aboutsummaryrefslogtreecommitdiffstats
path: root/backends/cxxrtl/cxxrtl_backend.cc
blob: dfea04409dfceca98989416dd0cbd0c0555f2aaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
from __future__ import absolute_import, print_function

import os

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric.utils import (
    encode_dss_signature
)

from tests.utils import (
    load_fips_ecdsa_signing_vectors, load_vectors_from_file
)

CRYPTOGRAPHY_HASH_TYPES = {
    "SHA-1": hashes.SHA1,
    "SHA-224": hashes.SHA224,
    "SHA-256": hashes.SHA256,
    "SHA-384": hashes.SHA384,
    "SHA-512": hashes.SHA512,
}


def verify_one_vector(vector):
    digest_algorithm = vector['digest_algorithm']
    message = vector['message']
    x = vector['x']
    y = vector['y']
    signature = encode_dss_signature(vector['r'], vector['s'])

    numbers = ec.EllipticCurvePublicNumbers(
        x, y,
        ec.SECP256K1()
    )

    key = numbers.public_key(default_backend())

    verifier = key.verifier(
        signature,
        ec.ECDSA(CRYPTOGRAPHY_HASH_TYPES[digest_algorithm]())
    )
    verifier.update(message)
    return verifier.verify()


def verify_vectors(vectors):
    for vector in vectors:
        assert verify_one_vector(vector)


vector_path = os.path.join("asymmetric", "ECDSA", "SECP256K1", "SigGen.txt")

secp256k1_vectors = load_vectors_from_file(
    vector_path,
    load_fips_ecdsa_signing_vectors
)

verify_vectors(secp256k1_vectors)
f='#n439'>439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2019-2020  whitequark <whitequark@whitequark.org>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/rtlil.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

// [[CITE]]
// Peter Eades; Xuemin Lin; W. F. Smyth, "A Fast Effective Heuristic For The Feedback Arc Set Problem"
// Information Processing Letters, Vol. 47, pp 319-323, 1993
// https://pdfs.semanticscholar.org/c7ed/d9acce96ca357876540e19664eb9d976637f.pdf

// A topological sort (on a cell/wire graph) is always possible in a fully flattened RTLIL design without
// processes or logic loops where every wire has a single driver. Logic loops are illegal in RTLIL and wires
// with multiple drivers can be split by the `splitnets` pass; however, interdependencies between processes
// or module instances can create strongly connected components without introducing evaluation nondeterminism.
// We wish to support designs with such benign SCCs (as well as designs with multiple drivers per wire), so
// we sort the graph in a way that minimizes feedback arcs. If there are no feedback arcs in the sorted graph,
// then a more efficient evaluation method is possible, since eval() will always immediately converge.
template<class T>
struct Scheduler {
	struct Vertex {
		T *data;
		Vertex *prev, *next;
		pool<Vertex*, hash_ptr_ops> preds, succs;

		Vertex() : data(NULL), prev(this), next(this) {}
		Vertex(T *data) : data(data), prev(NULL), next(NULL) {}

		bool empty() const
		{
			log_assert(data == NULL);
			if (next == this) {
				log_assert(prev == next);
				return true;
			}
			return false;
		}

		void link(Vertex *list)
		{
			log_assert(prev == NULL && next == NULL);
			next = list;
			prev = list->prev;
			list->prev->next = this;
			list->prev = this;
		}

		void unlink()
		{
			log_assert(prev->next == this && next->prev == this);
			prev->next = next;
			next->prev = prev;
			next = prev = NULL;
		}

		int delta() const
		{
			return succs.size() - preds.size();
		}
	};

	std::vector<Vertex*> vertices;
	Vertex *sources = new Vertex;
	Vertex *sinks = new Vertex;
	dict<int, Vertex*> bins;

	~Scheduler()
	{
		delete sources;
		delete sinks;
		for (auto bin : bins)
			delete bin.second;
		for (auto vertex : vertices)
			delete vertex;
	}

	Vertex *add(T *data)
	{
		Vertex *vertex = new Vertex(data);
		vertices.push_back(vertex);
		return vertex;
	}

	void relink(Vertex *vertex)
	{
		if (vertex->succs.empty())
			vertex->link(sinks);
		else if (vertex->preds.empty())
			vertex->link(sources);
		else {
			int delta = vertex->delta();
			if (!bins.count(delta))
				bins[delta] = new Vertex;
			vertex->link(bins[delta]);
		}
	}

	Vertex *remove(Vertex *vertex)
	{
		vertex->unlink();
		for (auto pred : vertex->preds) {
			if (pred == vertex)
				continue;
			log_assert(pred->succs[vertex]);
			pred->unlink();
			pred->succs.erase(vertex);
			relink(pred);
		}
		for (auto succ : vertex->succs) {
			if (succ == vertex)
				continue;
			log_assert(succ->preds[vertex]);
			succ->unlink();
			succ->preds.erase(vertex);
			relink(succ);
		}
		vertex->preds.clear();
		vertex->succs.clear();
		return vertex;
	}

	std::vector<Vertex*> schedule()
	{
		std::vector<Vertex*> s1, s2r;
		for (auto vertex : vertices)
			relink(vertex);
		bool bins_empty = false;
		while (!(sinks->empty() && sources->empty() && bins_empty)) {
			while (!sinks->empty())
				s2r.push_back(remove(sinks->next));
			while (!sources->empty())
				s1.push_back(remove(sources->next));
			// Choosing u in this implementation isn't O(1), but the paper handwaves which data structure they suggest
			// using to get O(1) relinking *and* find-max-key ("it is clear"... no it isn't), so this code uses a very
			// naive implementation of find-max-key.
			bins_empty = true;
			bins.template sort<std::greater<int>>();
			for (auto bin : bins) {
				if (!bin.second->empty()) {
					bins_empty = false;
					s1.push_back(remove(bin.second->next));
					break;
				}
			}
		}
		s1.insert(s1.end(), s2r.rbegin(), s2r.rend());
		return s1;
	}
};

bool is_unary_cell(RTLIL::IdString type)
{
	return type.in(
		ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
		ID($pos), ID($neg));
}

bool is_binary_cell(RTLIL::IdString type)
{
	return type.in(
		ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
		ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
		ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
		ID($add), ID($sub), ID($mul), ID($div), ID($mod));
}

bool is_extending_cell(RTLIL::IdString type)
{
	return !type.in(
		ID($logic_not), ID($logic_and), ID($logic_or),
		ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool));
}

bool is_elidable_cell(RTLIL::IdString type)
{
	return is_unary_cell(type) || is_binary_cell(type) || type.in(
		ID($mux), ID($concat), ID($slice), ID($pmux));
}

bool is_ff_cell(RTLIL::IdString type)
{
	return type.in(
		ID($dff), ID($dffe), ID($sdff), ID($sdffe), ID($sdffce),
		ID($adff), ID($adffe), ID($dffsr), ID($dffsre),
		ID($dlatch), ID($adlatch), ID($dlatchsr), ID($sr));
}

bool is_internal_cell(RTLIL::IdString type)
{
	return type[0] == '$' && !type.begins_with("$paramod");
}

bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell)
{
	RTLIL::Module *cell_module = cell->module->design->module(cell->type);
	log_assert(cell_module != nullptr);
	return cell_module->get_bool_attribute(ID(cxxrtl_blackbox));
}

enum class CxxrtlPortType {
	UNKNOWN = 0, // or mixed comb/sync
	COMB = 1,
	SYNC = 2,
};

CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port)
{
	RTLIL::Module *cell_module = cell->module->design->module(cell->type);
	if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
		return CxxrtlPortType::UNKNOWN;
	RTLIL::Wire *cell_output_wire = cell_module->wire(port);
	log_assert(cell_output_wire != nullptr);
	bool is_comb = cell_output_wire->get_bool_attribute(ID(cxxrtl_comb));
	bool is_sync = cell_output_wire->get_bool_attribute(ID(cxxrtl_sync));
	if (is_comb && is_sync)
		log_cmd_error("Port `%s.%s' is marked as both `cxxrtl_comb` and `cxxrtl_sync`.\n",
		              log_id(cell_module), log_signal(cell_output_wire));
	else if (is_comb)
		return CxxrtlPortType::COMB;
	else if (is_sync)
		return CxxrtlPortType::SYNC;
	return CxxrtlPortType::UNKNOWN;
}

bool is_cxxrtl_comb_port(const RTLIL::Cell *cell, RTLIL::IdString port)
{
	return cxxrtl_port_type(cell, port) == CxxrtlPortType::COMB;
}

bool is_cxxrtl_sync_port(const RTLIL::Cell *cell, RTLIL::IdString port)
{
	return cxxrtl_port_type(cell, port) == CxxrtlPortType::SYNC;
}

struct FlowGraph {
	struct Node {
		enum class Type {
			CONNECT,
			CELL_SYNC,
			CELL_EVAL,
			PROCESS
		};

		Type type;
		RTLIL::SigSig connect = {};
		const RTLIL::Cell *cell = NULL;
		const RTLIL::Process *process = NULL;
	};

	std::vector<Node*> nodes;
	dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses;
	dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable;
	dict<RTLIL::SigBit, bool> bit_has_state;

	~FlowGraph()
	{
		for (auto node : nodes)
			delete node;
	}

	void add_defs(Node *node, const RTLIL::SigSpec &sig, bool is_ff, bool elidable)
	{
		for (auto chunk : sig.chunks())
			if (chunk.wire) {
				if (is_ff) {
					// A sync def means that a wire holds design state because it is driven directly by
					// a flip-flop output. Such a wire can never be unbuffered.
					wire_sync_defs[chunk.wire].insert(node);
				} else {
					// A comb def means that a wire doesn't hold design state. It might still be connected,
					// indirectly, to a flip-flop output.
					wire_comb_defs[chunk.wire].insert(node);
				}
			}
		for (auto bit : sig.bits())
			bit_has_state[bit] |= is_ff;
		// Only comb defs of an entire wire in the right order can be elided.
		if (!is_ff && sig.is_wire())
			wire_def_elidable[sig.as_wire()] = elidable;
	}

	void add_uses(Node *node, const RTLIL::SigSpec &sig)
	{
		for (auto chunk : sig.chunks())
			if (chunk.wire) {
				wire_uses[chunk.wire].insert(node);
				// Only a single use of an entire wire in the right order can be elided.
				// (But the use can include other chunks.)
				if (!wire_use_elidable.count(chunk.wire))
					wire_use_elidable[chunk.wire] = true;
				else
					wire_use_elidable[chunk.wire] = false;
			}
	}

	bool is_elidable(const RTLIL::Wire *wire) const
	{
		if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire))
			return wire_def_elidable.at(wire) && wire_use_elidable.at(wire);
		return false;
	}

	// Connections
	void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn)
	{
		add_defs(node, conn.first, /*is_ff=*/false, /*elidable=*/true);
		add_uses(node, conn.second);
	}

	Node *add_node(const RTLIL::SigSig &conn)
	{
		Node *node = new Node;
		node->type = Node::Type::CONNECT;
		node->connect = conn;
		nodes.push_back(node);
		add_connect_defs_uses(node, conn);
		return node;
	}

	// Cells
	void add_cell_sync_defs(Node *node, const RTLIL::Cell *cell)
	{
		// To understand why this node type is necessary and why it produces comb defs, consider a cell
		// with input \i and sync output \o, used in a design such that \i is connected to \o. This does
		// not result in a feedback arc because the output is synchronous. However, a naive implementation
		// of code generation for cells that assigns to inputs, evaluates cells, assigns from outputs
		// would not be able to immediately converge...
		//
		//   wire<1> i_tmp;
		//   cell->p_i = i_tmp.curr;
		//   cell->eval();
		//   i_tmp.next = cell->p_o.curr;
		//
		// ... since the wire connecting the input and output ports would not be localizable. To solve
		// this, the cell is split into two scheduling nodes; one exclusively for sync outputs, and
		// another for inputs and all non-sync outputs. This way the generated code can be rearranged...
		//
		//   value<1> i_tmp;
		//   i_tmp = cell->p_o.curr;
		//   cell->p_i = i_tmp;
		//   cell->eval();
		//
		// eliminating the unnecessary delta cycle. Conceptually, the CELL_SYNC node type is a series of
		// connections of the form `connect \lhs \cell.\sync_output`; the right-hand side of these is not
		// expressible as a wire in RTLIL. If it was expressible, then `\cell.\sync_output` would have
		// a sync def, and this node would be an ordinary CONNECT node, with `\lhs` having a comb def.
		// Because it isn't, a special node type is used, the right-hand side does not appear anywhere,
		// and the left-hand side has a comb def.
		for (auto conn : cell->connections())
			if (cell->output(conn.first))
				if (is_cxxrtl_sync_port(cell, conn.first)) {
					// See note regarding elidability below.
					add_defs(node, conn.second, /*is_ff=*/false, /*elidable=*/false);
				}
	}

	void add_cell_eval_defs_uses(Node *node, const RTLIL::Cell *cell)
	{
		for (auto conn : cell->connections()) {
			if (cell->output(conn.first)) {
				if (is_elidable_cell(cell->type))
					add_defs(node, conn.second, /*is_ff=*/false, /*elidable=*/true);
				else if (is_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool()))
					add_defs(node, conn.second, /*is_ff=*/true,  /*elidable=*/false);
				else if (is_internal_cell(cell->type))
					add_defs(node, conn.second, /*is_ff=*/false, /*elidable=*/false);
				else if (!is_cxxrtl_sync_port(cell, conn.first)) {
					// Although at first it looks like outputs of user-defined cells may always be elided, the reality is
					// more complex. Fully sync outputs produce no defs and so don't participate in elision. Fully comb
					// outputs are assigned in a different way depending on whether the cell's eval() immediately converged.
					// Unknown/mixed outputs could be elided, but should be rare in practical designs and don't justify
					// the infrastructure required to elide outputs of cells with many of them.
					add_defs(node, conn.second, /*is_ff=*/false, /*elidable=*/false);
				}
			}
			if (cell->input(conn.first))
				add_uses(node, conn.second);
		}
	}

	Node *add_node(const RTLIL::Cell *cell)
	{
		log_assert(cell->known());

		bool has_fully_sync_outputs = false;
		for (auto conn : cell->connections())
			if (cell->output(conn.first) && is_cxxrtl_sync_port(cell, conn.first)) {
				has_fully_sync_outputs = true;
				break;
			}
		if (has_fully_sync_outputs) {
			Node *node = new Node;
			node->type = Node::Type::CELL_SYNC;
			node->cell = cell;
			nodes.push_back(node);
			add_cell_sync_defs(node, cell);
		}

		Node *node = new Node;
		node->type = Node::Type::CELL_EVAL;
		node->cell = cell;
		nodes.push_back(node);
		add_cell_eval_defs_uses(node, cell);
		return node;
	}

	// Processes
	void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_)
	{
		for (auto &action : case_->actions) {
			add_defs(node, action.first, /*is_ff=*/false, /*elidable=*/false);
			add_uses(node, action.second);
		}
		for (auto sub_switch : case_->switches) {
			add_uses(node, sub_switch->signal);
			for (auto sub_case : sub_switch->cases) {
				for (auto &compare : sub_case->compare)
					add_uses(node, compare);
				add_case_defs_uses(node, sub_case);
			}
		}
	}

	void add_process_defs_uses(Node *node, const RTLIL::Process *process)
	{
		add_case_defs_uses(node, &process->root_case);
		for (auto sync : process->syncs)
			for (auto action : sync->actions) {
				if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe)
				  add_defs(node, action.first, /*is_ff=*/true,  /*elidable=*/false);
				else
					add_defs(node, action.first, /*is_ff=*/false, /*elidable=*/false);
				add_uses(node, action.second);
			}
	}

	Node *add_node(const RTLIL::Process *process)
	{
		Node *node = new Node;
		node->type = Node::Type::PROCESS;
		node->process = process;
		nodes.push_back(node);
		add_process_defs_uses(node, process);
		return node;
	}
};

std::vector<std::string> split_by(const std::string &str, const std::string &sep)
{
	std::vector<std::string> result;
	size_t prev = 0;
	while (true) {
		size_t curr = str.find_first_of(sep, prev);
		if (curr == std::string::npos) {
			std::string part = str.substr(prev);
			if (!part.empty()) result.push_back(part);
			break;
		} else {
			std::string part = str.substr(prev, curr - prev);
			if (!part.empty()) result.push_back(part);
			prev = curr + 1;
		}
	}
	return result;
}

std::string escape_cxx_string(const std::string &input)
{
	std::string output = "\"";
	for (auto c : input) {
		if (::isprint(c)) {
			if (c == '\\')
				output.push_back('\\');
			output.push_back(c);
		} else {
			char l = c & 0xf, h = (c >> 4) & 0xf;
			output.append("\\x");
			output.push_back((h < 10 ? '0' + h : 'a' + h - 10));
			output.push_back((l < 10 ? '0' + l : 'a' + l - 10));
		}
	}
	output.push_back('"');
	if (output.find('\0') != std::string::npos) {
		output.insert(0, "std::string {");
		output.append(stringf(", %zu}", input.size()));
	}
	return output;
}

template<class T>
std::string get_hdl_name(T *object)
{
	if (object->has_attribute(ID::hdlname))
		return object->get_string_attribute(ID::hdlname);
	else
		return object->name.str().substr(1);
}

struct CxxrtlWorker {
	bool split_intf = false;
	std::string intf_filename;
	std::string design_ns = "cxxrtl_design";
	std::ostream *impl_f = nullptr;
	std::ostream *intf_f = nullptr;

	bool run_flatten = false;
	bool run_proc = false;

	bool unbuffer_internal = false;
	bool unbuffer_public = false;
	bool localize_internal = false;
	bool localize_public = false;
	bool elide_internal = false;
	bool elide_public = false;

	bool debug_info = false;

	std::ostringstream f;
	std::string indent;
	int temporary = 0;

	dict<const RTLIL::Module*, SigMap> sigmaps;
	pool<const RTLIL::Wire*> edge_wires;
	dict<RTLIL::SigBit, RTLIL::SyncType> edge_types;
	pool<const RTLIL::Memory*> writable_memories;
	dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
	dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires;
	dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule;
	pool<const RTLIL::Wire*> unbuffered_wires;
	pool<const RTLIL::Wire*> localized_wires;
	dict<const RTLIL::Wire*, const RTLIL::Wire*> debug_alias_wires;
	dict<const RTLIL::Wire*, RTLIL::Const> debug_const_wires;
	dict<RTLIL::SigBit, bool> bit_has_state;
	dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations;
	dict<const RTLIL::Module*, bool> eval_converges;

	void inc_indent() {
		indent += "\t";
	}
	void dec_indent() {
		indent.resize(indent.size() - 1);
	}

	// RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
	// because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
	// identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
	// in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
	//  1. All generated identifiers start with `_`.
	//  1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
	//  1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
	//  2. An underscore is escaped with another underscore, i.e. `__`.
	//  3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
	std::string mangle_name(const RTLIL::IdString &name)
	{
		std::string mangled;
		bool first = true;
		for (char c : name.str()) {
			if (first) {
				first = false;
				if (c == '\\')
					mangled += "p_";
				else if (c == '$')
					mangled += "i_";
				else
					log_assert(false);
			} else {
				if (isalnum(c)) {
					mangled += c;
				} else if (c == '_') {
					mangled += "__";
				} else {
					char l = c & 0xf, h = (c >> 4) & 0xf;
					mangled += '_';
					mangled += (h < 10 ? '0' + h : 'a' + h - 10);
					mangled += (l < 10 ? '0' + l : 'a' + l - 10);
					mangled += '_';
				}
			}
		}
		return mangled;
	}

	std::string mangle_module_name(const RTLIL::IdString &name, bool is_blackbox = false)
	{
		// Class namespace.
		if (is_blackbox)
			return "bb_" + mangle_name(name);
		return mangle_name(name);
	}

	std::string mangle_memory_name(const RTLIL::IdString &name)
	{
		// Class member namespace.
		return "memory_" + mangle_name(name);
	}

	std::string mangle_cell_name(const RTLIL::IdString &name)
	{
		// Class member namespace.
		return "cell_" + mangle_name(name);
	}

	std::string mangle_wire_name(const RTLIL::IdString &name)
	{
		// Class member namespace.
		return mangle_name(name);
	}

	std::string mangle(const RTLIL::Module *module)
	{
		return mangle_module_name(module->name, /*is_blackbox=*/module->get_bool_attribute(ID(cxxrtl_blackbox)));
	}

	std::string mangle(const RTLIL::Memory *memory)
	{
		return mangle_memory_name(memory->name);
	}

	std::string mangle(const RTLIL::Cell *cell)
	{
		return mangle_cell_name(cell->name);
	}

	std::string mangle(const RTLIL::Wire *wire)
	{
		return mangle_wire_name(wire->name);
	}

	std::string mangle(RTLIL::SigBit sigbit)
	{
		log_assert(sigbit.wire != NULL);
		if (sigbit.wire->width == 1)
			return mangle(sigbit.wire);
		return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
	}

	std::vector<std::string> template_param_names(const RTLIL::Module *module)
	{
		if (!module->has_attribute(ID(cxxrtl_template)))
			return {};

		if (module->attributes.at(ID(cxxrtl_template)).flags != RTLIL::CONST_FLAG_STRING)
			log_cmd_error("Attribute `cxxrtl_template' of module `%s' is not a string.\n", log_id(module));

		std::vector<std::string> param_names = split_by(module->get_string_attribute(ID(cxxrtl_template)), " \t");
		for (const auto &param_name : param_names) {
			// Various lowercase prefixes (p_, i_, cell_, ...) are used for member variables, so require
			// parameters to start with an uppercase letter to avoid name conflicts. (This is the convention
			// in both Verilog and C++, anyway.)
			if (!isupper(param_name[0]))
				log_cmd_error("Attribute `cxxrtl_template' of module `%s' includes a parameter `%s', "
				              "which does not start with an uppercase letter.\n",
				              log_id(module), param_name.c_str());
		}
		return param_names;
	}

	std::string template_params(const RTLIL::Module *module, bool is_decl)
	{
		std::vector<std::string> param_names = template_param_names(module);
		if (param_names.empty())
			return "";

		std::string params = "<";
		bool first = true;
		for (const auto &param_name : param_names) {
			if (!first)
				params += ", ";
			first = false;
			if (is_decl)
				params += "size_t ";
			params += param_name;
		}
		params += ">";
		return params;
	}

	std::string template_args(const RTLIL::Cell *cell)
	{
		RTLIL::Module *cell_module = cell->module->design->module(cell->type);
		log_assert(cell_module != nullptr);
		if (!cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
			return "";

		std::vector<std::string> param_names = template_param_names(cell_module);
		if (param_names.empty())
			return "";

		std::string params = "<";
		bool first = true;
		for (const auto &param_name : param_names) {
			if (!first)
				params += ", ";
			first = false;
			params += "/*" + param_name + "=*/";
			RTLIL::IdString id_param_name = '\\' + param_name;
			if (!cell->hasParam(id_param_name))
				log_cmd_error("Cell `%s.%s' does not have a parameter `%s', which is required by the templated module `%s'.\n",
				              log_id(cell->module), log_id(cell), param_name.c_str(), log_id(cell_module));
			RTLIL::Const param_value = cell->getParam(id_param_name);
			if (((param_value.flags & ~RTLIL::CONST_FLAG_SIGNED) != 0) || param_value.as_int() < 0)
				log_cmd_error("Parameter `%s' of cell `%s.%s', which is required by the templated module `%s', "
				              "is not a positive integer.\n",
				              param_name.c_str(), log_id(cell->module), log_id(cell), log_id(cell_module));
			params += std::to_string(cell->getParam(id_param_name).as_int());
		}
		params += ">";
		return params;
	}

	std::string fresh_temporary()
	{
		return stringf("tmp_%d", temporary++);
	}

	void dump_attrs(const RTLIL::AttrObject *object)
	{
		for (auto attr : object->attributes) {
			f << indent << "// " << attr.first.str() << ": ";
			if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
				f << attr.second.decode_string();
			} else {
				f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
			}
			f << "\n";
		}
	}

	void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
	{
		const int CHUNK_SIZE = 32;
		f << "{";
		while (width > 0) {
			int chunk_width = min(width, CHUNK_SIZE);
			uint32_t chunk = data.extract(offset, chunk_width).as_int();
			if (fixed_width)
				f << stringf("0x%.*xu", (3 + chunk_width) / 4, chunk);
			else
				f << stringf("%#xu", chunk);
			if (width > CHUNK_SIZE)
				f << ',';
			offset += CHUNK_SIZE;
			width  -= CHUNK_SIZE;
		}
		f << "}";
	}

	void dump_const_init(const RTLIL::Const &data)
	{
		dump_const_init(data, data.size());
	}

	void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
	{
		f << "value<" << width << ">";
		dump_const_init(data, width, offset, fixed_width);
	}

	void dump_const(const RTLIL::Const &data)
	{
		dump_const(data, data.size());
	}

	bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
	{
		if (chunk.wire == NULL) {
			dump_const(chunk.data, chunk.width, chunk.offset);
			return false;
		} else {
			if (elided_wires.count(chunk.wire)) {
				log_assert(!is_lhs);
				const FlowGraph::Node &node = elided_wires[chunk.wire];
				switch (node.type) {
					case FlowGraph::Node::Type::CONNECT:
						dump_connect_elided(node.connect);
						break;
					case FlowGraph::Node::Type::CELL_EVAL:
						log_assert(is_elidable_cell(node.cell->type));
						dump_cell_elided(node.cell);
						break;
					default:
						log_assert(false);
				}
			} else if (unbuffered_wires[chunk.wire]) {
				f << mangle(chunk.wire);
			} else {
				f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
			}
			if (chunk.width == chunk.wire->width && chunk.offset == 0)
				return false;
			else if (chunk.width == 1)
				f << ".slice<" << chunk.offset << ">()";
			else
				f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
			return true;
		}
	}

	bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
	{
		if (sig.empty()) {
			f << "value<0>()";
			return false;
		} else if (sig.is_chunk()) {
			return dump_sigchunk(sig.as_chunk(), is_lhs);
		} else {
			dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
			for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
				f << ".concat(";
				dump_sigchunk(*it, is_lhs);
				f << ")";
			}
			return true;
		}
	}

	void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
	{
		dump_sigspec(sig, /*is_lhs=*/true);
	}

	void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
	{
		// In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
		// it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
		// type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
		// type conversion, but only if the expression needs it.
		bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
		if (is_complex)
			f << ".val()";
	}

	void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector<RTLIL::IdString> &cells)
	{
		for (auto chunk : sig.chunks()) {
			if (!chunk.wire || !elided_wires.count(chunk.wire))
				continue;

			const FlowGraph::Node &node = elided_wires[chunk.wire];
			switch (node.type) {
				case FlowGraph::Node::Type::CONNECT:
					collect_connect(node.connect, cells);
					break;
				case FlowGraph::Node::Type::CELL_EVAL:
					collect_cell_eval(node.cell, cells);
					break;
				default:
					log_assert(false);
			}
		}
	}

	void dump_connect_elided(const RTLIL::SigSig &conn)
	{
		dump_sigspec_rhs(conn.second);
	}

	bool is_connect_elided(const RTLIL::SigSig &conn)
	{
		return conn.first.is_wire() && elided_wires.count(conn.first.as_wire());
	}

	void collect_connect(const RTLIL::SigSig &conn, std::vector<RTLIL::IdString> &cells)
	{
		if (!is_connect_elided(conn))
			return;

		collect_sigspec_rhs(conn.second, cells);
	}

	void dump_connect(const RTLIL::SigSig &conn)
	{
		if (is_connect_elided(conn))
			return;

		f << indent << "// connection\n";
		f << indent;
		dump_sigspec_lhs(conn.first);
		f << " = ";
		dump_connect_elided(conn);
		f << ";\n";
	}

	void dump_cell_sync(const RTLIL::Cell *cell)
	{
		const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
		f << indent << "// cell " << cell->name.str() << " syncs\n";
		for (auto conn : cell->connections())
			if (cell->output(conn.first))
				if (is_cxxrtl_sync_port(cell, conn.first)) {
					f << indent;
					dump_sigspec_lhs(conn.second);
					f << " = " << mangle(cell) << access << mangle_wire_name(conn.first) << ".curr;\n";
				}
	}

	void dump_cell_elided(const RTLIL::Cell *cell)
	{
		// Unary cells
		if (is_unary_cell(cell->type)) {
			f << cell->type.substr(1);
			if (is_extending_cell(cell->type))
				f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u');
			f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
			dump_sigspec_rhs(cell->getPort(ID::A));
			f << ")";
		// Binary cells
		} else if (is_binary_cell(cell->type)) {
			f << cell->type.substr(1);
			if (is_extending_cell(cell->type))
				f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
				            (cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u');
			f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
			dump_sigspec_rhs(cell->getPort(ID::A));
			f << ", ";
			dump_sigspec_rhs(cell->getPort(ID::B));
			f << ")";
		// Muxes
		} else if (cell->type == ID($mux)) {
			f << "(";
			dump_sigspec_rhs(cell->getPort(ID::S));
			f << " ? ";
			dump_sigspec_rhs(cell->getPort(ID::B));
			f << " : ";
			dump_sigspec_rhs(cell->getPort(ID::A));
			f << ")";
		// Parallel (one-hot) muxes
		} else if (cell->type == ID($pmux)) {
			int width = cell->getParam(ID::WIDTH).as_int();
			int s_width = cell->getParam(ID::S_WIDTH).as_int();
			for (int part = 0; part < s_width; part++) {
				f << "(";
				dump_sigspec_rhs(cell->getPort(ID::S).extract(part));
				f << " ? ";
				dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width));
				f << " : ";
			}
			dump_sigspec_rhs(cell->getPort(ID::A));
			for (int part = 0; part < s_width; part++) {
				f << ")";
			}
		// Concats
		} else if (cell->type == ID($concat)) {
			dump_sigspec_rhs(cell->getPort(ID::B));
			f << ".concat(";
			dump_sigspec_rhs(cell->getPort(ID::A));
			f << ").val()";
		// Slices
		} else if (cell->type == ID($slice)) {
			dump_sigspec_rhs(cell->getPort(ID::A));
			f << ".slice<";
			f << cell->getParam(ID::OFFSET).as_int() + cell->getParam(ID::Y_WIDTH).as_int() - 1;
			f << ",";
			f << cell->getParam(ID::OFFSET).as_int();
			f << ">().val()";
		} else {
			log_assert(false);
		}
	}

	bool is_cell_elided(const RTLIL::Cell *cell)
	{
		return is_elidable_cell(cell->type) && cell->hasPort(ID::Y) && cell->getPort(ID::Y).is_wire() &&
			elided_wires.count(cell->getPort(ID::Y).as_wire());
	}

	void collect_cell_eval(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells)
	{
		if (!is_cell_elided(cell))
			return;

		cells.push_back(cell->name);
		for (auto port : cell->connections())
			if (port.first != ID::Y)
				collect_sigspec_rhs(port.second, cells);
	}

	void dump_cell_eval(const RTLIL::Cell *cell)
	{
		if (is_cell_elided(cell))
			return;
		if (cell->type == ID($meminit))
			return; // Handled elsewhere.

		std::vector<RTLIL::IdString> elided_cells;
		if (is_elidable_cell(cell->type)) {
			for (auto port : cell->connections())
				if (port.first != ID::Y)
					collect_sigspec_rhs(port.second, elided_cells);
		}
		if (elided_cells.empty()) {
			dump_attrs(cell);
			f << indent << "// cell " << cell->name.str() << "\n";
		} else {
			f << indent << "// cells";
			for (auto elided_cell : elided_cells)
				f << " " << elided_cell.str();
			f << "\n";
		}

		// Elidable cells
		if (is_elidable_cell(cell->type)) {
			f << indent;
			dump_sigspec_lhs(cell->getPort(ID::Y));
			f << " = ";
			dump_cell_elided(cell);
			f << ";\n";
		// Flip-flops
		} else if (is_ff_cell(cell->type)) {
			if (cell->hasPort(ID::CLK) && cell->getPort(ID::CLK).is_wire()) {
				// Edge-sensitive logic
				RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
				clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
				f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
				            << mangle(clk_bit) << ") {\n";
				inc_indent();
					if (cell->hasPort(ID::EN)) {
						f << indent << "if (";
						dump_sigspec_rhs(cell->getPort(ID::EN));
						f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
						inc_indent();
					}
					f << indent;
					dump_sigspec_lhs(cell->getPort(ID::Q));
					f << " = ";
					dump_sigspec_rhs(cell->getPort(ID::D));
					f << ";\n";
					if (cell->hasPort(ID::EN) && cell->type != ID($sdffce)) {
						dec_indent();
						f << indent << "}\n";
					}
					if (cell->hasPort(ID::SRST)) {
						f << indent << "if (";
						dump_sigspec_rhs(cell->getPort(ID::SRST));
						f << " == value<1> {" << cell->getParam(ID::SRST_POLARITY).as_bool() << "u}) {\n";
						inc_indent();
							f << indent;
							dump_sigspec_lhs(cell->getPort(ID::Q));
							f << " = ";
							dump_const(cell->getParam(ID::SRST_VALUE));
							f << ";\n";
						dec_indent();
						f << indent << "}\n";
					}
					if (cell->hasPort(ID::EN) && cell->type == ID($sdffce)) {
						dec_indent();
						f << indent << "}\n";
					}
				dec_indent();
				f << indent << "}\n";
			} else if (cell->hasPort(ID::EN)) {
				// Level-sensitive logic
				f << indent << "if (";
				dump_sigspec_rhs(cell->getPort(ID::EN));
				f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
				inc_indent();
					f << indent;
					dump_sigspec_lhs(cell->getPort(ID::Q));
					f << " = ";
					dump_sigspec_rhs(cell->getPort(ID::D));
					f << ";\n";
				dec_indent();
				f << indent << "}\n";
			}
			if (cell->hasPort(ID::ARST)) {
				// Asynchronous reset (entire coarse cell at once)
				f << indent << "if (";
				dump_sigspec_rhs(cell->getPort(ID::ARST));
				f << " == value<1> {" << cell->getParam(ID::ARST_POLARITY).as_bool() << "u}) {\n";
				inc_indent();
					f << indent;
					dump_sigspec_lhs(cell->getPort(ID::Q));
					f << " = ";
					dump_const(cell->getParam(ID::ARST_VALUE));
					f << ";\n";
				dec_indent();
				f << indent << "}\n";
			}
			if (cell->hasPort(ID::SET)) {
				// Asynchronous set (for individual bits)
				f << indent;
				dump_sigspec_lhs(cell->getPort(ID::Q));
				f << " = ";
				dump_sigspec_lhs(cell->getPort(ID::Q));
				f << ".update(";
				dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID::WIDTH).as_int()));
				f << ", ";
				dump_sigspec_rhs(cell->getPort(ID::SET));
				f << (cell->getParam(ID::SET_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
			}
			if (cell->hasPort(ID::CLR)) {
				// Asynchronous clear (for individual bits; priority over set)
				f << indent;
				dump_sigspec_lhs(cell->getPort(ID::Q));
				f << " = ";
				dump_sigspec_lhs(cell->getPort(ID::Q));
				f << ".update(";
				dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID::WIDTH).as_int()));
				f << ", ";
				dump_sigspec_rhs(cell->getPort(ID::CLR));
				f << (cell->getParam(ID::CLR_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
			}
		// Memory ports
		} else if (cell->type.in(ID($memrd), ID($memwr))) {
			if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
				RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
				clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
				f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
				            << mangle(clk_bit) << ") {\n";
				inc_indent();
			}
			RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID::MEMID).decode_string()];
			std::string valid_index_temp = fresh_temporary();
			f << indent << "auto " << valid_index_temp << " = memory_index(";
			dump_sigspec_rhs(cell->getPort(ID::ADDR));
			f << ", " << memory->start_offset << ", " << memory->size << ");\n";
			if (cell->type == ID($memrd)) {
				bool has_enable = cell->getParam(ID::CLK_ENABLE).as_bool() && !cell->getPort(ID::EN).is_fully_ones();
				if (has_enable) {
					f << indent << "if (";
					dump_sigspec_rhs(cell->getPort(ID::EN));
					f << ") {\n";
					inc_indent();
				}
				// The generated code has two bounds checks; one in an assertion, and another that guards the read.
				// This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
				// loudly crashes if an illegal condition is encountered. The assert may be turned off with -DNDEBUG not
				// just for release builds, but also to make sure the simulator (which is presumably embedded in some
				// larger program) will never crash the code that calls into it.
				//
				// If assertions are disabled, out of bounds reads are defined to return zero.
				f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
				f << indent << "if(" << valid_index_temp << ".valid) {\n";
				inc_indent();
					if (writable_memories[memory]) {
						std::string lhs_temp = fresh_temporary();
						f << indent << "value<" << memory->width << "> " << lhs_temp << " = "
						            << mangle(memory) << "[" << valid_index_temp << ".index];\n";
						std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end());
						if (!memwr_cells.empty()) {
							std::string addr_temp = fresh_temporary();
							f << indent << "const value<" << cell->getPort(ID::ADDR).size() << "> &" << addr_temp << " = ";
							dump_sigspec_rhs(cell->getPort(ID::ADDR));
							f << ";\n";
							std::sort(memwr_cells.begin(), memwr_cells.end(),
								[](const RTLIL::Cell *a, const RTLIL::Cell *b) {
									return a->getParam(ID::PRIORITY).as_int() < b->getParam(ID::PRIORITY).as_int();
								});
							for (auto memwr_cell : memwr_cells) {
								f << indent << "if (" << addr_temp << " == ";
								dump_sigspec_rhs(memwr_cell->getPort(ID::ADDR));
								f << ") {\n";
								inc_indent();
									f << indent << lhs_temp << " = " << lhs_temp;
									f << ".update(";
									dump_sigspec_rhs(memwr_cell->getPort(ID::DATA));
									f << ", ";
									dump_sigspec_rhs(memwr_cell->getPort(ID::EN));
									f << ");\n";
								dec_indent();
								f << indent << "}\n";
							}
						}
						f << indent;
						dump_sigspec_lhs(cell->getPort(ID::DATA));
						f << " = " << lhs_temp << ";\n";
					} else {
						f << indent;
						dump_sigspec_lhs(cell->getPort(ID::DATA));
						f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n";
					}
				dec_indent();
				f << indent << "} else {\n";
				inc_indent();
					f << indent;
					dump_sigspec_lhs(cell->getPort(ID::DATA));
					f << " = value<" << memory->width << "> {};\n";
				dec_indent();
				f << indent << "}\n";
				if (has_enable) {
					dec_indent();
					f << indent << "}\n";
				}
			} else /*if (cell->type == ID($memwr))*/ {
				log_assert(writable_memories[memory]);
				// See above for rationale of having both the assert and the condition.
				//
				// If assertions are disabled, out of bounds writes are defined to do nothing.
				f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
				f << indent << "if (" << valid_index_temp << ".valid) {\n";
				inc_indent();
					f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, ";
					dump_sigspec_rhs(cell->getPort(ID::DATA));
					f << ", ";
					dump_sigspec_rhs(cell->getPort(ID::EN));
					f << ", " << cell->getParam(ID::PRIORITY).as_int() << ");\n";
				dec_indent();
				f << indent << "}\n";
			}
			if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
				dec_indent();
				f << indent << "}\n";
			}
		// Internal cells
		} else if (is_internal_cell(cell->type)) {
			log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
		// User cells
		} else {
			log_assert(cell->known());
			const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
			for (auto conn : cell->connections())
				if (cell->input(conn.first) && !cell->output(conn.first)) {
					f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << " = ";
					dump_sigspec_rhs(conn.second);
					f << ";\n";
					if (getenv("CXXRTL_VOID_MY_WARRANTY")) {
						// Until we have proper clock tree detection, this really awful hack that opportunistically
						// propagates prev_* values for clocks can be used to estimate how much faster a design could
						// be if only one clock edge was simulated by replacing:
						//   top.p_clk = value<1>{0u}; top.step();
						//   top.p_clk = value<1>{1u}; top.step();
						// with:
						//   top.prev_p_clk = value<1>{0u}; top.p_clk = value<1>{1u}; top.step();
						// Don't rely on this; it will be removed without warning.
						RTLIL::Module *cell_module = cell->module->design->module(cell->type);
						if (cell_module != nullptr && cell_module->wire(conn.first) && conn.second.is_wire()) {
							RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first);
							if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) {
								f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = ";
								f << "prev_" << mangle(conn.second.as_wire()) << ";\n";
							}
						}
					}
				} else if (cell->input(conn.first)) {
					f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << ".next = ";
					dump_sigspec_rhs(conn.second);
					f << ";\n";
				}
			auto assign_from_outputs = [&](bool cell_converged) {
				for (auto conn : cell->connections()) {
					if (cell->output(conn.first)) {
						if (conn.second.empty())
							continue; // ignore disconnected ports
						if (is_cxxrtl_sync_port(cell, conn.first))
							continue; // fully sync ports are handled in CELL_SYNC nodes
						f << indent;
						dump_sigspec_lhs(conn.second);
						f << " = " << mangle(cell) << access << mangle_wire_name(conn.first);
						// Similarly to how there is no purpose to buffering cell inputs, there is also no purpose to buffering
						// combinatorial cell outputs in case the cell converges within one cycle. (To convince yourself that
						// this optimization is valid, consider that, since the cell converged within one cycle, it would not
						// have any buffered wires if they were not output ports. Imagine inlining the cell's eval() function,
						// and consider the fate of the localized wires that used to be output ports.)
						//
						// Unlike cell inputs (which are never buffered), it is not possible to know apriori whether the cell
						// (which may be late bound) will converge immediately. Because of this, the choice between using .curr
						// (appropriate for buffered outputs) and .next (appropriate for unbuffered outputs) is made at runtime.
						if (cell_converged && is_cxxrtl_comb_port(cell, conn.first))
							f << ".next;\n";
						else
							f << ".curr;\n";
					}
				}
			};
			f << indent << "if (" << mangle(cell) << access << "eval()) {\n";
			inc_indent();
				assign_from_outputs(/*cell_converged=*/true);
			dec_indent();
			f << indent << "} else {\n";
			inc_indent();
				f << indent << "converged = false;\n";
				assign_from_outputs(/*cell_converged=*/false);
			dec_indent();
			f << indent << "}\n";
		}
	}

	void dump_assign(const RTLIL::SigSig &sigsig)
	{
		f << indent;
		dump_sigspec_lhs(sigsig.first);
		f << " = ";
		dump_sigspec_rhs(sigsig.second);
		f << ";\n";
	}

	void dump_case_rule(const RTLIL::CaseRule *rule)
	{
		for (auto action : rule->actions)
			dump_assign(action);
		for (auto switch_ : rule->switches)
			dump_switch_rule(switch_);
	}

	void dump_switch_rule(const RTLIL::SwitchRule *rule)
	{
		// The switch attributes are printed before the switch condition is captured.
		dump_attrs(rule);
		std::string signal_temp = fresh_temporary();
		f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
		dump_sigspec(rule->signal, /*is_lhs=*/false);
		f << ";\n";

		bool first = true;
		for (auto case_ : rule->cases) {
			// The case attributes (for nested cases) are printed before the if/else if/else statement.
			dump_attrs(rule);
			f << indent;
			if (!first)
				f << "} else ";
			first = false;
			if (!case_->compare.empty()) {
				f << "if (";
				bool first = true;
				for (auto &compare : case_->compare) {
					if (!first)
						f << " || ";
					first = false;
					if (compare.is_fully_def()) {
						f << signal_temp << " == ";
						dump_sigspec(compare, /*is_lhs=*/false);
					} else if (compare.is_fully_const()) {
						RTLIL::Const compare_mask, compare_value;
						for (auto bit : compare.as_const()) {
							switch (bit) {
								case RTLIL::S0:
								case RTLIL::S1:
									compare_mask.bits.push_back(RTLIL::S1);
									compare_value.bits.push_back(bit);
									break;

								case RTLIL::Sx:
								case RTLIL::Sz:
								case RTLIL::Sa:
									compare_mask.bits.push_back(RTLIL::S0);
									compare_value.bits.push_back(RTLIL::S0);
									break;

								default:
									log_assert(false);
							}
						}
						f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
						dump_const(compare_mask);
						f << ") == ";
						dump_const(compare_value);
					} else {
						log_assert(false);
					}
				}
				f << ") ";
			}
			f << "{\n";
			inc_indent();
				dump_case_rule(case_);
			dec_indent();
		}
		f << indent << "}\n";
	}

	void dump_process(const RTLIL::Process *proc)
	{
		dump_attrs(proc);
		f << indent << "// process " << proc->name.str() << "\n";
		// The case attributes (for root case) are always empty.
		log_assert(proc->root_case.attributes.empty());
		dump_case_rule(&proc->root_case);
		for (auto sync : proc->syncs) {
			RTLIL::SigBit sync_bit;
			if (!sync->signal.empty()) {
				sync_bit = sync->signal[0];
				sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
			}

			pool<std::string> events;
			switch (sync->type) {
				case RTLIL::STp:
					log_assert(sync_bit.wire != nullptr);
					events.insert("posedge_" + mangle(sync_bit));
					break;
				case RTLIL::STn:
					log_assert(sync_bit.wire != nullptr);
					events.insert("negedge_" + mangle(sync_bit));
					break;
				case RTLIL::STe:
					log_assert(sync_bit.wire != nullptr);
					events.insert("posedge_" + mangle(sync_bit));
					events.insert("negedge_" + mangle(sync_bit));
					break;

				case RTLIL::STa:
					events.insert("true");
					break;

				case RTLIL::ST0:
				case RTLIL::ST1:
				case RTLIL::STg:
				case RTLIL::STi:
					log_assert(false);
			}
			if (!events.empty()) {
				f << indent << "if (";
				bool first = true;
				for (auto &event : events) {
					if (!first)
						f << " || ";
					first = false;
					f << event;
				}
				f << ") {\n";
				inc_indent();
					for (auto action : sync->actions)
						dump_assign(action);
				dec_indent();
				f << indent << "}\n";
			}
		}
	}

	void dump_wire(const RTLIL::Wire *wire, bool is_local_context)
	{
		if (elided_wires.count(wire))
			return;

		if (localized_wires[wire] && is_local_context) {
			dump_attrs(wire);
			f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n";
		}
		if (!localized_wires[wire] && !is_local_context) {
			std::string width;
			if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) {
				width = wire->get_string_attribute(ID(cxxrtl_width));
			} else {
				width = std::to_string(wire->width);
			}

			dump_attrs(wire);
			f << indent;
			if (wire->port_input && wire->port_output)
				f << "/*inout*/ ";
			else if (wire->port_input)
				f << "/*input*/ ";
			else if (wire->port_output)
				f << "/*output*/ ";
			f << (unbuffered_wires[wire] ? "value" : "wire") << "<" << width << "> " << mangle(wire);
			if (wire->has_attribute(ID::init)) {
				f << " ";
				dump_const_init(wire->attributes.at(ID::init));
			}
			f << ";\n";
			if (edge_wires[wire]) {
				if (unbuffered_wires[wire]) {
					f << indent << "value<" << width << "> prev_" << mangle(wire);
					if (wire->has_attribute(ID::init)) {
						f << " ";
						dump_const_init(wire->attributes.at(ID::init));
					}
					f << ";\n";
				}
				for (auto edge_type : edge_types) {
					if (edge_type.first.wire == wire) {
						std::string prev, next;
						if (unbuffered_wires[wire]) {
							prev = "prev_" + mangle(edge_type.first.wire);
							next =           mangle(edge_type.first.wire);
						} else {
							prev = mangle(edge_type.first.wire) + ".curr";
							next = mangle(edge_type.first.wire) + ".next";
						}
						prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
						next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
						if (edge_type.second != RTLIL::STn) {
							f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n";
							inc_indent();
								f << indent << "return !" << prev << " && " << next << ";\n";
							dec_indent();
							f << indent << "}\n";
						}
						if (edge_type.second != RTLIL::STp) {
							f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n";
							inc_indent();
								f << indent << "return " << prev << " && !" << next << ";\n";
							dec_indent();
							f << indent << "}\n";
						}
					}
				}
			}
		}
	}

	void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
	{
		vector<const RTLIL::Cell*> init_cells;
		for (auto cell : module->cells())
			if (cell->type == ID($meminit) && cell->getParam(ID::MEMID).decode_string() == memory->name.str())
				init_cells.push_back(cell);

		std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
			int a_addr = a->getPort(ID::ADDR).as_int(), b_addr = b->getPort(ID::ADDR).as_int();
			int a_prio = a->getParam(ID::PRIORITY).as_int(), b_prio = b->getParam(ID::PRIORITY).as_int();
			return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
		});

		dump_attrs(memory);
		f << indent << "memory<" << memory->width << "> " << mangle(memory)
		            << " { " << memory->size << "u";
		if (init_cells.empty()) {
			f << " };\n";
		} else {
			f << ",\n";
			inc_indent();
				for (auto cell : init_cells) {
					dump_attrs(cell);
					RTLIL::Const data = cell->getPort(ID::DATA).as_const();
					size_t width = cell->getParam(ID::WIDTH).as_int();
					size_t words = cell->getParam(ID::WORDS).as_int();
					f << indent << "memory<" << memory->width << ">::init<" << words << "> { "
					            << stringf("%#x", cell->getPort(ID::ADDR).as_int()) << ", {";
					inc_indent();
						for (size_t n = 0; n < words; n++) {
							if (n % 4 == 0)
								f << "\n" << indent;
							else
								f << " ";
							dump_const(data, width, n * width, /*fixed_width=*/true);
							f << ",";
						}
					dec_indent();
					f << "\n" << indent << "}},\n";
				}
			dec_indent();
			f << indent << "};\n";
		}
	}

	void dump_eval_method(RTLIL::Module *module)
	{
		inc_indent();
			f << indent << "bool converged = " << (eval_converges.at(module) ? "true" : "false") << ";\n";
			if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
				for (auto wire : module->wires()) {
					if (edge_wires[wire]) {
						for (auto edge_type : edge_types) {
							if (edge_type.first.wire == wire) {
								if (edge_type.second != RTLIL::STn) {
									f << indent << "bool posedge_" << mangle(edge_type.first) << " = ";
									f << "this->posedge_" << mangle(edge_type.first) << "();\n";
								}
								if (edge_type.second != RTLIL::STp) {
									f << indent << "bool negedge_" << mangle(edge_type.first) << " = ";
									f << "this->negedge_" << mangle(edge_type.first) << "();\n";
								}
							}
						}
					}
				}
				for (auto wire : module->wires())
					dump_wire(wire, /*is_local_context=*/true);
				for (auto node : schedule[module]) {
					switch (node.type) {
						case FlowGraph::Node::Type::CONNECT:
							dump_connect(node.connect);
							break;
						case FlowGraph::Node::Type::CELL_SYNC:
							dump_cell_sync(node.cell);
							break;
						case FlowGraph::Node::Type::CELL_EVAL:
							dump_cell_eval(node.cell);
							break;
						case FlowGraph::Node::Type::PROCESS:
							dump_process(node.process);
							break;
					}
				}
			}
			f << indent << "return converged;\n";
		dec_indent();
	}

	void dump_commit_method(RTLIL::Module *module)
	{
		inc_indent();
			f << indent << "bool changed = false;\n";
			for (auto wire : module->wires()) {
				if (elided_wires.count(wire))
					continue;
				if (unbuffered_wires[wire]) {
					if (edge_wires[wire])
						f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n";
					continue;
				}
				if (!module->get_bool_attribute(ID(cxxrtl_blackbox)) || wire->port_id != 0)
					f << indent << "changed |= " << mangle(wire) << ".commit();\n";
			}
			if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
				for (auto memory : module->memories) {
					if (!writable_memories[memory.second])
						continue;
					f << indent << "changed |= " << mangle(memory.second) << ".commit();\n";
				}
				for (auto cell : module->cells()) {
					if (is_internal_cell(cell->type))
						continue;
					const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
					f << indent << "changed |= " << mangle(cell) << access << "commit();\n";
				}
			}
			f << indent << "return changed;\n";
		dec_indent();
	}

	void dump_debug_info_method(RTLIL::Module *module)
	{
		size_t count_public_wires = 0;
		size_t count_const_wires = 0;
		size_t count_alias_wires = 0;
		size_t count_member_wires = 0;
		size_t count_skipped_wires = 0;
		size_t count_driven_sync = 0;
		size_t count_driven_comb = 0;
		size_t count_undriven = 0;
		size_t count_mixed_driver = 0;
		inc_indent();
			f << indent << "assert(path.empty() || path[path.size() - 1] == ' ');\n";
			for (auto wire : module->wires()) {
				if (wire->name[0] != '\\')
					continue;
				if (module->get_bool_attribute(ID(cxxrtl_blackbox)) && (wire->port_id == 0))
					continue;
				count_public_wires++;
				if (debug_const_wires.count(wire)) {
					// Wire tied to a constant
					f << indent << "static const value<" << wire->width << "> const_" << mangle(wire) << " = ";
					dump_const(debug_const_wires[wire]);
					f << ";\n";
					f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
					f << ", debug_item(const_" << mangle(wire) << ", ";
					f << wire->start_offset << "));\n";
					count_const_wires++;
				} else if (debug_alias_wires.count(wire)) {
					// Alias of a member wire
					f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
					f << ", debug_item(debug_alias(), " << mangle(debug_alias_wires[wire]) << ", ";
					f << wire->start_offset << "));\n";
					count_alias_wires++;
				} else if (!localized_wires.count(wire)) {
					// Member wire
					std::vector<std::string> flags;

					if (wire->port_input && wire->port_output)
						flags.push_back("INOUT");
					else if (wire->port_input)
						flags.push_back("INPUT");
					else if (wire->port_output)
						flags.push_back("OUTPUT");

					bool has_driven_sync = false;
					bool has_driven_comb = false;
					bool has_undriven = false;
					SigSpec sig(wire);
					for (auto bit : sig.bits())
						if (!bit_has_state.count(bit))
							has_undriven = true;
						else if (bit_has_state[bit])
							has_driven_sync = true;
						else
							has_driven_comb = true;
					if (has_driven_sync)
						flags.push_back("DRIVEN_SYNC");
					if (has_driven_sync && !has_driven_comb && !has_undriven)
						count_driven_sync++;
					if (has_driven_comb)
						flags.push_back("DRIVEN_COMB");
					if (!has_driven_sync && has_driven_comb && !has_undriven)
						count_driven_comb++;
					if (has_undriven)
						flags.push_back("UNDRIVEN");
					if (!has_driven_sync && !has_driven_comb && has_undriven)
						count_undriven++;
					if (has_driven_sync + has_driven_comb + has_undriven > 1)
						count_mixed_driver++;

					f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
					f << ", debug_item(" << mangle(wire) << ", ";
					f << wire->start_offset;
					bool first = true;
					for (auto flag : flags) {
						if (first) {
							first = false;
							f << ", ";
						} else {
							f << "|";
						}
						f << "debug_item::" << flag;
					}
					f << "));\n";
					count_member_wires++;
				} else {
					count_skipped_wires++;
				}
			}
			if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
				for (auto &memory_it : module->memories) {
					if (memory_it.first[0] != '\\')
						continue;
					f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(memory_it.second));
					f << ", debug_item(" << mangle(memory_it.second) << ", ";
					f << memory_it.second->start_offset << "));\n";
				}
				for (auto cell : module->cells()) {
					if (is_internal_cell(cell->type))
						continue;
					const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
					f << indent << mangle(cell) << access << "debug_info(items, ";
					f << "path + " << escape_cxx_string(get_hdl_name(cell) + ' ') << ");\n";
				}
			}
		dec_indent();

		log_debug("Debug information statistics for module `%s':\n", log_id(module));
		log_debug("  Public wires: %zu, of which:\n", count_public_wires);
		log_debug("    Const wires:  %zu\n", count_const_wires);
		log_debug("    Alias wires:  %zu\n", count_alias_wires);
		log_debug("    Member wires: %zu, of which:\n", count_member_wires);
		log_debug("      Driven sync:  %zu\n", count_driven_sync);
		log_debug("      Driven comb:  %zu\n", count_driven_comb);
		log_debug("      Undriven:     %zu\n", count_undriven);
		log_debug("      Mixed driver: %zu\n", count_mixed_driver);
		log_debug("    Other wires:  %zu (no debug information)\n", count_skipped_wires);
	}

	void dump_metadata_map(const dict<RTLIL::IdString, RTLIL::Const> &metadata_map)
	{
		if (metadata_map.empty()) {
			f << "metadata_map()";
			return;
		}
		f << "metadata_map({\n";
		inc_indent();
			for (auto metadata_item : metadata_map) {
				if (!metadata_item.first.begins_with("\\"))
					continue;
				f << indent << "{ " << escape_cxx_string(metadata_item.first.str().substr(1)) << ", ";
				if (metadata_item.second.flags & RTLIL::CONST_FLAG_REAL) {
					f << std::showpoint << std::stod(metadata_item.second.decode_string()) << std::noshowpoint;
				} else if (metadata_item.second.flags & RTLIL::CONST_FLAG_STRING) {
					f << escape_cxx_string(metadata_item.second.decode_string());
				} else {
					f << metadata_item.second.as_int(/*is_signed=*/metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED);
					if (!(metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED))
						f << "u";
				}
				f << " },\n";
			}
		dec_indent();
		f << indent << "})";
	}

	void dump_module_intf(RTLIL::Module *module)
	{
		dump_attrs(module);
		if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
			if (module->has_attribute(ID(cxxrtl_template)))
				f << indent << "template" << template_params(module, /*is_decl=*/true) << "\n";
			f << indent << "struct " << mangle(module) << " : public module {\n";
			inc_indent();
				for (auto wire : module->wires()) {
					if (wire->port_id != 0)
						dump_wire(wire, /*is_local_context=*/false);
				}
				f << "\n";
				f << indent << "bool eval() override {\n";
				dump_eval_method(module);
				f << indent << "}\n";
				f << "\n";
				f << indent << "bool commit() override {\n";
				dump_commit_method(module);
				f << indent << "}\n";
				f << "\n";
				if (debug_info) {
					f << indent << "void debug_info(debug_items &items, std::string path = \"\") override {\n";
					dump_debug_info_method(module);
					f << indent << "}\n";
					f << "\n";
				}
				f << indent << "static std::unique_ptr<" << mangle(module);
				f << template_params(module, /*is_decl=*/false) << "> ";
				f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
			dec_indent();
			f << indent << "}; // struct " << mangle(module) << "\n";
			f << "\n";
			if (blackbox_specializations.count(module)) {
				// If templated black boxes are used, the constructor of any module which includes the black box cell
				// (which calls the declared but not defined in the generated code `create` function) may only be used
				// if (a) the create function is defined in the same translation unit, or (b) the create function has
				// a forward-declared explicit specialization.
				//
				// Option (b) makes it possible to have the generated code and the black box implementation in different
				// translation units, which is convenient. Of course, its downside is that black boxes must predefine
				// a specialization for every combination of parameters the generated code may use; but since the main
				// purpose of templated black boxes is abstracting over datapath width, it is expected that there would
				// be very few such combinations anyway.
				for (auto specialization : blackbox_specializations[module]) {
					f << indent << "template<>\n";
					f << indent << "std::unique_ptr<" << mangle(module) << specialization << "> ";
					f << mangle(module) << specialization << "::";
					f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
					f << "\n";
				}
			}
		} else {
			f << indent << "struct " << mangle(module) << " : public module {\n";
			inc_indent();
				for (auto wire : module->wires())
					dump_wire(wire, /*is_local_context=*/false);
				f << "\n";
				bool has_memories = false;
				for (auto memory : module->memories) {
					dump_memory(module, memory.second);
					has_memories = true;
				}
				if (has_memories)
					f << "\n";
				bool has_cells = false;
				for (auto cell : module->cells()) {
					if (is_internal_cell(cell->type))
						continue;
					dump_attrs(cell);
					RTLIL::Module *cell_module = module->design->module(cell->type);
					log_assert(cell_module != nullptr);
					if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) {
						f << indent << "std::unique_ptr<" << mangle(cell_module) << template_args(cell) << "> ";
						f << mangle(cell) << " = " << mangle(cell_module) << template_args(cell);
						f << "::create(" << escape_cxx_string(get_hdl_name(cell)) << ", ";
						dump_metadata_map(cell->parameters);
						f << ", ";
						dump_metadata_map(cell->attributes);
						f << ");\n";
					} else {
						f << indent << mangle(cell_module) << " " << mangle(cell) << ";\n";
					}
					has_cells = true;
				}
				if (has_cells)
					f << "\n";
				f << indent << "bool eval() override;\n";
				f << indent << "bool commit() override;\n";
				if (debug_info)
					f << indent << "void debug_info(debug_items &items, std::string path = \"\") override;\n";
			dec_indent();
			f << indent << "}; // struct " << mangle(module) << "\n";
			f << "\n";
		}
	}

	void dump_module_impl(RTLIL::Module *module)
	{
		if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
			return;
		f << indent << "bool " << mangle(module) << "::eval() {\n";
		dump_eval_method(module);
		f << indent << "}\n";
		f << "\n";
		f << indent << "bool " << mangle(module) << "::commit() {\n";
		dump_commit_method(module);
		f << indent << "}\n";
		f << "\n";
		if (debug_info) {
			f << indent << "void " << mangle(module) << "::debug_info(debug_items &items, std::string path) {\n";
			dump_debug_info_method(module);
			f << indent << "}\n";
			f << "\n";
		}
	}

	void dump_design(RTLIL::Design *design)
	{
		RTLIL::Module *top_module = nullptr;
		std::vector<RTLIL::Module*> modules;
		TopoSort<RTLIL::Module*> topo_design;
		for (auto module : design->modules()) {
			if (!design->selected_module(module))
				continue;
			if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
				modules.push_back(module); // cxxrtl blackboxes first
			if (module->get_blackbox_attribute() || module->get_bool_attribute(ID(cxxrtl_blackbox)))
				continue;
			if (module->get_bool_attribute(ID::top))
				top_module = module;

			topo_design.node(module);
			for (auto cell : module->cells()) {
				if (is_internal_cell(cell->type) || is_cxxrtl_blackbox_cell(cell))
					continue;
				RTLIL::Module *cell_module = design->module(cell->type);
				log_assert(cell_module != nullptr);
				topo_design.edge(cell_module, module);
			}
		}
		bool no_loops = topo_design.sort();
		log_assert(no_loops);
		modules.insert(modules.end(), topo_design.sorted.begin(), topo_design.sorted.end());

		if (split_intf) {
			// The only thing more depraved than include guards, is mangling filenames to turn them into include guards.
			std::string include_guard = design_ns + "_header";
			std::transform(include_guard.begin(), include_guard.end(), include_guard.begin(), ::toupper);

			f << "#ifndef " << include_guard << "\n";
			f << "#define " << include_guard << "\n";
			f << "\n";
			if (top_module != nullptr && debug_info) {
				f << "#include <backends/cxxrtl/cxxrtl_capi.h>\n";
				f << "\n";
				f << "#ifdef __cplusplus\n";
				f << "extern \"C\" {\n";
				f << "#endif\n";
				f << "\n";
				f << "cxxrtl_toplevel " << design_ns << "_create();\n";
				f << "\n";
				f << "#ifdef __cplusplus\n";
				f << "}\n";
				f << "#endif\n";
				f << "\n";
			} else {
				f << "// The CXXRTL C API is not available because the design is built without debug information.\n";
				f << "\n";
			}
			f << "#ifdef __cplusplus\n";
			f << "\n";
			f << "#include <backends/cxxrtl/cxxrtl.h>\n";
			f << "\n";
			f << "using namespace cxxrtl;\n";
			f << "\n";
			f << "namespace " << design_ns << " {\n";
			f << "\n";
			for (auto module : modules)
				dump_module_intf(module);
			f << "} // namespace " << design_ns << "\n";
			f << "\n";
			f << "#endif // __cplusplus\n";
			f << "\n";
			f << "#endif\n";
			*intf_f << f.str(); f.str("");
		}

		if (split_intf)
			f << "#include \"" << intf_filename << "\"\n";
		else
			f << "#include <backends/cxxrtl/cxxrtl.h>\n";
		f << "\n";
		f << "#if defined(CXXRTL_INCLUDE_CAPI_IMPL) || \\\n";
		f << "    defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
		f << "#include <backends/cxxrtl/cxxrtl_capi.cc>\n";
		f << "#endif\n";
		f << "\n";
		f << "#if defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
		f << "#include <backends/cxxrtl/cxxrtl_vcd_capi.cc>\n";
		f << "#endif\n";
		f << "\n";
		f << "using namespace cxxrtl_yosys;\n";
		f << "\n";
		f << "namespace " << design_ns << " {\n";
		f << "\n";
		for (auto module : modules) {
			if (!split_intf)
				dump_module_intf(module);
			dump_module_impl(module);
		}
		f << "} // namespace " << design_ns << "\n";
		f << "\n";
		if (top_module != nullptr && debug_info) {
			f << "extern \"C\"\n";
			f << "cxxrtl_toplevel " << design_ns << "_create() {\n";
			inc_indent();
				std::string top_type = design_ns + "::" + mangle(top_module);
				f << indent << "return new _cxxrtl_toplevel { ";
				f << "std::unique_ptr<" << top_type << ">(new " + top_type + ")";
				f << " };\n";
			dec_indent();
			f << "}\n";
		}

		*impl_f << f.str(); f.str("");
	}

	// Edge-type sync rules require us to emit edge detectors, which require coordination between
	// eval and commit phases. To do this we need to collect them upfront.
	//
	// Note that the simulator commit phase operates at wire granularity but edge-type sync rules
	// operate at wire bit granularity; it is possible to have code similar to:
	//     wire [3:0] clocks;
	//     always @(posedge clocks[0]) ...
	// To handle this we track edge sensitivity both for wires and wire bits.
	void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
	{
		signal = sigmap(signal);
		log_assert(signal.is_wire() && signal.is_bit());
		log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);

		RTLIL::SigBit sigbit = signal[0];
		if (!edge_types.count(sigbit))
			edge_types[sigbit] = type;
		else if (edge_types[sigbit] != type)
			edge_types[sigbit] = RTLIL::STe;
		edge_wires.insert(signal.as_wire());
	}

	void analyze_design(RTLIL::Design *design)
	{
		bool has_feedback_arcs = false;
		bool has_buffered_comb_wires = false;

		for (auto module : design->modules()) {
			if (!design->selected_module(module))
				continue;

			SigMap &sigmap = sigmaps[module];
			sigmap.set(module);

			if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
				for (auto port : module->ports) {
					RTLIL::Wire *wire = module->wire(port);
					if (wire->port_input && !wire->port_output)
						unbuffered_wires.insert(wire);
					if (wire->has_attribute(ID(cxxrtl_edge))) {
						RTLIL::Const edge_attr = wire->attributes[ID(cxxrtl_edge)];
						if (!(edge_attr.flags & RTLIL::CONST_FLAG_STRING) || (int)edge_attr.decode_string().size() != GetSize(wire))
							log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' is not a string with one character per bit.\n",
							              log_id(module), log_signal(wire));

						std::string edges = wire->get_string_attribute(ID(cxxrtl_edge));
						for (int i = 0; i < GetSize(wire); i++) {
							RTLIL::SigSpec wire_sig = wire;
							switch (edges[i]) {
								case '-': break;
								case 'p': register_edge_signal(sigmap, wire_sig[i], RTLIL::STp); break;
								case 'n': register_edge_signal(sigmap, wire_sig[i], RTLIL::STn); break;
								case 'a': register_edge_signal(sigmap, wire_sig[i], RTLIL::STe); break;
								default:
									log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' contains specifiers "
									              "other than '-', 'p', 'n', or 'a'.\n",
										log_id(module), log_signal(wire));
							}
						}
					}
				}

				// Black boxes converge by default, since their implementations are quite unlikely to require
				// internal propagation of comb signals.
				eval_converges[module] = true;
				continue;
			}

			FlowGraph flow;

			for (auto conn : module->connections())
				flow.add_node(conn);

			dict<const RTLIL::Cell*, FlowGraph::Node*> memrw_cell_nodes;
			dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>,
			     pool<const RTLIL::Cell*>> memwr_per_domain;
			for (auto cell : module->cells()) {
				if (!cell->known())
					log_cmd_error("Unknown cell `%s'.\n", log_id(cell->type));

				RTLIL::Module *cell_module = design->module(cell->type);
				if (cell_module &&
				    cell_module->get_blackbox_attribute() &&
				    !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
					log_cmd_error("External blackbox cell `%s' is not marked as a CXXRTL blackbox.\n", log_id(cell->type));

				if (cell_module &&
				    cell_module->get_bool_attribute(ID(cxxrtl_blackbox)) &&
				    cell_module->get_bool_attribute(ID(cxxrtl_template)))
					blackbox_specializations[cell_module].insert(template_args(cell));

				FlowGraph::Node *node = flow.add_node(cell);

				// Various DFF cells are treated like posedge/negedge processes, see above for details.
				if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($sdff), ID($sdffe), ID($sdffce))) {
					if (cell->getPort(ID::CLK).is_wire())
						register_edge_signal(sigmap, cell->getPort(ID::CLK),
							cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
				}
				// Similar for memory port cells.
				if (cell->type.in(ID($memrd), ID($memwr))) {
					if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
						if (cell->getPort(ID::CLK).is_wire())
							register_edge_signal(sigmap, cell->getPort(ID::CLK),
								cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
					}
					memrw_cell_nodes[cell] = node;
				}
				// Optimize access to read-only memories.
				if (cell->type == ID($memwr))
					writable_memories.insert(module->memories[cell->getParam(ID::MEMID).decode_string()]);
				// Collect groups of memory write ports in the same domain.
				if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire()) {
					RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
					const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
					memwr_per_domain[{clk_bit, memory}].insert(cell);
				}
				// Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
				// of RTLIL memory objects and $memrd/$memwr/$meminit cells.
				if (cell->type.in(ID($mem)))
					log_assert(false);
			}
			for (auto cell : module->cells()) {
				// Collect groups of memory write ports read by every transparent read port.
				if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire() &&
				    cell->getParam(ID::TRANSPARENT).as_bool()) {
					RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
					const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
					for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) {
						transparent_for[cell].insert(memwr_cell);
						// Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell
						// in the same domain, which isn't directly visible in the netlist. Add these uses explicitly.
						flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::EN));
						flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::ADDR));
						flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::DATA));
					}
				}
			}

			for (auto proc : module->processes) {
				flow.add_node(proc.second);

				for (auto sync : proc.second->syncs)
					switch (sync->type) {
						// Edge-type sync rules require pre-registration.
						case RTLIL::STp:
						case RTLIL::STn:
						case RTLIL::STe:
							register_edge_signal(sigmap, sync->signal, sync->type);
							break;

						// Level-type sync rules require no special handling.
						case RTLIL::ST0:
						case RTLIL::ST1:
						case RTLIL::STa:
							break;

						case RTLIL::STg:
							log_cmd_error("Global clock is not supported.\n");

						// Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
						// attribute regardless of input.
						case RTLIL::STi:
							log_assert(false);
					}
			}

			for (auto wire : module->wires()) {
				if (!flow.is_elidable(wire)) continue;
				if (wire->port_id != 0) continue;
				if (wire->get_bool_attribute(ID::keep)) continue;
				if (wire->name.begins_with("$") && !elide_internal) continue;
				if (wire->name.begins_with("\\") && !elide_public) continue;
				if (edge_wires[wire]) continue;
				log_assert(flow.wire_comb_defs[wire].size() == 1);
				elided_wires[wire] = **flow.wire_comb_defs[wire].begin();
			}

			dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs;
			for (auto wire_comb_def : flow.wire_comb_defs)
				for (auto node : wire_comb_def.second)
					node_defs[node].insert(wire_comb_def.first);

			Scheduler<FlowGraph::Node> scheduler;
			dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map;
			for (auto node : flow.nodes)
				node_map[node] = scheduler.add(node);
			for (auto node_def : node_defs) {
				auto vertex = node_map[node_def.first];
				for (auto wire : node_def.second)
					for (auto succ_node : flow.wire_uses[wire]) {
						auto succ_vertex = node_map[succ_node];
						vertex->succs.insert(succ_vertex);
						succ_vertex->preds.insert(vertex);
					}
			}

			auto eval_order = scheduler.schedule();
			pool<FlowGraph::Node*, hash_ptr_ops> evaluated;
			pool<const RTLIL::Wire*> feedback_wires;
			for (auto vertex : eval_order) {
				auto node = vertex->data;
				schedule[module].push_back(*node);
				// Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi
				// is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be
				// caused by a true logic loop, but usually are a benign result of dependency tracking that works
				// on wire, not bit, level. Nevertheless, feedback wires cannot be localized.
				evaluated.insert(node);
				for (auto wire : node_defs[node])
					for (auto succ_node : flow.wire_uses[wire])
						if (evaluated[succ_node]) {
							feedback_wires.insert(wire);
							// Feedback wires may never be elided because feedback requires state, but the point of elision
							// (and localization) is to eliminate state.
							elided_wires.erase(wire);
						}
			}

			if (!feedback_wires.empty()) {
				has_feedback_arcs = true;
				log("Module `%s' contains feedback arcs through wires:\n", log_id(module));
				for (auto wire : feedback_wires)
					log("  %s\n", log_id(wire));
			}

			for (auto wire : module->wires()) {
				if (feedback_wires[wire]) continue;
				if (wire->port_output && !module->get_bool_attribute(ID::top)) continue;
				if (wire->name.begins_with("$") && !unbuffer_internal) continue;
				if (wire->name.begins_with("\\") && !unbuffer_public) continue;
				if (flow.wire_sync_defs.count(wire) > 0) continue;
				unbuffered_wires.insert(wire);
				if (edge_wires[wire]) continue;
				if (wire->get_bool_attribute(ID::keep)) continue;
				if (wire->port_input || wire->port_output) continue;
				if (wire->name.begins_with("$") && !localize_internal) continue;
				if (wire->name.begins_with("\\") && !localize_public) continue;
				localized_wires.insert(wire);
			}

			// For maximum performance, the state of the simulation (which is the same as the set of its double buffered
			// wires, since using a singly buffered wire for any kind of state introduces a race condition) should contain
			// no wires attached to combinatorial outputs. Feedback wires, by definition, make that impossible. However,
			// it is possible that a design with no feedback arcs would end up with doubly buffered wires in such cases
			// as a wire with multiple drivers where one of them is combinatorial and the other is synchronous. Such designs
			// also require more than one delta cycle to converge.
			pool<const RTLIL::Wire*> buffered_comb_wires;
			for (auto wire : module->wires()) {
				if (flow.wire_comb_defs[wire].size() > 0 && !unbuffered_wires[wire] && !feedback_wires[wire])
					buffered_comb_wires.insert(wire);
			}
			if (!buffered_comb_wires.empty()) {
				has_buffered_comb_wires = true;
				log("Module `%s' contains buffered combinatorial wires:\n", log_id(module));
				for (auto wire : buffered_comb_wires)
					log("  %s\n", log_id(wire));
			}

			eval_converges[module] = feedback_wires.empty() && buffered_comb_wires.empty();

			for (auto item : flow.bit_has_state)
				bit_has_state.insert(item);

			if (debug_info) {
				// Find wires that alias other wires or are tied to a constant; debug information can be enriched with these
				// at essentially zero additional cost.
				//
				// Note that the information collected here can't be used for optimizing the netlist: debug information queries
				// are pure and run on a design in a stable state, which allows assumptions that do not otherwise hold.
				for (auto wire : module->wires()) {
					if (wire->name[0] != '\\')
						continue;
					if (!unbuffered_wires[wire])
						continue;
					const RTLIL::Wire *wire_it = wire;
					while (1) {
						if (!(flow.wire_def_elidable.count(wire_it) && flow.wire_def_elidable[wire_it]))
							break; // not an alias: complex def
						log_assert(flow.wire_comb_defs[wire_it].size() == 1);
						FlowGraph::Node *node = *flow.wire_comb_defs[wire_it].begin();
						if (node->type != FlowGraph::Node::Type::CONNECT)
							break; // not an alias: def by cell
						RTLIL::SigSpec rhs_sig = node->connect.second;
						if (rhs_sig.is_wire()) {
							RTLIL::Wire *rhs_wire = rhs_sig.as_wire();
							if (unbuffered_wires[rhs_wire]) {
								wire_it = rhs_wire; // maybe an alias
							} else {
								debug_alias_wires[wire] = rhs_wire; // is an alias
								break;
							}
						} else if (rhs_sig.is_fully_const()) {
							debug_const_wires[wire] = rhs_sig.as_const(); // is a const
							break;
						} else {
							break; // not an alias: complex rhs
						}
					}
				}
			}
		}
		if (has_feedback_arcs || has_buffered_comb_wires) {
			// Although both non-feedback buffered combinatorial wires and apparent feedback wires may be eliminated
			// by optimizing the design, if after `proc; flatten` there are any feedback wires remaining, it is very
			// likely that these feedback wires are indicative of a true logic loop, so they get emphasized in the message.
			const char *why_pessimistic = nullptr;
			if (has_feedback_arcs)
				why_pessimistic = "feedback wires";
			else if (has_buffered_comb_wires)
				why_pessimistic = "buffered combinatorial wires";
			log_warning("Design contains %s, which require delta cycles during evaluation.\n", why_pessimistic);
			if (!run_flatten)
				log("Flattening may eliminate %s from the design.\n", why_pessimistic);
			if (!run_proc)
				log("Converting processes to netlists may eliminate %s from the design.\n", why_pessimistic);
		}
	}

	void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem)
	{
		has_sync_init = has_packed_mem = false;

		for (auto module : design->modules()) {
			if (module->get_blackbox_attribute() && !module->has_attribute(ID(cxxrtl_blackbox)))
				continue;

			if (!design->selected_whole_module(module))
				if (design->selected_module(module))
					log_cmd_error("Can't handle partially selected module `%s'!\n", id2cstr(module->name));
			if (!design->selected_module(module))
				continue;

			for (auto proc : module->processes)
				for (auto sync : proc.second->syncs)
					if (sync->type == RTLIL::STi)
						has_sync_init = true;

			for (auto cell : module->cells())
				if (cell->type == ID($mem))
					has_packed_mem = true;
		}
	}

	void prepare_design(RTLIL::Design *design)
	{
		bool did_anything = false;
		bool has_sync_init, has_packed_mem;
		log_push();
		check_design(design, has_sync_init, has_packed_mem);
		if (run_flatten) {
			Pass::call(design, "flatten");
			did_anything = true;
		}
		if (run_proc) {
			Pass::call(design, "proc");
			did_anything = true;
		} else if (has_sync_init) {
			// We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those
			// in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.)
			Pass::call(design, "proc_prune");
			Pass::call(design, "proc_clean");
			Pass::call(design, "proc_init");
			did_anything = true;
		}
		if (has_packed_mem) {
			Pass::call(design, "memory_unpack");
			did_anything = true;
		}
		// Recheck the design if it was modified.
		if (has_sync_init || has_packed_mem)
			check_design(design, has_sync_init, has_packed_mem);
		log_assert(!(has_sync_init || has_packed_mem));
		log_pop();
		if (did_anything)
			log_spacer();
		analyze_design(design);
	}
};

struct CxxrtlBackend : public Backend {
	static const int DEFAULT_OPT_LEVEL = 6;
	static const int OPT_LEVEL_DEBUG = 4;
	static const int DEFAULT_DEBUG_LEVEL = 1;

	CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
	void help() override
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    write_cxxrtl [options] [filename]\n");
		log("\n");
		log("Write C++ code that simulates the design. The generated code requires a driver\n");
		log("that instantiates the design, toggles its clock, and interacts with its ports.\n");
		log("\n");
		log("The following driver may be used as an example for a design with a single clock\n");
		log("driving rising edge triggered flip-flops:\n");
		log("\n");
		log("    #include \"top.cc\"\n");
		log("\n");
		log("    int main() {\n");
		log("      cxxrtl_design::p_top top;\n");
		log("      top.step();\n");
		log("      while (1) {\n");
		log("        /* user logic */\n");
		log("        top.p_clk.set(false);\n");
		log("        top.step();\n");
		log("        top.p_clk.set(true);\n");
		log("        top.step();\n");
		log("      }\n");
		log("    }\n");
		log("\n");
		log("Note that CXXRTL simulations, just like the hardware they are simulating, are\n");
		log("subject to race conditions. If, in the example above, the user logic would run\n");
		log("simultaneously with the rising edge of the clock, the design would malfunction.\n");
		log("\n");
		log("This backend supports replacing parts of the design with black boxes implemented\n");
		log("in C++. If a module marked as a CXXRTL black box, its implementation is ignored,\n");
		log("and the generated code consists only of an interface and a factory function.\n");
		log("The driver must implement the factory function that creates an implementation of\n");
		log("the black box, taking into account the parameters it is instantiated with.\n");
		log("\n");
		log("For example, the following Verilog code defines a CXXRTL black box interface for\n");
		log("a synchronous debug sink:\n");
		log("\n");
		log("    (* cxxrtl_blackbox *)\n");
		log("    module debug(...);\n");
		log("      (* cxxrtl_edge = \"p\" *) input clk;\n");
		log("      input en;\n");
		log("      input [7:0] i_data;\n");
		log("      (* cxxrtl_sync *) output [7:0] o_data;\n");
		log("    endmodule\n");
		log("\n");
		log("For this HDL interface, this backend will generate the following C++ interface:\n");
		log("\n");
		log("    struct bb_p_debug : public module {\n");
		log("      value<1> p_clk;\n");
		log("      bool posedge_p_clk() const { /* ... */ }\n");
		log("      value<1> p_en;\n");
		log("      value<8> p_i_data;\n");
		log("      wire<8> p_o_data;\n");
		log("\n");
		log("      bool eval() override;\n");
		log("      bool commit() override;\n");
		log("\n");
		log("      static std::unique_ptr<bb_p_debug>\n");
		log("      create(std::string name, metadata_map parameters, metadata_map attributes);\n");
		log("    };\n");
		log("\n");
		log("The `create' function must be implemented by the driver. For example, it could\n");
		log("always provide an implementation logging the values to standard error stream:\n");
		log("\n");
		log("    namespace cxxrtl_design {\n");
		log("\n");
		log("    struct stderr_debug : public bb_p_debug {\n");
		log("      bool eval() override {\n");
		log("        if (posedge_p_clk() && p_en)\n");
		log("          fprintf(stderr, \"debug: %%02x\\n\", p_i_data.data[0]);\n");
		log("        p_o_data.next = p_i_data;\n");
		log("        return bb_p_debug::eval();\n");
		log("      }\n");
		log("    };\n");
		log("\n");
		log("    std::unique_ptr<bb_p_debug>\n");
		log("    bb_p_debug::create(std::string name, cxxrtl::metadata_map parameters,\n");
		log("                       cxxrtl::metadata_map attributes) {\n");
		log("      return std::make_unique<stderr_debug>();\n");
		log("    }\n");
		log("\n");
		log("    }\n");
		log("\n");
		log("For complex applications of black boxes, it is possible to parameterize their\n");
		log("port widths. For example, the following Verilog code defines a CXXRTL black box\n");
		log("interface for a configurable width debug sink:\n");
		log("\n");
		log("    (* cxxrtl_blackbox, cxxrtl_template = \"WIDTH\" *)\n");
		log("    module debug(...);\n");
		log("      parameter WIDTH = 8;\n");
		log("      (* cxxrtl_edge = \"p\" *) input clk;\n");
		log("      input en;\n");
		log("      (* cxxrtl_width = \"WIDTH\" *) input [WIDTH - 1:0] i_data;\n");
		log("      (* cxxrtl_width = \"WIDTH\" *) output [WIDTH - 1:0] o_data;\n");
		log("    endmodule\n");
		log("\n");
		log("For this parametric HDL interface, this backend will generate the following C++\n");
		log("interface (only the differences are shown):\n");
		log("\n");
		log("    template<size_t WIDTH>\n");
		log("    struct bb_p_debug : public module {\n");
		log("      // ...\n");
		log("      value<WIDTH> p_i_data;\n");
		log("      wire<WIDTH> p_o_data;\n");
		log("      // ...\n");
		log("      static std::unique_ptr<bb_p_debug<WIDTH>>\n");
		log("      create(std::string name, metadata_map parameters, metadata_map attributes);\n");
		log("    };\n");
		log("\n");
		log("The `create' function must be implemented by the driver, specialized for every\n");
		log("possible combination of template parameters. (Specialization is necessary to\n");
		log("enable separate compilation of generated code and black box implementations.)\n");
		log("\n");
		log("    template<size_t SIZE>\n");
		log("    struct stderr_debug : public bb_p_debug<SIZE> {\n");
		log("      // ...\n");
		log("    };\n");
		log("\n");
		log("    template<>\n");
		log("    std::unique_ptr<bb_p_debug<8>>\n");
		log("    bb_p_debug<8>::create(std::string name, cxxrtl::metadata_map parameters,\n");
		log("                          cxxrtl::metadata_map attributes) {\n");
		log("      return std::make_unique<stderr_debug<8>>();\n");
		log("    }\n");
		log("\n");
		log("The following attributes are recognized by this backend:\n");
		log("\n");
		log("    cxxrtl_blackbox\n");
		log("        only valid on modules. if specified, the module contents are ignored,\n");
		log("        and the generated code includes only the module interface and a factory\n");
		log("        function, which will be called to instantiate the module.\n");
		log("\n");
		log("    cxxrtl_edge\n");
		log("        only valid on inputs of black boxes. must be one of \"p\", \"n\", \"a\".\n");
		log("        if specified on signal `clk`, the generated code includes edge detectors\n");
		log("        `posedge_p_clk()` (if \"p\"), `negedge_p_clk()` (if \"n\"), or both (if\n");
		log("        \"a\"), simplifying implementation of clocked black boxes.\n");
		log("\n");
		log("    cxxrtl_template\n");
		log("        only valid on black boxes. must contain a space separated sequence of\n");
		log("        identifiers that have a corresponding black box parameters. for each\n");
		log("        of them, the generated code includes a `size_t` template parameter.\n");
		log("\n");
		log("    cxxrtl_width\n");
		log("        only valid on ports of black boxes. must be a constant expression, which\n");
		log("        is directly inserted into generated code.\n");
		log("\n");
		log("    cxxrtl_comb, cxxrtl_sync\n");
		log("        only valid on outputs of black boxes. if specified, indicates that every\n");
		log("        bit of the output port is driven, correspondingly, by combinatorial or\n");
		log("        synchronous logic. this knowledge is used for scheduling optimizations.\n");
		log("        if neither is specified, the output will be pessimistically treated as\n");
		log("        driven by both combinatorial and synchronous logic.\n");
		log("\n");
		log("The following options are supported by this backend:\n");
		log("\n");
		log("    -header\n");
		log("        generate separate interface (.h) and implementation (.cc) files.\n");
		log("        if specified, the backend must be called with a filename, and filename\n");
		log("        of the interface is derived from filename of the implementation.\n");
		log("        otherwise, interface and implementation are generated together.\n");
		log("\n");
		log("    -namespace <ns-name>\n");
		log("        place the generated code into namespace <ns-name>. if not specified,\n");
		log("        \"cxxrtl_design\" is used.\n");
		log("\n");
		log("    -noflatten\n");
		log("        don't flatten the design. fully flattened designs can evaluate within\n");
		log("        one delta cycle if they have no combinatorial feedback.\n");
		log("        note that the debug interface and waveform dumps use full hierarchical\n");
		log("        names for all wires even in flattened designs.\n");
		log("\n");
		log("    -noproc\n");
		log("        don't convert processes to netlists. in most designs, converting\n");
		log("        processes significantly improves evaluation performance at the cost of\n");
		log("        slight increase in compilation time.\n");
		log("\n");
		log("    -O <level>\n");
		log("        set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL);
		log("        levels dramatically decrease compile and run time, and highest level\n");
		log("        possible for a design should be used.\n");
		log("\n");
		log("    -O0\n");
		log("        no optimization.\n");
		log("\n");
		log("    -O1\n");
		log("        localize internal wires if possible.\n");
		log("\n");
		log("    -O2\n");
		log("        like -O1, and unbuffer internal wires if possible.\n");
		log("\n");
		log("    -O3\n");
		log("        like -O2, and elide internal wires if possible.\n");
		log("\n");
		log("    -O4\n");
		log("        like -O3, and unbuffer public wires not marked (*keep*) if possible.\n");
		log("\n");
		log("    -O5\n");
		log("        like -O4, and localize public wires not marked (*keep*) if possible.\n");
		log("\n");
		log("    -O6\n");
		log("        like -O5, and elide public wires not marked (*keep*) if possible.\n");
		log("\n");
		log("    -Og\n");
		log("        highest optimization level that provides debug information for all\n");
		log("        public wires. currently, alias for -O%d.\n", OPT_LEVEL_DEBUG);
		log("\n");
		log("    -g <level>\n");
		log("        set the debug level. the default is -g%d. higher debug levels provide\n", DEFAULT_DEBUG_LEVEL);
		log("        more visibility and generate more code, but do not pessimize evaluation.\n");
		log("\n");
		log("    -g0\n");
		log("        no debug information.\n");
		log("\n");
		log("    -g1\n");
		log("        debug information for non-optimized public wires. this also makes it\n");
		log("        possible to use the C API.\n");
		log("\n");
	}

	void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
	{
		bool noflatten = false;
		bool noproc = false;
		int opt_level = DEFAULT_OPT_LEVEL;
		int debug_level = DEFAULT_DEBUG_LEVEL;
		CxxrtlWorker worker;

		log_header(design, "Executing CXXRTL backend.\n");

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++)
		{
			if (args[argidx] == "-noflatten") {
				noflatten = true;
				continue;
			}
			if (args[argidx] == "-noproc") {
				noproc = true;
				continue;
			}
			if (args[argidx] == "-Og") {
				opt_level = OPT_LEVEL_DEBUG;
				continue;
			}
			if (args[argidx] == "-O" && argidx+1 < args.size() && args[argidx+1] == "g") {
				argidx++;
				opt_level = OPT_LEVEL_DEBUG;
				continue;
			}
			if (args[argidx] == "-O" && argidx+1 < args.size()) {
				opt_level = std::stoi(args[++argidx]);
				continue;
			}
			if (args[argidx].substr(0, 2) == "-O" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
				opt_level = std::stoi(args[argidx].substr(2));
				continue;
			}
			if (args[argidx] == "-g" && argidx+1 < args.size()) {
				debug_level = std::stoi(args[++argidx]);
				continue;
			}
			if (args[argidx].substr(0, 2) == "-g" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
				debug_level = std::stoi(args[argidx].substr(2));
				continue;
			}
			if (args[argidx] == "-header") {
				worker.split_intf = true;
				continue;
			}
			if (args[argidx] == "-namespace" && argidx+1 < args.size()) {
				worker.design_ns = args[++argidx];
				continue;
			}
			break;
		}
		extra_args(f, filename, args, argidx);

		worker.run_flatten = !noflatten;
		worker.run_proc = !noproc;
		switch (opt_level) {
			// the highest level here must match DEFAULT_OPT_LEVEL
			case 6:
				worker.elide_public = true;
				YS_FALLTHROUGH
			case 5:
				worker.localize_public = true;
				YS_FALLTHROUGH
			case 4:
				worker.unbuffer_public = true;
				YS_FALLTHROUGH
			case 3:
				worker.elide_internal = true;
				YS_FALLTHROUGH
			case 2:
				worker.localize_internal = true;
				YS_FALLTHROUGH
			case 1:
				worker.unbuffer_internal = true;
				YS_FALLTHROUGH
			case 0:
				break;
			default:
				log_cmd_error("Invalid optimization level %d.\n", opt_level);
		}
		switch (debug_level) {
			// the highest level here must match DEFAULT_DEBUG_LEVEL
			case 1:
				worker.debug_info = true;
				YS_FALLTHROUGH
			case 0:
				break;
			default:
				log_cmd_error("Invalid debug information level %d.\n", debug_level);
		}

		std::ofstream intf_f;
		if (worker.split_intf) {
			if (filename == "<stdout>")
				log_cmd_error("Option -header must be used with a filename.\n");

			worker.intf_filename = filename.substr(0, filename.rfind('.')) + ".h";
			intf_f.open(worker.intf_filename, std::ofstream::trunc);
			if (intf_f.fail())
				log_cmd_error("Can't open file `%s' for writing: %s\n",
				              worker.intf_filename.c_str(), strerror(errno));

			worker.intf_f = &intf_f;
		}
		worker.impl_f = f;

		worker.prepare_design(design);
		worker.dump_design(design);
	}
} CxxrtlBackend;

PRIVATE_NAMESPACE_END