aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/ecp5/arith_map.v
Commit message (Expand)AuthorAgeFilesLines
* ecp5: Increase threshold for ALU mappingDavid Shah2019-01-211-1/+1
* ecp5: ECP5 synthesis fixesDavid Shah2018-07-161-2/+2
* ecp5: Cells and mappings fixesDavid Shah2018-07-131-3/+3
* ecp5: Fixing arith_mapDavid Shah2018-07-131-4/+5
* ecp5: Initial arith_map implementationDavid Shah2018-07-131-0/+78
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

from __future__ import absolute_import, division, print_function

import collections
import itertools
import warnings
from contextlib import contextmanager

import six

from cryptography import utils
from cryptography.exceptions import (
    InternalError, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import (
    CMACBackend, CipherBackend, DSABackend, EllipticCurveBackend, HMACBackend,
    HashBackend, PBKDF2HMACBackend, PEMSerializationBackend,
    PKCS8SerializationBackend, RSABackend,
    TraditionalOpenSSLSerializationBackend, X509Backend
)
from cryptography.hazmat.backends.openssl.ciphers import (
    _AESCTRCipherContext, _CipherContext
)
from cryptography.hazmat.backends.openssl.cmac import _CMACContext
from cryptography.hazmat.backends.openssl.dsa import (
    _DSAParameters, _DSAPrivateKey, _DSAPublicKey
)
from cryptography.hazmat.backends.openssl.ec import (
    _EllipticCurvePrivateKey, _EllipticCurvePublicKey
)
from cryptography.hazmat.backends.openssl.hashes import _HashContext
from cryptography.hazmat.backends.openssl.hmac import _HMACContext
from cryptography.hazmat.backends.openssl.rsa import (
    _RSAPrivateKey, _RSAPublicKey
)
from cryptography.hazmat.backends.openssl.x509 import _X509Certificate
from cryptography.hazmat.bindings.openssl.binding import Binding
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import dsa, ec, rsa
from cryptography.hazmat.primitives.asymmetric.padding import (
    MGF1, OAEP, PKCS1v15, PSS
)
from cryptography.hazmat.primitives.ciphers.algorithms import (
    AES, ARC4, Blowfish, CAST5, Camellia, IDEA, SEED, TripleDES
)
from cryptography.hazmat.primitives.ciphers.modes import (
    CBC, CFB, CFB8, CTR, ECB, GCM, OFB
)


_MemoryBIO = collections.namedtuple("_MemoryBIO", ["bio", "char_ptr"])
_OpenSSLError = collections.namedtuple("_OpenSSLError",
                                       ["code", "lib", "func", "reason"])


@utils.register_interface(CipherBackend)
@utils.register_interface(CMACBackend)
@utils.register_interface(DSABackend)
@utils.register_interface(EllipticCurveBackend)
@utils.register_interface(HashBackend)
@utils.register_interface(HMACBackend)
@utils.register_interface(PBKDF2HMACBackend)
@utils.register_interface(PKCS8SerializationBackend)
@utils.register_interface(RSABackend)
@utils.register_interface(TraditionalOpenSSLSerializationBackend)
@utils.register_interface(PEMSerializationBackend)
@utils.register_interface(X509Backend)
class Backend(object):
    """
    OpenSSL API binding interfaces.
    """
    name = "openssl"

    def __init__(self):
        self._binding = Binding()
        self._ffi = self._binding.ffi
        self._lib = self._binding.lib

        self._binding.init_static_locks()

        # adds all ciphers/digests for EVP
        self._lib.OpenSSL_add_all_algorithms()
        # registers available SSL/TLS ciphers and digests
        self._lib.SSL_library_init()
        # loads error strings for libcrypto and libssl functions
        self._lib.SSL_load_error_strings()

        self._cipher_registry = {}
        self._register_default_ciphers()
        self.activate_osrandom_engine()

    def activate_builtin_random(self):
        # Obtain a new structural reference.
        e = self._lib.ENGINE_get_default_RAND()
        if e != self._ffi.NULL:
            self._lib.ENGINE_unregister_RAND(e)
            # Reset the RNG to use the new engine.
            self._lib.RAND_cleanup()
            # decrement the structural reference from get_default_RAND
            res = self._lib.ENGINE_finish(e)
            assert res == 1

    def activate_osrandom_engine(self):
        # Unregister and free the current engine.
        self.activate_builtin_random()
        # Fetches an engine by id and returns it. This creates a structural
        # reference.
        e = self._lib.ENGINE_by_id(self._lib.Cryptography_osrandom_engine_id)
        assert e != self._ffi.NULL
        # Initialize the engine for use. This adds a functional reference.
        res = self._lib.ENGINE_init(e)
        assert res == 1
        # Set the engine as the default RAND provider.
        res = self._lib.ENGINE_set_default_RAND(e)
        assert res == 1
        # Decrement the structural ref incremented by ENGINE_by_id.
        res = self._lib.ENGINE_free(e)
        assert res == 1
        # Decrement the functional ref incremented by ENGINE_init.
        res = self._lib.ENGINE_finish(e)
        assert res == 1
        # Reset the RNG to use the new engine.
        self._lib.RAND_cleanup()

    def openssl_version_text(self):
        """
        Friendly string name of the loaded OpenSSL library. This is not
        necessarily the same version as it was compiled against.

        Example: OpenSSL 1.0.1e 11 Feb 2013
        """
        return self._ffi.string(
            self._lib.SSLeay_version(self._lib.SSLEAY_VERSION)
        ).decode("ascii")

    def create_hmac_ctx(self, key, algorithm):
        return _HMACContext(self, key, algorithm)

    def hash_supported(self, algorithm):
        digest = self._lib.EVP_get_digestbyname(algorithm.name.encode("ascii"))
        return digest != self._ffi.NULL

    def hmac_supported(self, algorithm):
        return self.hash_supported(algorithm)

    def create_hash_ctx(self, algorithm):
        return _HashContext(self, algorithm)

    def cipher_supported(self, cipher, mode):
        if self._evp_cipher_supported(cipher, mode):
            return True
        elif isinstance(mode, CTR) and isinstance(cipher, AES):
            return True
        else:
            return False

    def _evp_cipher_supported(self, cipher, mode):
        try:
            adapter = self._cipher_registry[type(cipher), type(mode)]
        except KeyError:
            return False
        evp_cipher = adapter(self, cipher, mode)
        return self._ffi.NULL != evp_cipher

    def register_cipher_adapter(self, cipher_cls, mode_cls, adapter):
        if (cipher_cls, mode_cls) in self._cipher_registry:
            raise ValueError("Duplicate registration for: {0} {1}.".format(
                cipher_cls, mode_cls)
            )
        self._cipher_registry[cipher_cls, mode_cls] = adapter

    def _register_default_ciphers(self):
        for mode_cls in [CBC, CTR, ECB, OFB, CFB, CFB8]:
            self.register_cipher_adapter(
                AES,
                mode_cls,
                GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
            )
        for mode_cls in [CBC, CTR, ECB, OFB, CFB]:
            self.register_cipher_adapter(
                Camellia,
                mode_cls,
                GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
            )
        for mode_cls in [CBC, CFB, CFB8, OFB]:
            self.register_cipher_adapter(
                TripleDES,
                mode_cls,
                GetCipherByName("des-ede3-{mode.name}")
            )
        self.register_cipher_adapter(
            TripleDES,
            ECB,
            GetCipherByName("des-ede3")
        )
        for mode_cls in [CBC, CFB, OFB, ECB]:
            self.register_cipher_adapter(
                Blowfish,
                mode_cls,
                GetCipherByName("bf-{mode.name}")
            )
        for mode_cls in [CBC, CFB, OFB, ECB]:
            self.register_cipher_adapter(
                SEED,
                mode_cls,
                GetCipherByName("seed-{mode.name}")
            )
        for cipher_cls, mode_cls in itertools.product(
            [CAST5, IDEA],
            [CBC, OFB, CFB, ECB],
        ):
            self.register_cipher_adapter(
                cipher_cls,
                mode_cls,
                GetCipherByName("{cipher.name}-{mode.name}")
            )
        self.register_cipher_adapter(
            ARC4,
            type(None),
            GetCipherByName("rc4")
        )
        self.register_cipher_adapter(
            AES,
            GCM,
            GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
        )

    def create_symmetric_encryption_ctx(self, cipher, mode):
        if (isinstance(mode, CTR) and isinstance(cipher, AES)
                and not self._evp_cipher_supported(cipher, mode)):
            # This is needed to provide support for AES CTR mode in OpenSSL
            # 0.9.8. It can be removed when we drop 0.9.8 support (RHEL 5
            # extended life ends 2020).
            return _AESCTRCipherContext(self, cipher, mode)
        else:
            return _CipherContext(self, cipher, mode, _CipherContext._ENCRYPT)

    def create_symmetric_decryption_ctx(self, cipher, mode):
        if (isinstance(mode, CTR) and isinstance(cipher, AES)
                and not self._evp_cipher_supported(cipher, mode)):
            # This is needed to provide support for AES CTR mode in OpenSSL
            # 0.9.8. It can be removed when we drop 0.9.8 support (RHEL 5
            # extended life ends 2020).
            return _AESCTRCipherContext(self, cipher, mode)
        else:
            return _CipherContext(self, cipher, mode, _CipherContext._DECRYPT)

    def pbkdf2_hmac_supported(self, algorithm):
        if self._lib.Cryptography_HAS_PBKDF2_HMAC:
            return self.hmac_supported(algorithm)
        else:
            # OpenSSL < 1.0.0 has an explicit PBKDF2-HMAC-SHA1 function,
            # so if the PBKDF2_HMAC function is missing we only support
            # SHA1 via PBKDF2_HMAC_SHA1.
            return isinstance(algorithm, hashes.SHA1)

    def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
                           key_material):
        buf = self._ffi.new("char[]", length)
        if self._lib.Cryptography_HAS_PBKDF2_HMAC:
            evp_md = self._lib.EVP_get_digestbyname(
                algorithm.name.encode("ascii"))
            assert evp_md != self._ffi.NULL
            res = self._lib.PKCS5_PBKDF2_HMAC(
                key_material,
                len(key_material),
                salt,
                len(salt),
                iterations,
                evp_md,
                length,
                buf
            )
            assert res == 1
        else:
            if not isinstance(algorithm, hashes.SHA1):
                raise UnsupportedAlgorithm(
                    "This version of OpenSSL only supports PBKDF2HMAC with "
                    "SHA1.",
                    _Reasons.UNSUPPORTED_HASH
                )
            res = self._lib.PKCS5_PBKDF2_HMAC_SHA1(
                key_material,
                len(key_material),
                salt,
                len(salt),
                iterations,
                length,
                buf
            )
            assert res == 1

        return self._ffi.buffer(buf)[:]

    def _err_string(self, code):
        err_buf = self._ffi.new("char[]", 256)
        self._lib.ERR_error_string_n(code, err_buf, 256)
        return self._ffi.string(err_buf, 256)[:]

    def _consume_errors(self):
        errors = []
        while True:
            code = self._lib.ERR_get_error()
            if code == 0:
                break

            lib = self._lib.ERR_GET_LIB(code)
            func = self._lib.ERR_GET_FUNC(code)
            reason = self._lib.ERR_GET_REASON(code)

            errors.append(_OpenSSLError(code, lib, func, reason))
        return errors

    def _unknown_error(self, error):
        return InternalError(
            "Unknown error code {0} from OpenSSL, "
            "you should probably file a bug. {1}.".format(
                error.code, self._err_string(error.code)
            )
        )

    def _bn_to_int(self, bn):
        if six.PY3:
            # Python 3 has constant time from_bytes, so use that.

            bn_num_bytes = (self._lib.BN_num_bits(bn) + 7) // 8
            bin_ptr = self._ffi.new("unsigned char[]", bn_num_bytes)
            bin_len = self._lib.BN_bn2bin(bn, bin_ptr)
            assert bin_len > 0
            assert bin_ptr != self._ffi.NULL
            return int.from_bytes(self._ffi.buffer(bin_ptr)[:bin_len], "big")

        else:
            # Under Python 2 the best we can do is hex()

            hex_cdata = self._lib.BN_bn2hex(bn)
            assert hex_cdata != self._ffi.NULL
            hex_str = self._ffi.string(hex_cdata)
            self._lib.OPENSSL_free(hex_cdata)
            return int(hex_str, 16)

    def _int_to_bn(self, num, bn=None):
        """
        Converts a python integer to a BIGNUM. The returned BIGNUM will not
        be garbage collected (to support adding them to structs that take
        ownership of the object). Be sure to register it for GC if it will
        be discarded after use.
        """

        if bn is None:
            bn = self._ffi.NULL

        if six.PY3:
            # Python 3 has constant time to_bytes, so use that.

            binary = num.to_bytes(int(num.bit_length() / 8.0 + 1), "big")
            bn_ptr = self._lib.BN_bin2bn(binary, len(binary), bn)
            assert bn_ptr != self._ffi.NULL
            return bn_ptr

        else:
            # Under Python 2 the best we can do is hex()

            hex_num = hex(num).rstrip("L").lstrip("0x").encode("ascii") or b"0"
            bn_ptr = self._ffi.new("BIGNUM **")
            bn_ptr[0] = bn
            res = self._lib.BN_hex2bn(bn_ptr, hex_num)
            assert res != 0
            assert bn_ptr[0] != self._ffi.NULL
            return bn_ptr[0]

    def generate_rsa_private_key(self, public_exponent, key_size):
        rsa._verify_rsa_parameters(public_exponent, key_size)

        rsa_cdata = self._lib.RSA_new()
        assert rsa_cdata != self._ffi.NULL
        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)

        bn = self._int_to_bn(public_exponent)
        bn = self._ffi.gc(bn, self._lib.BN_free)

        res = self._lib.RSA_generate_key_ex(
            rsa_cdata, key_size, bn, self._ffi.NULL
        )
        assert res == 1

        return _RSAPrivateKey(self, rsa_cdata)

    def generate_rsa_parameters_supported(self, public_exponent, key_size):
        return (public_exponent >= 3 and public_exponent & 1 != 0 and
                key_size >= 512)

    def load_rsa_private_numbers(self, numbers):
        rsa._check_private_key_components(
            numbers.p,
            numbers.q,
            numbers.d,
            numbers.dmp1,
            numbers.dmq1,
            numbers.iqmp,
            numbers.public_numbers.e,
            numbers.public_numbers.n
        )
        rsa_cdata = self._lib.RSA_new()
        assert rsa_cdata != self._ffi.NULL
        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
        rsa_cdata.p = self._int_to_bn(numbers.p)
        rsa_cdata.q = self._int_to_bn(numbers.q)
        rsa_cdata.d = self._int_to_bn(numbers.d)
        rsa_cdata.dmp1 = self._int_to_bn(numbers.dmp1)
        rsa_cdata.dmq1 = self._int_to_bn(numbers.dmq1)
        rsa_cdata.iqmp = self._int_to_bn(numbers.iqmp)
        rsa_cdata.e = self._int_to_bn(numbers.public_numbers.e)
        rsa_cdata.n = self._int_to_bn(numbers.public_numbers.n)
        res = self._lib.RSA_blinding_on(rsa_cdata, self._ffi.NULL)
        assert res == 1

        return _RSAPrivateKey(self, rsa_cdata)

    def load_rsa_public_numbers(self, numbers):
        rsa._check_public_key_components(numbers.e, numbers.n)
        rsa_cdata = self._lib.RSA_new()
        assert rsa_cdata != self._ffi.NULL
        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
        rsa_cdata.e = self._int_to_bn(numbers.e)
        rsa_cdata.n = self._int_to_bn(numbers.n)
        res = self._lib.RSA_blinding_on(rsa_cdata, self._ffi.NULL)
        assert res == 1

        return _RSAPublicKey(self, rsa_cdata)

    def _bytes_to_bio(self, data):
        """
        Return a _MemoryBIO namedtuple of (BIO, char*).

        The char* is the storage for the BIO and it must stay alive until the
        BIO is finished with.
        """
        data_char_p = self._ffi.new("char[]", data)
        bio = self._lib.BIO_new_mem_buf(
            data_char_p, len(data)
        )
        assert bio != self._ffi.NULL

        return _MemoryBIO(self._ffi.gc(bio, self._lib.BIO_free), data_char_p)

    def _evp_pkey_to_private_key(self, evp_pkey):
        """
        Return the appropriate type of PrivateKey given an evp_pkey cdata
        pointer.
        """

        type = evp_pkey.type

        if type == self._lib.EVP_PKEY_RSA:
            rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
            assert rsa_cdata != self._ffi.NULL
            rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
            return _RSAPrivateKey(self, rsa_cdata)
        elif type == self._lib.EVP_PKEY_DSA:
            dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
            assert dsa_cdata != self._ffi.NULL
            dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
            return _DSAPrivateKey(self, dsa_cdata)
        elif (self._lib.Cryptography_HAS_EC == 1 and
              type == self._lib.EVP_PKEY_EC):
            ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
            assert ec_cdata != self._ffi.NULL
            ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
            return _EllipticCurvePrivateKey(self, ec_cdata)
        else:
            raise UnsupportedAlgorithm("Unsupported key type.")

    def _evp_pkey_to_public_key(self, evp_pkey):
        """
        Return the appropriate type of PublicKey given an evp_pkey cdata
        pointer.
        """

        type = evp_pkey.type

        if type == self._lib.EVP_PKEY_RSA:
            rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
            assert rsa_cdata != self._ffi.NULL
            rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
            return _RSAPublicKey(self, rsa_cdata)
        elif type == self._lib.EVP_PKEY_DSA:
            dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
            assert dsa_cdata != self._ffi.NULL
            dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
            return _DSAPublicKey(self, dsa_cdata)
        elif (self._lib.Cryptography_HAS_EC == 1 and
              type == self._lib.EVP_PKEY_EC):
            ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
            assert ec_cdata != self._ffi.NULL
            ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
            return _EllipticCurvePublicKey(self, ec_cdata)
        else:
            raise UnsupportedAlgorithm("Unsupported key type.")

    def _pem_password_cb(self, password):
        """
        Generate a pem_password_cb function pointer that copied the password to
        OpenSSL as required and returns the number of bytes copied.

        typedef int pem_password_cb(char *buf, int size,
                                    int rwflag, void *userdata);

        Useful for decrypting PKCS8 files and so on.

        Returns a tuple of (cdata function pointer, callback function).
        """

        def pem_password_cb(buf, size, writing, userdata):
            pem_password_cb.called += 1

            if not password:
                pem_password_cb.exception = TypeError(
                    "Password was not given but private key is encrypted."
                )
                return 0
            elif len(password) < size:
                pw_buf = self._ffi.buffer(buf, size)
                pw_buf[:len(password)] = password
                return len(password)
            else:
                pem_password_cb.exception = ValueError(
                    "Passwords longer than {0} bytes are not supported "
                    "by this backend.".format(size - 1)
                )
                return 0

        pem_password_cb.called = 0
        pem_password_cb.exception = None

        return (
            self._ffi.callback("int (char *, int, int, void *)",
                               pem_password_cb),
            pem_password_cb
        )

    def _mgf1_hash_supported(self, algorithm):
        if self._lib.Cryptography_HAS_MGF1_MD:
            return self.hash_supported(algorithm)
        else:
            return isinstance(algorithm, hashes.SHA1)

    def rsa_padding_supported(self, padding):
        if isinstance(padding, PKCS1v15):
            return True
        elif isinstance(padding, PSS) and isinstance(padding._mgf, MGF1):
            return self._mgf1_hash_supported(padding._mgf._algorithm)
        elif isinstance(padding, OAEP) and isinstance(padding._mgf, MGF1):
            return isinstance(padding._mgf._algorithm, hashes.SHA1)
        else:
            return False

    def generate_dsa_parameters(self, key_size):
        if key_size not in (1024, 2048, 3072):
            raise ValueError(
                "Key size must be 1024 or 2048 or 3072 bits.")

        if (self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f and
                key_size > 1024):
            raise ValueError(
                "Key size must be 1024 because OpenSSL < 1.0.0 doesn't "
                "support larger key sizes.")

        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)

        res = self._lib.DSA_generate_parameters_ex(
            ctx, key_size, self._ffi.NULL, 0,
            self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
        )

        assert res == 1

        return _DSAParameters(self, ctx)

    def generate_dsa_private_key(self, parameters):
        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)
        ctx.p = self._lib.BN_dup(parameters._dsa_cdata.p)
        ctx.q = self._lib.BN_dup(parameters._dsa_cdata.q)
        ctx.g = self._lib.BN_dup(parameters._dsa_cdata.g)

        self._lib.DSA_generate_key(ctx)

        return _DSAPrivateKey(self, ctx)

    def generate_dsa_private_key_and_parameters(self, key_size):
        parameters = self.generate_dsa_parameters(key_size)
        return self.generate_dsa_private_key(parameters)

    def load_dsa_private_numbers(self, numbers):
        dsa._check_dsa_private_numbers(numbers)
        parameter_numbers = numbers.public_numbers.parameter_numbers

        dsa_cdata = self._lib.DSA_new()
        assert dsa_cdata != self._ffi.NULL
        dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)

        dsa_cdata.p = self._int_to_bn(parameter_numbers.p)
        dsa_cdata.q = self._int_to_bn(parameter_numbers.q)
        dsa_cdata.g = self._int_to_bn(parameter_numbers.g)
        dsa_cdata.pub_key = self._int_to_bn(numbers.public_numbers.y)
        dsa_cdata.priv_key = self._int_to_bn(numbers.x)

        return _DSAPrivateKey(self, dsa_cdata)

    def load_dsa_public_numbers(self, numbers):
        dsa._check_dsa_parameters(numbers.parameter_numbers)
        dsa_cdata = self._lib.DSA_new()
        assert dsa_cdata != self._ffi.NULL
        dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)

        dsa_cdata.p = self._int_to_bn(numbers.parameter_numbers.p)
        dsa_cdata.q = self._int_to_bn(numbers.parameter_numbers.q)
        dsa_cdata.g = self._int_to_bn(numbers.parameter_numbers.g)
        dsa_cdata.pub_key = self._int_to_bn(numbers.y)

        return _DSAPublicKey(self, dsa_cdata)

    def load_dsa_parameter_numbers(self, numbers):
        dsa._check_dsa_parameters(numbers)
        dsa_cdata = self._lib.DSA_new()
        assert dsa_cdata != self._ffi.NULL
        dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)

        dsa_cdata.p = self._int_to_bn(numbers.p)
        dsa_cdata.q = self._int_to_bn(numbers.q)
        dsa_cdata.g = self._int_to_bn(numbers.g)

        return _DSAParameters(self, dsa_cdata)

    def dsa_hash_supported(self, algorithm):
        if self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f:
            return isinstance(algorithm, hashes.SHA1)
        else:
            return self.hash_supported(algorithm)

    def dsa_parameters_supported(self, p, q, g):
        if self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f:
            return (utils.bit_length(p) <= 1024 and utils.bit_length(q) <= 160)
        else:
            return True

    def cmac_algorithm_supported(self, algorithm):
        return (
            self._lib.Cryptography_HAS_CMAC == 1
            and self.cipher_supported(algorithm, CBC(
                b"\x00" * algorithm.block_size))
        )

    def create_cmac_ctx(self, algorithm):
        return _CMACContext(self, algorithm)

    def load_pem_private_key(self, data, password):
        return self._load_key(
            self._lib.PEM_read_bio_PrivateKey,
            self._evp_pkey_to_private_key,
            data,
            password,
        )

    def load_pem_public_key(self, data):
        return self._load_key(
            self._lib.PEM_read_bio_PUBKEY,
            self._evp_pkey_to_public_key,
            data,
            None,
        )

    def load_pem_x509_certificate(self, data):
        mem_bio = self._bytes_to_bio(data)
        x509 = self._lib.PEM_read_bio_X509(
            mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
        )
        assert x509 != self._ffi.NULL
        x509 = self._ffi.gc(x509, self._lib.X509_free)
        return _X509Certificate(self, x509)

    def load_der_x509_certificate(self, data):
        mem_bio = self._bytes_to_bio(data)
        x509 = self._lib.d2i_X509_bio(mem_bio.bio, self._ffi.NULL)
        assert x509 != self._ffi.NULL
        x509 = self._ffi.gc(x509, self._lib.X509_free)
        return _X509Certificate(self, x509)

    def load_traditional_openssl_pem_private_key(self, data, password):
        warnings.warn(
            "load_traditional_openssl_pem_private_key is deprecated and will "
            "be removed in a future version, use load_pem_private_key "
            "instead.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_pem_private_key(data, password)

    def load_pkcs8_pem_private_key(self, data, password):
        warnings.warn(
            "load_pkcs8_pem_private_key is deprecated and will be removed in a"
            " future version, use load_pem_private_key instead.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_pem_private_key(data, password)

    def _load_key(self, openssl_read_func, convert_func, data, password):
        mem_bio = self._bytes_to_bio(data)

        password_callback, password_func = self._pem_password_cb(password)

        evp_pkey = openssl_read_func(
            mem_bio.bio,
            self._ffi.NULL,
            password_callback,
            self._ffi.NULL
        )

        if evp_pkey == self._ffi.NULL:
            if password_func.exception is not None:
                errors = self._consume_errors()
                assert errors
                raise password_func.exception
            else:
                self._handle_key_loading_error()

        evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)

        if password is not None and password_func.called == 0:
            raise TypeError(
                "Password was given but private key is not encrypted.")

        assert (
            (password is not None and password_func.called == 1) or
            password is None
        )

        return convert_func(evp_pkey)