c_str(), ff.pol_set ? "" : "!");
					dump_sigspec(f, ff.sig_set[i]);
					f << stringf(") %s = 1'b1;\n", reg_bit_name.c_str());
					if (ff.has_aload)
						f << stringf("%s" "  else ", indent.c_str());
				} else if (ff.has_arst) {
					f << stringf("if (%s", ff.pol_arst ? "" : "!");
					dump_sigspec(f, ff.sig_arst);
					f << stringf(") %s = ", reg_bit_name.c_str());
					dump_sigspec(f, val_arst);
					f << stringf(";\n");
					if (ff.has_aload)
						f << stringf("%s" "  else ", indent.c_str());
				}
				if (ff.has_aload) {
					f << stringf("if (%s", ff.pol_aload ? "" : "!");
					dump_sigspec(f, ff.sig_aload);
					f << stringf(") %s = ", reg_bit_name.c_str());
					dump_sigspec(f, sig_ad);
					f << stringf(";\n");
				}
			}
		}

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, ff.sig_q);
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

	if (cell->type.in(ID($assert), ID($assume), ID($cover)))
	{
		f << stringf("%s" "always%s if (", indent.c_str(), systemverilog ? "_comb" : " @*");
		dump_sigspec(f, cell->getPort(ID::EN));
		f << stringf(") %s(", cell->type.c_str()+1);
		dump_sigspec(f, cell->getPort(ID::A));
		f << stringf(");\n");
		return true;
	}

	if (cell->type.in(ID($specify2), ID($specify3)))
	{
		f << stringf("%s" "specify\n%s  ", indent.c_str(), indent.c_str());

		SigSpec en = cell->getPort(ID::EN);
		if (en != State::S1) {
			f << stringf("if (");
			dump_sigspec(f, cell->getPort(ID::EN));
			f << stringf(") ");
		}

		f << "(";
		if (cell->type == ID($specify3) && cell->getParam(ID::EDGE_EN).as_bool())
			f << (cell->getParam(ID::EDGE_POL).as_bool() ? "posedge ": "negedge ");

		dump_sigspec(f, cell->getPort(ID::SRC));

		f << " ";
		if (cell->getParam(ID::SRC_DST_PEN).as_bool())
			f << (cell->getParam(ID::SRC_DST_POL).as_bool() ? "+": "-");
		f << (cell->getParam(ID::FULL).as_bool() ? "*> ": "=> ");

		if (cell->type == ID($specify3)) {
			f << "(";
			dump_sigspec(f, cell->getPort(ID::DST));
			f << " ";
			if (cell->getParam(ID::DAT_DST_PEN).as_bool())
				f << (cell->getParam(ID::DAT_DST_POL).as_bool() ? "+": "-");
			f << ": ";
			dump_sigspec(f, cell->getPort(ID::DAT));
			f << ")";
		} else {
			dump_sigspec(f, cell->getPort(ID::DST));
		}

		bool bak_decimal = decimal;
		decimal = 1;

		f << ") = (";
		dump_const(f, cell->getParam(ID::T_RISE_MIN));
		f << ":";
		dump_const(f, cell->getParam(ID::T_RISE_TYP));
		f << ":";
		dump_const(f, cell->getParam(ID::T_RISE_MAX));
		f << ", ";
		dump_const(f, cell->getParam(ID::T_FALL_MIN));
		f << ":";
		dump_const(f, cell->getParam(ID::T_FALL_TYP));
		f << ":";
		dump_const(f, cell->getParam(ID::T_FALL_MAX));
		f << ");\n";

		decimal = bak_decimal;

		f << stringf("%s" "endspecify\n", indent.c_str());
		return true;
	}

	if (cell->type == ID($specrule))
	{
		f << stringf("%s" "specify\n%s  ", indent.c_str(), indent.c_str());

		IdString spec_type = cell->getParam(ID::TYPE).decode_string();
		f << stringf("%s(", spec_type.c_str());

		if (cell->getParam(ID::SRC_PEN).as_bool())
			f << (cell->getParam(ID::SRC_POL).as_bool() ? "posedge ": "negedge ");
		dump_sigspec(f, cell->getPort(ID::SRC));

		if (cell->getPort(ID::SRC_EN) != State::S1) {
			f << " &&& ";
			dump_sigspec(f, cell->getPort(ID::SRC_EN));
		}

		f << ", ";
		if (cell->getParam(ID::DST_PEN).as_bool())
			f << (cell->getParam(ID::DST_POL).as_bool() ? "posedge ": "negedge ");
		dump_sigspec(f, cell->getPort(ID::DST));

		if (cell->getPort(ID::DST_EN) != State::S1) {
			f << " &&& ";
			dump_sigspec(f, cell->getPort(ID::DST_EN));
		}

		bool bak_decimal = decimal;
		decimal = 1;

		f << ", ";
		dump_const(f, cell->getParam(ID::T_LIMIT_MIN));
		f << ": ";
		dump_const(f, cell->getParam(ID::T_LIMIT_TYP));
		f << ": ";
		dump_const(f, cell->getParam(ID::T_LIMIT_MAX));

		if (spec_type.in(ID($setuphold), ID($recrem), ID($fullskew))) {
			f << ", ";
			dump_const(f, cell->getParam(ID::T_LIMIT2_MIN));
			f << ": ";
			dump_const(f, cell->getParam(ID::T_LIMIT2_TYP));
			f << ": ";
			dump_const(f, cell->getParam(ID::T_LIMIT2_MAX));
		}

		f << ");\n";
		decimal = bak_decimal;

		f << stringf("%s" "endspecify\n", indent.c_str());
		return true;
	}

	// FIXME: $fsm

	return false;
}

void dump_cell(std::ostream &f, std::string indent, RTLIL::Cell *cell)
{
	// Handled by dump_memory
	if (cell->is_mem_cell())
		return;

	if (cell->type[0] == '$' && !noexpr) {
		if (dump_cell_expr(f, indent, cell))
			return;
	}

	dump_attributes(f, indent, cell->attributes);
	f << stringf("%s" "%s", indent.c_str(), id(cell->type, false).c_str());

	if (!defparam && cell->parameters.size() > 0) {
		f << stringf(" #(");
		for (auto it = cell->parameters.begin(); it != cell->parameters.end(); ++it) {
			if (it != cell->parameters.begin())
				f << stringf(",");
			f << stringf("\n%s  .%s(", indent.c_str(), id(it->first).c_str());
			dump_const(f, it->second);
			f << stringf(")");
		}
		f << stringf("\n%s" ")", indent.c_str());
	}

	std::string cell_name = cellname(cell);
	if (cell_name != id(cell->name))
		f << stringf(" %s /* %s */ (", cell_name.c_str(), id(cell->name).c_str());
	else
		f << stringf(" %s (", cell_name.c_str());

	bool first_arg = true;
	std::set<RTLIL::IdString> numbered_ports;
	for (int i = 1; true; i++) {
		char str[16];
		snprintf(str, 16, "$%d", i);
		for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) {
			if (it->first != str)
				continue;
			if (!first_arg)
				f << stringf(",");
			first_arg = false;
			f << stringf("\n%s  ", indent.c_str());
			dump_sigspec(f, it->second);
			numbered_ports.insert(it->first);
			goto found_numbered_port;
		}
		break;
	found_numbered_port:;
	}
	for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) {
		if (numbered_ports.count(it->first))
			continue;
		if (!first_arg)
			f << stringf(",");
		first_arg = false;
		f << stringf("\n%s  .%s(", indent.c_str(), id(it->first).c_str());
		if (it->second.size() > 0)
			dump_sigspec(f, it->second);
		f << stringf(")");
	}
	f << stringf("\n%s" ");\n", indent.c_str());

	if (defparam && cell->parameters.size() > 0) {
		for (auto it = cell->parameters.begin(); it != cell->parameters.end(); ++it) {
			f << stringf("%sdefparam %s.%s = ", indent.c_str(), cell_name.c_str(), id(it->first).c_str());
			dump_const(f, it->second);
			f << stringf(";\n");
		}
	}

	if (siminit && RTLIL::builtin_ff_cell_types().count(cell->type) && cell->hasPort(ID::Q) && !cell->type.in(ID($ff), ID($_FF_))) {
		std::stringstream ss;
		dump_reg_init(ss, cell->getPort(ID::Q));
		if (!ss.str().empty()) {
			f << stringf("%sinitial %s.Q", indent.c_str(), cell_name.c_str());
			f << ss.str();
			f << ";\n";
		}
	}
}

void dump_conn(std::ostream &f, std::string indent, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right)
{
	if (simple_lhs) {
		int offset = 0;
		for (auto &chunk : left.chunks()) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, chunk);
			f << stringf(" = ");
			dump_sigspec(f, right.extract(offset, GetSize(chunk)));
			f << stringf(";\n");
			offset += GetSize(chunk);
		}
	} else {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, left);
		f << stringf(" = ");
		dump_sigspec(f, right);
		f << stringf(";\n");
	}
}

void dump_proc_switch(std::ostream &f, std::string indent, RTLIL::SwitchRule *sw);

void dump_case_body(std::ostream &f, std::string indent, RTLIL::CaseRule *cs, bool omit_trailing_begin = false)
{
	int number_of_stmts = cs->switches.size() + cs->actions.size();

	if (!omit_trailing_begin && number_of_stmts >= 2)
		f << stringf("%s" "begin\n", indent.c_str());

	for (auto it = cs->actions.begin(); it != cs->actions.end(); ++it) {
		if (it->first.size() == 0)
			continue;
		f << stringf("%s  ", indent.c_str());
		dump_sigspec(f, it->first);
		f << stringf(" = ");
		dump_sigspec(f, it->second);
		f << stringf(";\n");
	}

	for (auto it = cs->switches.begin(); it != cs->switches.end(); ++it)
		dump_proc_switch(f, indent + "  ", *it);

	if (!omit_trailing_begin && number_of_stmts == 0)
		f << stringf("%s  /* empty */;\n", indent.c_str());

	if (omit_trailing_begin || number_of_stmts >= 2)
		f << stringf("%s" "end\n", indent.c_str());
}

void dump_proc_switch(std::ostream &f, std::string indent, RTLIL::SwitchRule *sw)
{
	if (sw->signal.size() == 0) {
		f << stringf("%s" "begin\n", indent.c_str());
		for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it) {
			if ((*it)->compare.size() == 0)
				dump_case_body(f, indent + "  ", *it);
		}
		f << stringf("%s" "end\n", indent.c_str());
		return;
	}

	dump_attributes(f, indent, sw->attributes);
	f << stringf("%s" "casez (", indent.c_str());
	dump_sigspec(f, sw->signal);
	f << stringf(")\n");

	bool got_default = false;
	for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it) {
		dump_attributes(f, indent + "  ", (*it)->attributes, '\n', /*modattr=*/false, /*regattr=*/false, /*as_comment=*/true);
		if ((*it)->compare.size() == 0) {
			if (got_default)
				continue;
			f << stringf("%s  default", indent.c_str());
			got_default = true;
		} else {
			f << stringf("%s  ", indent.c_str());
			for (size_t i = 0; i < (*it)->compare.size(); i++) {
				if (i > 0)
					f << stringf(", ");
				dump_sigspec(f, (*it)->compare[i]);
			}
		}
		f << stringf(":\n");
		dump_case_body(f, indent + "    ", *it);
	}

	f << stringf("%s" "endcase\n", indent.c_str());
}

void case_body_find_regs(RTLIL::CaseRule *cs)
{
	for (auto it = cs->switches.begin(); it != cs->switches.end(); ++it)
	for (auto it2 = (*it)->cases.begin(); it2 != (*it)->cases.end(); it2++)
		case_body_find_regs(*it2);

	for (auto it = cs->actions.begin(); it != cs->actions.end(); ++it) {
		for (auto &c : it->first.chunks())
			if (c.wire != NULL)
				reg_wires.insert(c.wire->name);
	}
}

void dump_process(std::ostream &f, std::string indent, RTLIL::Process *proc, bool find_regs = false)
{
	if (find_regs) {
		case_body_find_regs(&proc->root_case);
		for (auto it = proc->syncs.begin(); it != proc->syncs.end(); ++it)
		for (auto it2 = (*it)->actions.begin(); it2 != (*it)->actions.end(); it2++) {
			for (auto &c : it2->first.chunks())
				if (c.wire != NULL)
					reg_wires.insert(c.wire->name);
		}
		return;
	}

	f << stringf("%s" "always%s begin\n", indent.c_str(), systemverilog ? "_comb" : " @*");
	if (!systemverilog)
		f << indent + "  " << "if (" << id(initial_id) << ") begin end\n";
	dump_case_body(f, indent, &proc->root_case, true);

	std::string backup_indent = indent;

	for (size_t i = 0; i < proc->syncs.size(); i++)
	{
		RTLIL::SyncRule *sync = proc->syncs[i];
		indent = backup_indent;

		if (sync->type == RTLIL::STa) {
			f << stringf("%s" "always%s begin\n", indent.c_str(), systemverilog ? "_comb" : " @*");
		} else if (sync->type == RTLIL::STi) {
			f << stringf("%s" "initial begin\n", indent.c_str());
		} else {
			f << stringf("%s" "always%s @(", indent.c_str(), systemverilog ? "_ff" : "");
			if (sync->type == RTLIL::STp || sync->type == RTLIL::ST1)
				f << stringf("posedge ");
			if (sync->type == RTLIL::STn || sync->type == RTLIL::ST0)
				f << stringf("negedge ");
			dump_sigspec(f, sync->signal);
			f << stringf(") begin\n");
		}
		std::string ends = indent + "end\n";
		indent += "  ";

		if (sync->type == RTLIL::ST0 || sync->type == RTLIL::ST1) {
			f << stringf("%s" "if (%s", indent.c_str(), sync->type == RTLIL::ST0 ? "!" : "");
			dump_sigspec(f, sync->signal);
			f << stringf(") begin\n");
			ends = indent + "end\n" + ends;
			indent += "  ";
		}

		if (sync->type == RTLIL::STp || sync->type == RTLIL::STn) {
			for (size_t j = 0; j < proc->syncs.size(); j++) {
				RTLIL::SyncRule *sync2 = proc->syncs[j];
				if (sync2->type == RTLIL::ST0 || sync2->type == RTLIL::ST1) {
					f << stringf("%s" "if (%s", indent.c_str(), sync2->type == RTLIL::ST1 ? "!" : "");
					dump_sigspec(f, sync2->signal);
					f << stringf(") begin\n");
					ends = indent + "end\n" + ends;
					indent += "  ";
				}
			}
		}

		for (auto it = sync->actions.begin(); it != sync->actions.end(); ++it) {
			if (it->first.size() == 0)
				continue;
			f << stringf("%s  ", indent.c_str());
			dump_sigspec(f, it->first);
			f << stringf(" <= ");
			dump_sigspec(f, it->second);
			f << stringf(";\n");
		}

		f << stringf("%s", ends.c_str());
	}
}

void dump_module(std::ostream &f, std::string indent, RTLIL::Module *module)
{
	reg_wires.clear();
	reset_auto_counter(module);
	active_module = module;
	active_sigmap.set(module);
	active_initdata.clear();

	for (auto wire : module->wires())
		if (wire->attributes.count(ID::init)) {
			SigSpec sig = active_sigmap(wire);
			Const val = wire->attributes.at(ID::init);
			for (int i = 0; i < GetSize(sig) && i < GetSize(val); i++)
				if (val[i] == State::S0 || val[i] == State::S1)
					active_initdata[sig[i]] = val[i];
		}

	if (!module->processes.empty())
		log_warning("Module %s contains unmapped RTLIL processes. RTLIL processes\n"
				"can't always be mapped directly to Verilog always blocks. Unintended\n"
				"changes in simulation behavior are possible! Use \"proc\" to convert\n"
				"processes to logic networks and registers.\n", log_id(module));

	f << stringf("\n");
	for (auto it = module->processes.begin(); it != module->processes.end(); ++it)
		dump_process(f, indent + "  ", it->second, true);

	if (!noexpr)
	{
		std::set<std::pair<RTLIL::Wire*,int>> reg_bits;
		for (auto cell : module->cells())
		{
			if (!RTLIL::builtin_ff_cell_types().count(cell->type) || !cell->hasPort(ID::Q) || cell->type.in(ID($ff), ID($_FF_)))
				continue;

			RTLIL::SigSpec sig = cell->getPort(ID::Q);

			if (sig.is_chunk()) {
				RTLIL::SigChunk chunk = sig.as_chunk();
				if (chunk.wire != NULL)
					for (int i = 0; i < chunk.width; i++)
						reg_bits.insert(std::pair<RTLIL::Wire*,int>(chunk.wire, chunk.offset+i));
			}
		}
		for (auto wire : module->wires())
		{
			for (int i = 0; i < wire->width; i++)
				if (reg_bits.count(std::pair<RTLIL::Wire*,int>(wire, i)) == 0)
					goto this_wire_aint_reg;
			if (wire->width)
				reg_wires.insert(wire->name);
		this_wire_aint_reg:;
		}
	}

	dump_attributes(f, indent, module->attributes, '\n', /*modattr=*/true);
	f << stringf("%s" "module %s(", indent.c_str(), id(module->name, false).c_str());
	bool keep_running = true;
	int cnt = 0;
	for (int port_id = 1; keep_running; port_id++) {
		keep_running = false;
		for (auto wire : module->wires()) {
			if (wire->port_id == port_id) {
				if (port_id != 1)
					f << stringf(", ");
				f << stringf("%s", id(wire->name).c_str());
				keep_running = true;
				if (cnt==20) { f << stringf("\n"); cnt = 0; } else cnt++;
				continue;
			}
		}
	}
	f << stringf(");\n");
	if (!systemverilog && !module->processes.empty()) {
		initial_id = NEW_ID;
		f << indent + "  " << "reg " << id(initial_id) << " = 0;\n";
	}

	for (auto w : module->wires())
		dump_wire(f, indent + "  ", w);

	for (auto &mem : Mem::get_all_memories(module))
		dump_memory(f, indent + "  ", mem);

	for (auto cell : module->cells())
		dump_cell(f, indent + "  ", cell);

	for (auto it = module->processes.begin(); it != module->processes.end(); ++it)
		dump_process(f, indent + "  ", it->second);

	for (auto it = module->connections().begin(); it != module->connections().end(); ++it)
		dump_conn(f, indent + "  ", it->first, it->second);

	f << stringf("%s" "endmodule\n", indent.c_str());
	active_module = NULL;
	active_sigmap.clear();
	active_initdata.clear();
}

struct VerilogBackend : public Backend {
	VerilogBackend() : Backend("verilog", "write design to Verilog file") { }
	void help() override
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    write_verilog [options] [filename]\n");
		log("\n");
		log("Write the current design to a Verilog file.\n");
		log("\n");
		log("    -sv\n");
		log("        with this option, SystemVerilog constructs like always_comb are used\n");
		log("\n");
		log("    -norename\n");
		log("        without this option all internal object names (the ones with a dollar\n");
		log("        instead of a backslash prefix) are changed to short names in the\n");
		log("        format '_<number>_'.\n");
		log("\n");
		log("    -renameprefix <prefix>\n");
		log("        insert this prefix in front of auto-generated instance names\n");
		log("\n");
		log("    -noattr\n");
		log("        with this option no attributes are included in the output\n");
		log("\n");
		log("    -attr2comment\n");
		log("        with this option attributes are included as comments in the output\n");
		log("\n");
		log("    -noexpr\n");
		log("        without this option all internal cells are converted to Verilog\n");
		log("        expressions.\n");
		log("\n");
		log("    -siminit\n");
		log("        add initial statements with hierarchical refs to initialize FFs when\n");
		log("        in -noexpr mode.\n");
		log("\n");
		log("    -nodec\n");
		log("        32-bit constant values are by default dumped as decimal numbers,\n");
		log("        not bit pattern. This option deactivates this feature and instead\n");
		log("        will write out all constants in binary.\n");
		log("\n");
		log("    -decimal\n");
		log("        dump 32-bit constants in decimal and without size and radix\n");
		log("\n");
		log("    -nohex\n");
		log("        constant values that are compatible with hex output are usually\n");
		log("        dumped as hex values. This option deactivates this feature and\n");
		log("        instead will write out all constants in binary.\n");
		log("\n");
		log("    -nostr\n");
		log("        Parameters and attributes that are specified as strings in the\n");
		log("        original input will be output as strings by this back-end. This\n");
		log("        deactivates this feature and instead will write string constants\n");
		log("        as binary numbers.\n");
		log("\n");
		log("    -simple-lhs\n");
		log("        Connection assignments with simple left hand side without concatenations.\n");
		log("\n");
		log("    -extmem\n");
		log("        instead of initializing memories using assignments to individual\n");
		log("        elements, use the '$readmemh' function to read initialization data\n");
		log("        from a file. This data is written to a file named by appending\n");
		log("        a sequential index to the Verilog filename and replacing the extension\n");
		log("        with '.mem', e.g. 'write_verilog -extmem foo.v' writes 'foo-1.mem',\n");
		log("        'foo-2.mem' and so on.\n");
		log("\n");
		log("    -defparam\n");
		log("        use 'defparam' statements instead of the Verilog-2001 syntax for\n");
		log("        cell parameters.\n");
		log("\n");
		log("    -blackboxes\n");
		log("        usually modules with the 'blackbox' attribute are ignored. with\n");
		log("        this option set only the modules with the 'blackbox' attribute\n");
		log("        are written to the output file.\n");
		log("\n");
		log("    -selected\n");
		log("        only write selected modules. modules must be selected entirely or\n");
		log("        not at all.\n");
		log("\n");
		log("    -v\n");
		log("        verbose output (print new names of all renamed wires and cells)\n");
		log("\n");
		log("Note that RTLIL processes can't always be mapped directly to Verilog\n");
		log("always blocks. This frontend should only be used to export an RTLIL\n");
		log("netlist, i.e. after the \"proc\" pass has been used to convert all\n");
		log("processes to logic networks and registers. A warning is generated when\n");
		log("this command is called on a design with RTLIL processes.\n");
		log("\n");
	}
	void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
	{
		log_header(design, "Executing Verilog backend.\n");

		verbose = false;
		norename = false;
		noattr = false;
		attr2comment = false;
		noexpr = false;
		nodec = false;
		nohex = false;
		nostr = false;
		extmem = false;
		defparam = false;
		decimal = false;
		siminit = false;
		simple_lhs = false;
		auto_prefix = "";

		bool blackboxes = false;
		bool selected = false;

		auto_name_map.clear();
		reg_wires.clear();

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			std::string arg = args[argidx];
			if (arg == "-sv") {
				systemverilog = true;
				continue;
			}
			if (arg == "-norename") {
				norename = true;
				continue;
			}
			if (arg == "-renameprefix" && argidx+1 < args.size()) {
				auto_prefix = args[++argidx];
				continue;
			}
			if (arg == "-noattr") {
				noattr = true;
				continue;
			}
			if (arg == "-attr2comment") {
				attr2comment = true;
				continue;
			}
			if (arg == "-noexpr") {
				noexpr = true;
				continue;
			}
			if (arg == "-nodec") {
				nodec = true;
				continue;
			}
			if (arg == "-nohex") {
				nohex = true;
				continue;
			}
			if (arg == "-nostr") {
				nostr = true;
				continue;
			}
			if (arg == "-extmem") {
				extmem = true;
				extmem_counter = 1;
				continue;
			}
			if (arg == "-defparam") {
				defparam = true;
				continue;
			}
			if (arg == "-decimal") {
				decimal = true;
				continue;
			}
			if (arg == "-siminit") {
				siminit = true;
				continue;
			}
			if (arg == "-blackboxes") {
				blackboxes = true;
				continue;
			}
			if (arg == "-selected") {
				selected = true;
				continue;
			}
			if (arg == "-simple-lhs") {
				simple_lhs = true;
				continue;
			}
			if (arg == "-v") {
				verbose = true;
				continue;
			}
			break;
		}
		extra_args(f, filename, args, argidx);
		if (extmem)
		{
			if (filename == "<stdout>")
				log_cmd_error("Option -extmem must be used with a filename.\n");
			extmem_prefix = filename.substr(0, filename.rfind('.'));
		}

		log_push();
		Pass::call(design, "bmuxmap");
		Pass::call(design, "demuxmap");
		Pass::call(design, "clean_zerowidth");
		log_pop();

		design->sort();

		*f << stringf("/* Generated by %s */\n", yosys_version_str);
		for (auto module : design->modules()) {
			if (module->get_blackbox_attribute() != blackboxes)
				continue;
			if (selected && !design->selected_whole_module(module->name)) {
				if (design->selected_module(module->name))
					log_cmd_error("Can't handle partially selected module %s!\n", log_id(module->name));
				continue;
			}
			log("Dumping module `%s'.\n", module->name.c_str());
			dump_module(*f, "", module);
		}

		auto_name_map.clear();
		reg_wires.clear();
	}
} VerilogBackend;

PRIVATE_NAMESPACE_END