diff options
author | Eddie Hung <eddie@fpgeh.com> | 2019-09-28 23:48:17 -0700 |
---|---|---|
committer | Eddie Hung <eddie@fpgeh.com> | 2019-09-28 23:48:17 -0700 |
commit | 79b6edb6397c530a7304eb4334f95324a4208aba (patch) | |
tree | 3a3c3fd9511c2dbe31e0fcbf71771596eeb6a2c3 /techlibs/xilinx/cells_sim.v | |
parent | cfa6dd61ef79fb16abd83164b1e013c0a5a2a63a (diff) | |
download | yosys-79b6edb6397c530a7304eb4334f95324a4208aba.tar.gz yosys-79b6edb6397c530a7304eb4334f95324a4208aba.tar.bz2 yosys-79b6edb6397c530a7304eb4334f95324a4208aba.zip |
Big rework; flop info now mostly in cells_sim.v
Diffstat (limited to 'techlibs/xilinx/cells_sim.v')
-rw-r--r-- | techlibs/xilinx/cells_sim.v | 294 |
1 files changed, 247 insertions, 47 deletions
diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v index ef4340d10..ee9d48684 100644 --- a/techlibs/xilinx/cells_sim.v +++ b/techlibs/xilinx/cells_sim.v @@ -240,6 +240,7 @@ endmodule // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250 +(* abc_box_id=1001, lib_whitebox, abc9_flop *) module FDRE ( (* abc_arrival=303 *) output reg Q, @@ -257,35 +258,72 @@ module FDRE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; initial Q <= INIT; + wire \$currQ ; + reg \$nextQ ; + always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; - 1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; + 1'b0: always @(posedge C) Q <= \$nextQ ; + 1'b1: always @(negedge C) Q <= \$nextQ ; endcase endgenerate +`endif endmodule -module FDSE ( +(* abc_box_id=1002, lib_whitebox, abc9_flop *) +module FDRE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) - (* invertible_pin = "IS_C_INVERTED" *) input C, - input CE, - (* invertible_pin = "IS_D_INVERTED" *) - input D, - (* invertible_pin = "IS_S_INVERTED" *) - input S + input CE, D, R ); - parameter [0:0] INIT = 1'b1; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_S_INVERTED = 1'b0; + parameter [0:0] INIT = 1'b0; initial Q <= INIT; - generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - endcase endgenerate + wire \$currQ ; + reg \$nextQ ; + always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + always @(negedge C) Q <= \$nextQ ; +`endif endmodule +(* abc_box_id=1003, lib_whitebox, abc9_flop *) module FDCE ( (* abc_arrival=303 *) output reg Q, @@ -303,14 +341,78 @@ module FDCE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; initial Q <= INIT; + wire \$currQ ; + reg \$nextQ ; + always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC_ASYNC box by abc_map.v + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED}) - 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; + 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; + 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; + 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; + 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; endcase endgenerate +`endif endmodule +(* abc_box_id=1004, lib_whitebox, abc9_flop *) +module FDCE_1 ( + (* abc_arrival=303 *) + output reg Q, + (* clkbuf_sink *) + input C, + input CE, D, CLR +); + parameter [0:0] INIT = 1'b0; + initial Q <= INIT; + wire \$currQ ; + reg \$nextQ ; + always @* if (CE) Q <= D; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC_ASYNC box by abc_map.v + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + always @(negedge C, posedge CLR) if (CLR == !IS_CLR_INVERTED) Q <= 1'b0; else Q <= \$nextQ ; +`endif +endmodule + +(* abc_box_id=1005, lib_whitebox, abc9_flop *) module FDPE ( (* abc_arrival=303 *) output reg Q, @@ -328,60 +430,158 @@ module FDPE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; initial Q <= INIT; + wire \$currQ ; + reg \$nextQ ; + always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC_ASYNC box by abc_map.v + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED}) - 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; - 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; + 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; + 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; + 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; + 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; endcase endgenerate +`endif endmodule -module FDRE_1 ( - (* abc_arrival=303 *) - output reg Q, - (* clkbuf_sink *) - input C, - input CE, D, R -); - parameter [0:0] INIT = 1'b0; - initial Q <= INIT; - always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D; -endmodule - -module FDSE_1 ( +(* abc_box_id=1006, lib_whitebox, abc9_flop *) +module FDPE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) input C, - input CE, D, S + input CE, D, PRE ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D; + wire \$currQ ; + reg \$nextQ ; + always @* if (CE) Q <= D; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC_ASYNC box by abc_map.v + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ; +`endif endmodule -module FDCE_1 ( +(* abc_box_id=1007, lib_whitebox, abc9_flop *) +module FDSE ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) + (* invertible_pin = "IS_C_INVERTED" *) input C, - input CE, D, CLR + input CE, + (* invertible_pin = "IS_D_INVERTED" *) + input D, + (* invertible_pin = "IS_S_INVERTED" *) + input S ); - parameter [0:0] INIT = 1'b0; + parameter [0:0] INIT = 1'b1; + parameter [0:0] IS_C_INVERTED = 1'b0; + parameter [0:0] IS_D_INVERTED = 1'b0; + parameter [0:0] IS_S_INVERTED = 1'b0; initial Q <= INIT; - always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D; + wire \$currQ ; + reg \$nextQ ; + always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + generate case (|IS_C_INVERTED) + 1'b0: always @(posedge C) Q <= \$nextQ ; + 1'b1: always @(negedge C) Q <= \$nextQ ; + endcase endgenerate +`endif endmodule -module FDPE_1 ( +(* abc_box_id=1008, lib_whitebox, abc9_flop *) +module FDSE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) input C, - input CE, D, PRE + input CE, D, S ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D; + wire \$currQ ; + reg \$nextQ ; + always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ; +`ifdef _ABC + // `abc9' requires that complex flops be split into a combinatorial + // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `\$currQ' wire. + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; + always @* Q = \$nextQ ; +`else + assign \$currQ = Q; + always @(negedge C) Q <= \$nextQ ; +`endif endmodule module RAM32X1D ( |