diff options
author | Marcelina Kościelnicka <mwk@0x04.net> | 2022-02-06 10:10:21 +0100 |
---|---|---|
committer | Marcelina Kościelnicka <mwk@0x04.net> | 2022-05-18 17:32:56 +0200 |
commit | 7c5dba8b77571aa6a2c0c38eeed7963b401d1cbd (patch) | |
tree | f860b6ac949f2386bfb4856bb7e347692f9399ff /passes/memory/memory_libmap.cc | |
parent | 9450f308f07ea61a072da4377770ed36b0ce9a45 (diff) | |
download | yosys-7c5dba8b77571aa6a2c0c38eeed7963b401d1cbd.tar.gz yosys-7c5dba8b77571aa6a2c0c38eeed7963b401d1cbd.tar.bz2 yosys-7c5dba8b77571aa6a2c0c38eeed7963b401d1cbd.zip |
Add memory_libmap pass.
Diffstat (limited to 'passes/memory/memory_libmap.cc')
-rw-r--r-- | passes/memory/memory_libmap.cc | 2093 |
1 files changed, 2093 insertions, 0 deletions
diff --git a/passes/memory/memory_libmap.cc b/passes/memory/memory_libmap.cc new file mode 100644 index 000000000..ab7bb7bb2 --- /dev/null +++ b/passes/memory/memory_libmap.cc @@ -0,0 +1,2093 @@ +/* + * yosys -- Yosys Open SYnthesis Suite + * + * Copyright (C) 2021 Marcelina Kościelnicka <mwk@0x04.net> + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + */ + +#include "memlib.h" + +#include <ctype.h> + +#include "kernel/yosys.h" +#include "kernel/sigtools.h" +#include "kernel/mem.h" +#include "kernel/qcsat.h" + +USING_YOSYS_NAMESPACE +PRIVATE_NAMESPACE_BEGIN + +using namespace MemLibrary; + +#define FACTOR_MUX 0.5 +#define FACTOR_DEMUX 0.5 +#define FACTOR_EMU 2 + +struct PassOptions { + bool no_auto_distributed; + bool no_auto_block; + bool no_auto_huge; + double logic_cost_rom; + double logic_cost_ram; +}; + +struct WrPortConfig { + // Index of the read port this port is merged with, or -1 if none. + int rd_port; + // Index of the PortGroup in the Ram. + int port_group; + int port_variant; + const PortVariant *def; + // Emulate priority logic for this list of (source) write port indices. + std::vector<int> emu_prio; + // If true, this port needs to end up with uniform byte enables to work correctly. + bool force_uniform; + + WrPortConfig() : rd_port(-1), force_uniform(false) {} +}; + +struct RdPortConfig { + // Index of the write port this port is merged with, or -1 if none. + int wr_port; + // Index of the PortGroup in the Ram. + int port_group; + int port_variant; + const PortVariant *def; + // If true, this is a sync port mapped into async mem, make an output + // register. Mutually exclusive with the following options. + bool emu_sync; + // Emulate the EN / ARST / SRST / init value circuitry. + bool emu_en; + bool emu_arst; + bool emu_srst; + bool emu_init; + // Emulate EN-SRST priority. + bool emu_srst_en_prio; + // If true, use clk_en as rd_en. + bool rd_en_to_clk_en; + // Emulate transparency logic for this list of (source) write port indices. + std::vector<int> emu_trans; + + RdPortConfig() : wr_port(-1), emu_sync(false), emu_en(false), emu_arst(false), emu_srst(false), emu_init(false), emu_srst_en_prio(false), rd_en_to_clk_en(false) {} +}; + +// The named clock and clock polarity assignments. +struct SharedClockConfig { + bool used; + SigBit clk; + // For anyedge clocks. + bool polarity; + // For non-anyedge clocks. + bool invert; +}; + +struct MemConfig { + // Reference to the library ram definition + const Ram *def; + // Port assignments, indexed by Mem port index. + std::vector<WrPortConfig> wr_ports; + std::vector<RdPortConfig> rd_ports; + std::vector<SharedClockConfig> shared_clocks; + // Emulate read-first write-read behavior using soft logic. + bool emu_read_first; + // This many low bits of (target) address are always-0 on all ports. + int base_width_log2; + int unit_width_log2; + std::vector<int> swizzle; + int hard_wide_mask; + int emu_wide_mask; + // How many times the base memory block will need to be duplicated to get more + // data bits. + int repl_d; + // How many times the whole memory array will need to be duplicated to cover + // all read ports required. + int repl_port; + // Emulation score — how much circuitry we need to add for priority / transparency / + // reset / initial value emulation. + int score_emu; + // Mux score — how much circuitry we need to add to manually decode whatever address + // bits are not decoded by the memory array itself, for reads. + int score_mux; + // Demux score — how much circuitry we need to add to manually decode whatever address + // bits are not decoded by the memory array itself, for writes. + int score_demux; + double cost; + MemConfig() : emu_read_first(false) {} +}; + +typedef std::vector<MemConfig> MemConfigs; + +struct MapWorker { + Module *module; + ModWalker modwalker; + SigMap sigmap; + SigMap sigmap_xmux; + FfInitVals initvals; + + MapWorker(Module *module) : module(module), modwalker(module->design, module), sigmap(module), sigmap_xmux(module), initvals(&sigmap, module) { + for (auto cell : module->cells()) + { + if (cell->type == ID($mux)) + { + RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort(ID::A)); + RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort(ID::B)); + + if (sig_a.is_fully_undef()) + sigmap_xmux.add(cell->getPort(ID::Y), sig_b); + else if (sig_b.is_fully_undef()) + sigmap_xmux.add(cell->getPort(ID::Y), sig_a); + } + } + } +}; + +struct SwizzleBit { + bool valid; + int mux_idx; + int addr; + int bit; +}; + +struct Swizzle { + int addr_shift; + int addr_start; + int addr_end; + std::vector<int> addr_mux_bits; + std::vector<std::vector<SwizzleBit>> bits; +}; + +struct MemMapping { + MapWorker &worker; + QuickConeSat qcsat; + Mem &mem; + const Library &lib; + const PassOptions &opts; + std::vector<MemConfig> cfgs; + bool logic_ok; + double logic_cost; + RamKind kind; + std::string style; + dict<int, int> wr_en_cache; + dict<std::pair<int, int>, bool> wr_implies_rd_cache; + dict<std::pair<int, int>, bool> wr_excludes_rd_cache; + dict<std::pair<int, int>, bool> wr_excludes_srst_cache; + + MemMapping(MapWorker &worker, Mem &mem, const Library &lib, const PassOptions &opts) : worker(worker), qcsat(worker.modwalker), mem(mem), lib(lib), opts(opts) { + determine_style(); + logic_ok = determine_logic_ok(); + if (GetSize(mem.wr_ports) == 0) + logic_cost = mem.width * mem.size * opts.logic_cost_rom; + else + logic_cost = mem.width * mem.size * opts.logic_cost_ram; + if (kind == RamKind::Logic) + return; + for (int i = 0; i < GetSize(lib.rams); i++) { + auto &rdef = lib.rams[i]; + if (!check_ram_kind(rdef)) + continue; + if (!check_ram_style(rdef)) + continue; + if (!check_init(rdef)) + continue; + if (rdef.prune_rom && mem.wr_ports.empty()) + continue; + MemConfig cfg; + cfg.def = &rdef; + for (auto &cdef: rdef.shared_clocks) { + (void)cdef; + SharedClockConfig clk; + clk.used = false; + cfg.shared_clocks.push_back(clk); + } + cfgs.push_back(cfg); + } + assign_wr_ports(); + assign_rd_ports(); + handle_trans(); + // If we got this far, the memory is mappable. The following two can require emulating + // some functionality, but cannot cause the mapping to fail. + handle_priority(); + handle_rd_rst(); + score_emu_ports(); + // Now it is just a matter of picking geometry. + handle_geom(); + dump_configs(0); + prune_post_geom(); + dump_configs(1); + } + + bool addr_compatible(int wpidx, int rpidx) { + auto &wport = mem.wr_ports[wpidx]; + auto &rport = mem.rd_ports[rpidx]; + int max_wide_log2 = std::max(rport.wide_log2, wport.wide_log2); + SigSpec raddr = rport.addr.extract_end(max_wide_log2); + SigSpec waddr = wport.addr.extract_end(max_wide_log2); + int abits = std::max(GetSize(raddr), GetSize(waddr)); + raddr.extend_u0(abits); + waddr.extend_u0(abits); + return worker.sigmap_xmux(raddr) == worker.sigmap_xmux(waddr); + } + + int get_wr_en(int wpidx) { + auto it = wr_en_cache.find(wpidx); + if (it != wr_en_cache.end()) + return it->second; + int res = qcsat.ez->expression(qcsat.ez->OpOr, qcsat.importSig(mem.wr_ports[wpidx].en)); + wr_en_cache.insert({wpidx, res}); + return res; + } + + bool get_wr_implies_rd(int wpidx, int rpidx) { + auto key = std::make_pair(wpidx, rpidx); + auto it = wr_implies_rd_cache.find(key); + if (it != wr_implies_rd_cache.end()) + return it->second; + int wr_en = get_wr_en(wpidx); + int rd_en = qcsat.importSigBit(mem.rd_ports[rpidx].en[0]); + qcsat.prepare(); + bool res = !qcsat.ez->solve(wr_en, qcsat.ez->NOT(rd_en)); + wr_implies_rd_cache.insert({key, res}); + return res; + } + + bool get_wr_excludes_rd(int wpidx, int rpidx) { + auto key = std::make_pair(wpidx, rpidx); + auto it = wr_excludes_rd_cache.find(key); + if (it != wr_excludes_rd_cache.end()) + return it->second; + int wr_en = get_wr_en(wpidx); + int rd_en = qcsat.importSigBit(mem.rd_ports[rpidx].en[0]); + qcsat.prepare(); + bool res = !qcsat.ez->solve(wr_en, rd_en); + wr_excludes_rd_cache.insert({key, res}); + return res; + } + + bool get_wr_excludes_srst(int wpidx, int rpidx) { + auto key = std::make_pair(wpidx, rpidx); + auto it = wr_excludes_srst_cache.find(key); + if (it != wr_excludes_srst_cache.end()) + return it->second; + int wr_en = get_wr_en(wpidx); + int srst = qcsat.importSigBit(mem.rd_ports[rpidx].srst); + if (mem.rd_ports[rpidx].ce_over_srst) { + int rd_en = qcsat.importSigBit(mem.rd_ports[rpidx].en[0]); + srst = qcsat.ez->AND(srst, rd_en); + } + qcsat.prepare(); + bool res = !qcsat.ez->solve(wr_en, srst); + wr_excludes_srst_cache.insert({key, res}); + return res; + } + + void dump_configs(int stage); + void dump_config(MemConfig &cfg); + void determine_style(); + bool determine_logic_ok(); + bool check_ram_kind(const Ram &ram); + bool check_ram_style(const Ram &ram); + bool check_init(const Ram &ram); + void assign_wr_ports(); + void assign_rd_ports(); + void handle_trans(); + void handle_priority(); + void handle_rd_rst(); + void score_emu_ports(); + void handle_geom(); + void prune_post_geom(); + void emit_port(const MemConfig &cfg, std::vector<Cell*> &cells, const PortVariant &pdef, const char *name, int wpidx, int rpidx, const std::vector<int> &hw_addr_swizzle); + void emit(const MemConfig &cfg); +}; + +void MemMapping::dump_configs(int stage) { + const char *stage_name; + switch (stage) { + case 0: + stage_name = "post-geometry"; + break; + case 1: + stage_name = "after post-geometry prune"; + break; + default: + abort(); + } + log_debug("Memory %s.%s mapping candidates (%s):\n", log_id(mem.module->name), log_id(mem.memid), stage_name); + if (logic_ok) { + log_debug("- logic fallback\n"); + log_debug(" - cost: %f\n", logic_cost); + } + for (auto &cfg: cfgs) { + dump_config(cfg); + } +} + +void MemMapping::dump_config(MemConfig &cfg) { + log_debug("- %s:\n", log_id(cfg.def->id)); + for (auto &it: cfg.def->options) + log_debug(" - option %s %s\n", it.first.c_str(), log_const(it.second)); + log_debug(" - emulation score: %d\n", cfg.score_emu); + log_debug(" - replicates (for ports): %d\n", cfg.repl_port); + log_debug(" - replicates (for data): %d\n", cfg.repl_d); + log_debug(" - mux score: %d\n", cfg.score_mux); + log_debug(" - demux score: %d\n", cfg.score_demux); + log_debug(" - cost: %f\n", cfg.cost); + std::stringstream os; + for (int x: cfg.def->dbits) + os << " " << x; + std::string dbits_s = os.str(); + log_debug(" - abits %d dbits%s\n", cfg.def->abits, dbits_s.c_str()); + if (cfg.def->byte != 0) + log_debug(" - byte width %d\n", cfg.def->byte); + log_debug(" - chosen base width %d\n", cfg.def->dbits[cfg.base_width_log2]); + os.str(""); + for (int x: cfg.swizzle) + if (x == -1) + os << " -"; + else + os << " " << x; + std::string swizzle_s = os.str(); + log_debug(" - swizzle%s\n", swizzle_s.c_str()); + os.str(""); + for (int i = 0; (1 << i) <= cfg.hard_wide_mask; i++) + if (cfg.hard_wide_mask & 1 << i) + os << " " << i; + std::string wide_s = os.str(); + if (cfg.hard_wide_mask) + log_debug(" - hard wide bits%s\n", wide_s.c_str()); + if (cfg.emu_read_first) + log_debug(" - emulate read-first behavior\n"); + for (int i = 0; i < GetSize(mem.wr_ports); i++) { + auto &pcfg = cfg.wr_ports[i]; + if (pcfg.rd_port == -1) + log_debug(" - write port %d: port group %s\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str()); + else + log_debug(" - write port %d: port group %s (shared with read port %d)\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str(), pcfg.rd_port); + + for (auto &it: pcfg.def->options) + log_debug(" - option %s %s\n", it.first.c_str(), log_const(it.second)); + if (cfg.def->width_mode == WidthMode::PerPort) { + std::stringstream os; + for (int i = pcfg.def->min_wr_wide_log2; i <= pcfg.def->max_wr_wide_log2; i++) + os << " " << cfg.def->dbits[i]; + std::string widths_s = os.str(); + const char *note = ""; + if (pcfg.rd_port != -1) + note = pcfg.def->width_tied ? " (tied)" : " (independent)"; + log_debug(" - widths%s%s\n", widths_s.c_str(), note); + } + for (auto i: pcfg.emu_prio) + log_debug(" - emulate priority over write port %d\n", i); + } + for (int i = 0; i < GetSize(mem.rd_ports); i++) { + auto &pcfg = cfg.rd_ports[i]; + if (pcfg.wr_port == -1) + log_debug(" - read port %d: port group %s\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str()); + else + log_debug(" - read port %d: port group %s (shared with write port %d)\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str(), pcfg.wr_port); + for (auto &it: pcfg.def->options) + log_debug(" - option %s %s\n", it.first.c_str(), log_const(it.second)); + if (cfg.def->width_mode == WidthMode::PerPort) { + std::stringstream os; + for (int i = pcfg.def->min_rd_wide_log2; i <= pcfg.def->max_rd_wide_log2; i++) + os << " " << cfg.def->dbits[i]; + std::string widths_s = os.str(); + const char *note = ""; + if (pcfg.wr_port != -1) + note = pcfg.def->width_tied ? " (tied)" : " (independent)"; + log_debug(" - widths%s%s\n", widths_s.c_str(), note); + } + if (pcfg.emu_sync) + log_debug(" - emulate data register\n"); + if (pcfg.emu_en) + log_debug(" - emulate clock enable\n"); + if (pcfg.emu_arst) + log_debug(" - emulate async reset\n"); + if (pcfg.emu_srst) + log_debug(" - emulate sync reset\n"); + if (pcfg.emu_init) + log_debug(" - emulate init value\n"); + if (pcfg.emu_srst_en_prio) + log_debug(" - emulate sync reset / enable priority\n"); + for (auto i: pcfg.emu_trans) + log_debug(" - emulate transparency with write port %d\n", i); + } +} + +// Go through memory attributes to determine user-requested mapping style. +void MemMapping::determine_style() { + kind = RamKind::Auto; + style = ""; + if (mem.get_bool_attribute(ID::lram)) { + kind = RamKind::Huge; + return; + } + for (auto attr: {ID::ram_block, ID::rom_block, ID::ram_style, ID::rom_style, ID::ramstyle, ID::romstyle, ID::syn_ramstyle, ID::syn_romstyle}) { + if (mem.has_attribute(attr)) { + Const val = mem.attributes.at(attr); + if (val == 1) { + kind = RamKind::NotLogic; + return; + } + std::string val_s = val.decode_string(); + for (auto &c: val_s) + c = std::tolower(c); + if (val_s == "auto") { + // Nothing. + } else if (val_s == "logic" || val_s == "registers") { + kind = RamKind::Logic; + } else if (val_s == "distributed") { + kind = RamKind::Distributed; + } else if (val_s == "block" || val_s == "block_ram" || val_s == "ebr") { + kind = RamKind::Block; + } else if (val_s == "huge" || val_s == "ultra") { + kind = RamKind::Huge; + } else { + kind = RamKind::NotLogic; + style = val_s; + } + return; + } + } + if (mem.get_bool_attribute(ID::logic_block)) + kind = RamKind::Logic; +} + +// Determine whether the memory can be mapped entirely to soft logic. +bool MemMapping::determine_logic_ok() { + if (kind != RamKind::Auto && kind != RamKind::Logic) + return false; + // Memory is mappable entirely to soft logic iff all its write ports are in the same clock domain. + if (mem.wr_ports.empty()) + return true; + for (auto &port: mem.wr_ports) { + if (!port.clk_enable) + return false; + if (port.clk != mem.wr_ports[0].clk) + return false; + if (port.clk_polarity != mem.wr_ports[0].clk_polarity) + return false; + } + return true; +} + +// Apply RAM kind restrictions (logic/distributed/block/huge), if any. +bool MemMapping::check_ram_kind(const Ram &ram) { + if (style != "") + return true; + if (ram.kind == kind) + return true; + if (kind == RamKind::Auto || kind == RamKind::NotLogic) { + if (ram.kind == RamKind::Distributed && opts.no_auto_distributed) + return false; + if (ram.kind == RamKind::Block && opts.no_auto_block) + return false; + if (ram.kind == RamKind::Huge && opts.no_auto_huge) + return false; + return true; + } + return false; +} + +// Apply specific RAM style restrictions, if any. +bool MemMapping::check_ram_style(const Ram &ram) { + if (style == "") + return true; + for (auto &s: ram.style) + if (s == style) + return true; + return false; +} + +// Handle memory initializer restrictions, if any. +bool MemMapping::check_init(const Ram &ram) { + bool has_nonx = false; + bool has_one = false; + + for (auto &init: mem.inits) { + if (init.data.is_fully_undef()) + continue; + has_nonx = true; + for (auto bit: init.data) + if (bit == State::S1) + has_one = true; + } + + switch (ram.init) { + case MemoryInitKind::None: + return !has_nonx; + case MemoryInitKind::Zero: + return !has_one; + default: + return true; + } +} + +bool apply_clock(MemConfig &cfg, const PortVariant &def, SigBit clk, bool clk_polarity) { + if (def.clk_shared == -1) + return true; + auto &cdef = cfg.def->shared_clocks[def.clk_shared]; + auto &ccfg = cfg.shared_clocks[def.clk_shared]; + if (cdef.anyedge) { + if (!ccfg.used) { + ccfg.used = true; + ccfg.clk = clk; + ccfg.polarity = clk_polarity; + return true; + } else { + return ccfg.clk == clk && ccfg.polarity == clk_polarity; + } + } else { + bool invert = clk_polarity ^ (def.clk_pol == ClkPolKind::Posedge); + if (!ccfg.used) { + ccfg.used = true; + ccfg.clk = clk; + ccfg.invert = invert; + return true; + } else { + return ccfg.clk == clk && ccfg.invert == invert; + } + } +} + +// Perform write port assignment, validating clock options as we go. +void MemMapping::assign_wr_ports() { + for (auto &port: mem.wr_ports) { + if (!port.clk_enable) { + // Async write ports not supported. + cfgs.clear(); + return; + } + MemConfigs new_cfgs; + for (auto &cfg: cfgs) { + for (int pgi = 0; pgi < GetSize(cfg.def->port_groups); pgi++) { + auto &pg = cfg.def->port_groups[pgi]; + // Make sure the target port group still has a free port. + int used = 0; + for (auto &oport: cfg.wr_ports) + if (oport.port_group == pgi) + used++; + if (used >= GetSize(pg.names)) + continue; + for (int pvi = 0; pvi < GetSize(pg.variants); pvi++) { + auto &def = pg.variants[pvi]; + // Make sure the target is a write port. + if (def.kind == PortKind::Ar || def.kind == PortKind::Sr) + continue; + MemConfig new_cfg = cfg; + WrPortConfig pcfg; + pcfg.rd_port = -1; + pcfg.port_group = pgi; + pcfg.port_variant = pvi; + pcfg.def = &def; + if (!apply_clock(new_cfg, def, port.clk, port.clk_polarity)) + continue; + new_cfg.wr_ports.push_back(pcfg); + new_cfgs.push_back(new_cfg); + } + } + } + cfgs = new_cfgs; + } +} + +// Perform read port assignment, validating clock and rden options as we go. +void MemMapping::assign_rd_ports() { + for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) { + auto &port = mem.rd_ports[pidx]; + MemConfigs new_cfgs; + for (auto &cfg: cfgs) { + // First pass: read port not shared with a write port. + for (int pgi = 0; pgi < GetSize(cfg.def->port_groups); pgi++) { + auto &pg = cfg.def->port_groups[pgi]; + // Make sure the target port group has a port not used up by write ports. + // Overuse by other read ports is not a problem — this will just result + // in memory duplication. + int used = 0; + for (auto &oport: cfg.wr_ports) + if (oport.port_group == pgi) + used++; + if (used >= GetSize(pg.names)) + continue; + for (int pvi = 0; pvi < GetSize(pg.variants); pvi++) { + auto &def = pg.variants[pvi]; + // Make sure the target is a read port. + if (def.kind == PortKind::Sw) + continue; + // If mapping an async port, accept only async defs. + if (!port.clk_enable) { + if (def.kind == PortKind::Sr || def.kind == PortKind::Srsw) + continue; + } + MemConfig new_cfg = cfg; + RdPortConfig pcfg; + pcfg.wr_port = -1; + pcfg.port_group = pgi; + pcfg.port_variant = pvi; + pcfg.def = &def; + if (def.kind == PortKind::Sr || def.kind == PortKind::Srsw) { + pcfg.emu_sync = false; + if (!apply_clock(new_cfg, def, port.clk, port.clk_polarity)) + continue; + // Decide if rden is usable. + if (port.en != State::S1) { + if (def.clk_en) { + pcfg.rd_en_to_clk_en = true; + } else { + pcfg.emu_en = !def.rd_en; + } + } + } else { + pcfg.emu_sync = port.clk_enable; + } + new_cfg.rd_ports.push_back(pcfg); + new_cfgs.push_back(new_cfg); + } + } + // Second pass: read port shared with a write port. + for (int wpidx = 0; wpidx < GetSize(mem.wr_ports); wpidx++) { + auto &wport = mem.wr_ports[wpidx]; + auto &wpcfg = cfg.wr_ports[wpidx]; + auto &def = *wpcfg.def; + // Make sure the write port is not yet shared. + if (wpcfg.rd_port != -1) + continue; + // Make sure the target is a read port. + if (def.kind == PortKind::Sw) + continue; + // Validate address compatibility. + if (!addr_compatible(wpidx, pidx)) + continue; + // Validate clock compatibility, if needed. + if (def.kind == PortKind::Srsw) { + if (!port.clk_enable) + continue; + if (port.clk != wport.clk) + continue; + if (port.clk_polarity != wport.clk_polarity) + continue; + } + // Okay, let's fill it in. + MemConfig new_cfg = cfg; + new_cfg.wr_ports[wpidx].rd_port = pidx; + RdPortConfig pcfg; + pcfg.wr_port = wpidx; + pcfg.port_group = wpcfg.port_group; + pcfg.port_variant = wpcfg.port_variant; + pcfg.def = wpcfg.def; + pcfg.emu_sync = port.clk_enable && def.kind == PortKind::Arsw; + // For srsw, check rden capability. + if (def.kind == PortKind::Srsw) { + bool trans = port.transparency_mask[wpidx]; + bool col_x = port.collision_x_mask[wpidx]; + if (def.rdwr == RdWrKind::NoChange) { + if (!get_wr_excludes_rd(wpidx, pidx)) { + if (!trans && !col_x) + continue; + if (trans) + pcfg.emu_trans.push_back(wpidx); + new_cfg.wr_ports[wpidx].force_uniform = true; + } + if (port.en != State::S1) { + if (def.clk_en) { + pcfg.rd_en_to_clk_en = true; + } else { + pcfg.emu_en = !def.rd_en; + } + } + } else { + if (!col_x && !trans && def.rdwr != RdWrKind::Old) + continue; + if (trans) { + if (def.rdwr != RdWrKind::New && def.rdwr != RdWrKind::NewOnly) + pcfg.emu_trans.push_back(wpidx); + } + if (def.rdwr == RdWrKind::NewOnly) { + if (!get_wr_excludes_rd(wpidx, pidx)) + new_cfg.wr_ports[wpidx].force_uniform = true; + } + if (port.en != State::S1) { + if (def.clk_en) { + if (get_wr_implies_rd(wpidx, pidx)) { + pcfg.rd_en_to_clk_en = true; + } else { + pcfg.emu_en = !def.rd_en; + } + } else { + pcfg.emu_en = !def.rd_en; + } + } + } + } + new_cfg.rd_ports.push_back(pcfg); + new_cfgs.push_back(new_cfg); + } + } + cfgs = new_cfgs; + } +} + +// Validate transparency restrictions, determine where to add soft transparency logic. +void MemMapping::handle_trans() { + if (mem.emulate_read_first_ok()) { + MemConfigs new_cfgs; + for (auto &cfg: cfgs) { + new_cfgs.push_back(cfg); + bool ok = true; + // Using this trick will break read-write port sharing. + for (auto &pcfg: cfg.rd_ports) + if (pcfg.wr_port != -1) + ok = false; + if (ok) { + cfg.emu_read_first = true; + new_cfgs.push_back(cfg); + } + } + cfgs = new_cfgs; + } + for (int rpidx = 0; rpidx < GetSize(mem.rd_ports); rpidx++) { + auto &rport = mem.rd_ports[rpidx]; + if (!rport.clk_enable) + continue; + for (int wpidx = 0; wpidx < GetSize(mem.wr_ports); wpidx++) { + auto &wport = mem.wr_ports[wpidx]; + if (!wport.clk_enable) + continue; + if (rport.clk != wport.clk) + continue; + if (rport.clk_polarity != wport.clk_polarity) + continue; + // If we got this far, we have a transparency restriction + // to uphold. + MemConfigs new_cfgs; + for (auto &cfg: cfgs) { + auto &rpcfg = cfg.rd_ports[rpidx]; + auto &wpcfg = cfg.wr_ports[wpidx]; + // The transparency relation for shared ports already handled while assigning them. + if (rpcfg.wr_port == wpidx) { + new_cfgs.push_back(cfg); + continue; + } + if (rport.collision_x_mask[wpidx] && !cfg.emu_read_first) { + new_cfgs.push_back(cfg); + continue; + } + bool transparent = rport.transparency_mask[wpidx] || cfg.emu_read_first; + if (rpcfg.emu_sync) { + // For async read port, just add the transparency logic + // if necessary. + if (transparent) + rpcfg.emu_trans.push_back(wpidx); + new_cfgs.push_back(cfg); + } else { + // Otherwise, split through the relevant wrtrans caps. + // For non-transparent ports, the cap needs to be present. + // For transparent ports, we can emulate transparency + // even without a direct cap. + bool found = false; + for (auto &tdef: wpcfg.def->wrtrans) { + // Check if the target matches. + if (tdef.target_kind == WrTransTargetKind::Group && rpcfg.port_group != tdef.target_group) + continue; + // Check if the transparency kind is acceptable. + if (transparent) { + if (tdef.kind == WrTransKind::Old) + continue; + } else { + if (tdef.kind != WrTransKind::Old) + continue; + } + // Okay, we can use this cap. + new_cfgs.push_back(cfg); + found = true; + break; + } + if (!found && transparent) { + // If the port pair is transparent, but no cap was + // found, use emulation. + rpcfg.emu_trans.push_back(wpidx); + new_cfgs.push_back(cfg); + } + } + } + cfgs = new_cfgs; + } + } +} + +// Determine where to add soft priority logic. +void MemMapping::handle_priority() { + for (int p1idx = 0; p1idx < GetSize(mem.wr_ports); p1idx++) { + for (int p2idx = 0; p2idx < GetSize(mem.wr_ports); p2idx++) { + auto &port2 = mem.wr_ports[p2idx]; + if (!port2.priority_mask[p1idx]) + continue; + for (auto &cfg: cfgs) { + auto &p1cfg = cfg.rd_ports[p1idx]; + auto &p2cfg = cfg.wr_ports[p2idx]; + bool found = false; + for (auto &pgi: p2cfg.def->wrprio) { + if (pgi == p1cfg.port_group) { + found = true; + break; + } + } + // If no cap was found, emulate. + if (!found) + p2cfg.emu_prio.push_back(p1idx); + } + } + } +} + +bool is_all_zero(const Const &val) { + for (auto bit: val.bits) + if (bit == State::S1) + return false; + return true; +} + +// Determine where to add soft init value / reset logic. +void MemMapping::handle_rd_rst() { + for (auto &cfg: cfgs) { + for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) { + auto &port = mem.rd_ports[pidx]; + auto &pcfg = cfg.rd_ports[pidx]; + // Only sync ports are relevant. + // If emulated by async port or we already emulate CE, init will be + // included for free. + if (!port.clk_enable || pcfg.emu_sync || pcfg.emu_en) + continue; + switch (pcfg.def->rdinitval) { + case ResetValKind::None: + pcfg.emu_init = !port.init_value.is_fully_undef(); + break; + case ResetValKind::Zero: + pcfg.emu_init = !is_all_zero(port.init_value); + break; + default: + break; + } + Const init_val = port.init_value; + if (port.arst != State::S0) { + switch (pcfg.def->rdarstval) { + case ResetValKind::None: + pcfg.emu_arst = true; + break; + case ResetValKind::Zero: + pcfg.emu_arst = !is_all_zero(port.arst_value); + break; + case ResetValKind::Init: + if (init_val.is_fully_undef()) + init_val = port.arst_value; + pcfg.emu_arst = init_val != port.arst_value; + break; + default: + break; + } + } + if (port.srst != State::S0) { + switch (pcfg.def->rdsrstval) { + case ResetValKind::None: + pcfg.emu_srst = true; + break; + case ResetValKind::Zero: + pcfg.emu_srst = !is_all_zero(port.srst_value); + break; + case ResetValKind::Init: + if (init_val.is_fully_undef()) + init_val = port.srst_value; + pcfg.emu_srst = init_val != port.srst_value; + break; + default: + break; + } + if (!pcfg.emu_srst && pcfg.def->rdsrst_block_wr && pcfg.wr_port != -1) { + if (!get_wr_excludes_srst(pcfg.wr_port, pidx)) + pcfg.emu_srst = true; + } + if (!pcfg.emu_srst && port.en != State::S1) { + if (port.ce_over_srst) { + switch (pcfg.def->rdsrstmode) { + case SrstKind::Ungated: + pcfg.emu_srst_en_prio = true; + break; + case SrstKind::GatedClkEn: + pcfg.emu_srst_en_prio = !pcfg.rd_en_to_clk_en; + break; + case SrstKind::GatedRdEn: + break; + default: + log_assert(0); + } + } else { + switch (pcfg.def->rdsrstmode) { + case SrstKind::Ungated: + break; + case SrstKind::GatedClkEn: + if (pcfg.rd_en_to_clk_en) { + if (pcfg.def->rd_en) { + pcfg.rd_en_to_clk_en = false; + } else { + pcfg.emu_srst_en_prio = true; + } + } + break; + case SrstKind::GatedRdEn: + pcfg.emu_srst_en_prio = true; + break; + default: + log_assert(0); + } + } + } + } else { + if (pcfg.def->rd_en && pcfg.def->rdwr == RdWrKind::NoChange && pcfg.wr_port != -1) { + pcfg.rd_en_to_clk_en = false; + } + } + } + } +} + +void MemMapping::score_emu_ports() { + for (auto &cfg: cfgs) { + std::vector<int> port_usage_wr(cfg.def->port_groups.size()); + std::vector<int> port_usage_rd(cfg.def->port_groups.size()); + int score = 0; + // 3 points for every write port if we need to do read-first emulation. + if (cfg.emu_read_first) + score += 3 * GetSize(cfg.wr_ports); + for (auto &pcfg: cfg.wr_ports) { + // 1 point for every priority relation we need to fix up. + // This is just a gate for every distinct wren pair. + score += GetSize(pcfg.emu_prio); + port_usage_wr[pcfg.port_group]++; + } + for (auto &pcfg: cfg.rd_ports) { + // 3 points for every soft transparency logic instance. This involves + // registers and other major mess. + score += 3 * GetSize(pcfg.emu_trans); + // 3 points for CE soft logic. Likewise involves registers. + // If we already do this, subsumes any init/srst/arst emulation. + if (pcfg.emu_en) + score += 3; + // 2 points for soft init value / reset logic: involves single bit + // register and some muxes. + if (pcfg.emu_init) + score += 2; + if (pcfg.emu_arst) + score += 2; + if (pcfg.emu_srst) + score += 2; + // 1 point for wrong srst/en priority (fixed with a single gate). + if (pcfg.emu_srst_en_prio) + score++; + // 1 point for every non-shared read port used, as a tiebreaker + // to prefer single-port configs. + if (pcfg.wr_port == -1) { + score++; + port_usage_rd[pcfg.port_group]++; + } + } + cfg.score_emu = score; + int repl_port = 1; + for (int i = 0; i < GetSize(cfg.def->port_groups); i++) { + int space = GetSize(cfg.def->port_groups[i].names) - port_usage_wr[i]; + log_assert(space >= 0); + if (port_usage_rd[i] > 0) { + log_assert(space > 0); + int usage = port_usage_rd[i]; + int cur = (usage + space - 1) / space; + if (cur > repl_port) + repl_port = cur; + } + } + cfg.repl_port = repl_port; + } +} + +void MemMapping::handle_geom() { + std::vector<int> wren_size; + for (auto &port: mem.wr_ports) { + SigSpec en = port.en; + en.sort_and_unify(); + wren_size.push_back(GetSize(en)); + } + for (auto &cfg: cfgs) { + // First, create a set of "byte boundaries": the bit positions in source memory word + // that have write enable different from the previous bit in any write port. + // Bit 0 is considered to be a byte boundary as well. + // Likewise, create a set of "word boundaries" that are like above, but only for write ports + // with the "force uniform" flag set. + std::vector<bool> byte_boundary(mem.width, false); + std::vector<bool> word_boundary(mem.width, false); + byte_boundary[0] = true; + for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) { + auto &port = mem.wr_ports[pidx]; + auto &pcfg = cfg.wr_ports[pidx]; + if (pcfg.force_uniform) + word_boundary[0] = true; + for (int sub = 0; sub < (1 << port.wide_log2); sub++) { + for (int i = 1; i < mem.width; i++) { + int pos = sub * mem.width + i; + if (port.en[pos] != port.en[pos-1]) { + byte_boundary[i] = true; + if (pcfg.force_uniform) + word_boundary[i] = true; + } + } + } + } + bool got_config = false; + int best_cost = 0; + int byte_width_log2 = 0; + for (int i = 0; i < GetSize(cfg.def->dbits); i++) + if (cfg.def->byte >= cfg.def->dbits[i]) + byte_width_log2 = i; + if (cfg.def->byte == 0) + byte_width_log2 = GetSize(cfg.def->dbits) - 1; + pool<int> no_wide_bits; + // Determine which of the source address bits involved in wide ports + // are "uniform". Bits are considered uniform if, when a port is widened through + // them, the write enables are the same for both values of the bit. + int max_wr_wide_log2 = 0; + for (auto &port: mem.wr_ports) + if (port.wide_log2 > max_wr_wide_log2) + max_wr_wide_log2 = port.wide_log2; + int max_wide_log2 = max_wr_wide_log2; + for (auto &port: mem.rd_ports) + if (port.wide_log2 > max_wide_log2) + max_wide_log2 = port.wide_log2; + int wide_nu_start = max_wide_log2; + int wide_nu_end = max_wr_wide_log2; + for (int i = 0; i < GetSize(mem.wr_ports); i++) { + auto &port = mem.wr_ports[i]; + auto &pcfg = cfg.wr_ports[i]; + for (int j = 0; j < port.wide_log2; j++) { + bool uniform = true; + // If write enables don't match, mark bit as non-uniform. + for (int k = 0; k < (1 << port.wide_log2); k += 2 << j) + if (port.en.extract(k * mem.width, mem.width << j) != port.en.extract((k + (1 << j)) * mem.width, mem.width << j)) + uniform = false; + if (!uniform) { + if (pcfg.force_uniform) { + for (int k = j; k < port.wide_log2; k++) + no_wide_bits.insert(k); + } + if (j < wide_nu_start) + wide_nu_start = j; + break; + } + } + if (pcfg.def->width_tied && pcfg.rd_port != -1) { + // If: + // + // - the write port is merged with a read port + // - the read port is wider than the write port + // - read and write widths are tied + // + // then we will have to artificially widen the write + // port to the width of the read port, and emulate + // a narrower write path by use of write enables, + // which will definitely be non-uniform over the added + // bits. + auto &rport = mem.rd_ports[pcfg.rd_port]; + if (rport.wide_log2 > port.wide_log2) { + if (port.wide_log2 < wide_nu_start) + wide_nu_start = port.wide_log2; + if (rport.wide_log2 > wide_nu_end) + wide_nu_end = rport.wide_log2; + if (pcfg.force_uniform) { + for (int k = port.wide_log2; k < rport.wide_log2; k++) + no_wide_bits.insert(k); + } + } + } + } + // Iterate over base widths. + for (int base_width_log2 = 0; base_width_log2 < GetSize(cfg.def->dbits); base_width_log2++) { + // Now, see how many data bits we actually have available. + // This is usually dbits[base_width_log2], but could be smaller if we + // ran afoul of a max width limitation. Configurations where this + // happens are not useful, unless we need it to satisfy a *minimum* + // width limitation. + int unit_width_log2 = base_width_log2; + for (auto &pcfg: cfg.wr_ports) + if (unit_width_log2 > pcfg.def->max_wr_wide_log2) + unit_width_log2 = pcfg.def->max_wr_wide_log2; + for (auto &pcfg: cfg.rd_ports) + if (unit_width_log2 > pcfg.def->max_rd_wide_log2) + unit_width_log2 = pcfg.def->max_rd_wide_log2; + if (unit_width_log2 != base_width_log2 && got_config) + break; + int unit_width = cfg.def->dbits[unit_width_log2]; + // Also determine effective byte width (the granularity of write enables). + int effective_byte = cfg.def->byte; + if (effective_byte == 0 || effective_byte > unit_width) + effective_byte = unit_width; + if (mem.wr_ports.empty()) + effective_byte = 1; + log_assert(unit_width % effective_byte == 0); + // Create the swizzle pattern. + std::vector<int> swizzle; + for (int i = 0; i < mem.width; i++) { + if (word_boundary[i]) + while (GetSize(swizzle) % unit_width) + swizzle.push_back(-1); + else if (byte_boundary[i]) + while (GetSize(swizzle) % effective_byte) + swizzle.push_back(-1); + swizzle.push_back(i); + } + if (word_boundary[0]) + while (GetSize(swizzle) % unit_width) + swizzle.push_back(-1); + else + while (GetSize(swizzle) % effective_byte) + swizzle.push_back(-1); + // Now evaluate the configuration, then keep adding more hard wide bits + // and evaluating. + int hard_wide_mask = 0; + int hard_wide_num = 0; + bool byte_failed = false; + while (1) { + // Check if all min width constraints are satisfied. + // Only check these constraints for write ports with width below + // byte width — for other ports, we can emulate narrow width with + // a larger one. + bool min_width_ok = true; + int min_width_bit = wide_nu_start; + for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) { + auto &port = mem.wr_ports[pidx]; + int w = base_width_log2; + for (int i = 0; i < port.wide_log2; i++) + if (hard_wide_mask & 1 << i) + w++; + if (w < cfg.wr_ports[pidx].def->min_wr_wide_log2 && w < byte_width_log2) { + min_width_ok = false; + if (min_width_bit > port.wide_log2) + min_width_bit = port.wide_log2; + } + } + if (min_width_ok) { + int emu_wide_bits = max_wide_log2 - hard_wide_num; + int mult_wide = 1 << emu_wide_bits; + int addrs = 1 << (cfg.def->abits - base_width_log2 + emu_wide_bits); + int min_addr = mem.start_offset / addrs; + int max_addr = (mem.start_offset + mem.size - 1) / addrs; + int mult_a = max_addr - min_addr + 1; + int bits = mult_a * mult_wide * GetSize(swizzle); + int repl = (bits + unit_width - 1) / unit_width; + int score_demux = 0; + for (int i = 0; i < GetSize(mem.wr_ports); i++) { + auto &port = mem.wr_ports[i]; + int w = emu_wide_bits; + for (int i = 0; i < port.wide_log2; i++) + if (!(hard_wide_mask & 1 << i)) + w--; + if (w || mult_a != 1) + score_demux += (mult_a << w) * wren_size[i]; + } + int score_mux = 0; + for (auto &port: mem.rd_ports) { + int w = emu_wide_bits; + for (int i = 0; i < port.wide_log2; i++) + if (!(hard_wide_mask & 1 << i)) + w--; + score_mux += ((mult_a << w) - 1) * GetSize(port.data); + } + double cost = (cfg.def->cost - cfg.def->widthscale) * repl * cfg.repl_port; + cost += cfg.def->widthscale * mult_a * mult_wide * mem.width / unit_width * cfg.repl_port; + cost += score_mux * FACTOR_MUX; + cost += score_demux * FACTOR_DEMUX; + cost += cfg.score_emu * FACTOR_EMU; + if (!got_config || cost < best_cost) { + cfg.base_width_log2 = base_width_log2; + cfg.unit_width_log2 = unit_width_log2; + cfg.swizzle = swizzle; + cfg.hard_wide_mask = hard_wide_mask; + cfg.emu_wide_mask = ((1 << max_wide_log2) - 1) & ~hard_wide_mask; + cfg.repl_d = repl; + cfg.score_demux = score_demux; + cfg.score_mux = score_mux; + cfg.cost = cost; + best_cost = cost; + got_config = true; + } + } + if (cfg.def->width_mode != WidthMode::PerPort) + break; + // Now, pick the next bit to add to the hard wide mask. +next_hw: + int scan_from; + int scan_to; + bool retry = false; + if (!min_width_ok) { + // If we still haven't met the minimum width limits, + // add the highest one that will be useful for working + // towards all unmet limits. + scan_from = min_width_bit; + scan_to = 0; + // If the relevant write port is not wide, it's impossible. + } else if (byte_failed) { + // If we already failed with uniformly-written bits only, + // go with uniform bits that are only involved in reads. + scan_from = max_wide_log2; + scan_to = wide_nu_end; + } else if (base_width_log2 + hard_wide_num < byte_width_log2) { + // If we still need uniform bits, prefer the low ones. + scan_from = wide_nu_start; + scan_to = 0; + retry = true; + } else { + scan_from = max_wide_log2; + scan_to = 0; + } + int bit = scan_from - 1; + while (1) { + if (bit < scan_to) { +hw_bit_failed: + if (retry) { + byte_failed = true; + goto next_hw; + } else { + goto bw_done; + } + } + if (!(hard_wide_mask & 1 << bit) && !no_wide_bits.count(bit)) + break; + bit--; + } + int new_hw_mask = hard_wide_mask | 1 << bit; + // Check if all max width constraints are satisfied. + for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) { + auto &port = mem.wr_ports[pidx]; + int w = base_width_log2; + for (int i = 0; i < port.wide_log2; i++) + if (new_hw_mask & 1 << i) + w++; + if (w > cfg.wr_ports[pidx].def->max_wr_wide_log2) { + goto hw_bit_failed; + } + } + for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) { + auto &port = mem.rd_ports[pidx]; + int w = base_width_log2; + for (int i = 0; i < port.wide_log2; i++) + if (new_hw_mask & 1 << i) + w++; + if (w > cfg.rd_ports[pidx].def->max_rd_wide_log2) { + goto hw_bit_failed; + } + } + // Bit ok, commit. + hard_wide_mask = new_hw_mask; + hard_wide_num++; + } +bw_done:; + } + log_assert(got_config); + } +} + +void MemMapping::prune_post_geom() { + std::vector<bool> keep; + dict<std::string, int> rsrc; + for (int i = 0; i < GetSize(cfgs); i++) { + auto &cfg = cfgs[i]; + std::string key = cfg.def->resource_name; + if (key.empty()) { + switch (cfg.def->kind) { + case RamKind::Distributed: + key = "[distributed]"; + break; + case RamKind::Block: + key = "[block]"; + break; + case RamKind::Huge: + key = "[huge]"; + break; + default: + break; + } + } + auto it = rsrc.find(key); + if (it == rsrc.end()) { + rsrc[key] = i; + keep.push_back(true); + } else { + auto &ocfg = cfgs[it->second]; + if (cfg.cost < ocfg.cost) { + keep[it->second] = false; + it->second = i; + keep.push_back(true); + } else { + keep.push_back(false); + } + } + } + MemConfigs new_cfgs; + for (int i = 0; i < GetSize(cfgs); i++) + if (keep[i]) + new_cfgs.push_back(cfgs[i]); + cfgs = new_cfgs; +} + +Swizzle gen_swizzle(const Mem &mem, const MemConfig &cfg, int sw_wide_log2, int hw_wide_log2) { + Swizzle res; + + std::vector<int> emu_wide_bits; + std::vector<int> hard_wide_bits; + for (int i = 0; i < ceil_log2(mem.size); i++) { + if (cfg.emu_wide_mask & 1 << i) + emu_wide_bits.push_back(i); + else if (GetSize(hard_wide_bits) < hw_wide_log2 - cfg.base_width_log2) + hard_wide_bits.push_back(i); + } + for (int x : hard_wide_bits) + if (x >= sw_wide_log2) + res.addr_mux_bits.push_back(x); + for (int x : emu_wide_bits) + if (x >= sw_wide_log2) + res.addr_mux_bits.push_back(x); + + res.addr_shift = cfg.def->abits - cfg.base_width_log2 + GetSize(emu_wide_bits); + res.addr_start = mem.start_offset & ~((1 << res.addr_shift) - 1); + res.addr_end = ((mem.start_offset + mem.size - 1) | ((1 << res.addr_shift) - 1)) + 1; + int hnum = (res.addr_end - res.addr_start) >> res.addr_shift; + int unit_width = cfg.def->dbits[cfg.unit_width_log2]; + + for (int rd = 0; rd < cfg.repl_d; rd++) { + std::vector<SwizzleBit> bits(cfg.def->dbits[hw_wide_log2]); + for (auto &bit: bits) + bit.valid = false; + res.bits.push_back(bits); + } + + for (int hi = 0; hi < hnum; hi++) { + for (int ewi = 0; ewi < (1 << GetSize(emu_wide_bits)); ewi++) { + for (int hwi = 0; hwi < (1 << GetSize(hard_wide_bits)); hwi++) { + int mux_idx = 0; + int sub = 0; + int mib = 0; + int hbit_base = 0; + for (int i = 0; i < GetSize(hard_wide_bits); i++) { + if (hard_wide_bits[i] < sw_wide_log2) { + if (hwi & 1 << i) + sub |= 1 << hard_wide_bits[i]; + } else { + if (hwi & 1 << i) + mux_idx |= 1 << mib; + mib++; + } + if (hwi & 1 << i) + hbit_base += cfg.def->dbits[i + cfg.base_width_log2]; + } + for (int i = 0; i < GetSize(emu_wide_bits); i++) { + if (emu_wide_bits[i] < sw_wide_log2) { + if (ewi & 1 << i) + sub |= 1 << emu_wide_bits[i]; + } else { + if (ewi & 1 << i) + mux_idx |= 1 << mib; + mib++; + } + } + mux_idx |= hi << mib; + int addr = res.addr_start + (hi << res.addr_shift); + for (int i = 0; i < GetSize(res.addr_mux_bits); i++) + if (mux_idx & 1 << i) + addr += 1 << res.addr_mux_bits[i]; + for (int bit = 0; bit < GetSize(cfg.swizzle); bit++) { + if (cfg.swizzle[bit] == -1) + continue; + int rbit = bit + GetSize(cfg.swizzle) * (ewi + (hi << GetSize(emu_wide_bits))); + int rep = rbit / unit_width; + int hbit = hbit_base + rbit % unit_width; + auto &swz = res.bits[rep][hbit]; + swz.valid = true; + swz.addr = addr; + swz.mux_idx = mux_idx; + swz.bit = cfg.swizzle[bit] + sub * mem.width; + } + } + } + } + + return res; +} + +void clean_undef(std::vector<State> &val) { + for (auto &bit : val) + if (bit != State::S1) + bit = State::S0; +} + +std::vector<SigSpec> generate_demux(Mem &mem, int wpidx, const Swizzle &swz) { + auto &port = mem.wr_ports[wpidx]; + std::vector<SigSpec> res; + int hi_bits = ceil_log2(swz.addr_end - swz.addr_start) - swz.addr_shift; + auto compressed = port.compress_en(); + SigSpec sig_a = compressed.first; + SigSpec addr = port.addr; + if (GetSize(addr) > hi_bits + swz.addr_shift) { + int lo = mem.start_offset; + int hi = mem.start_offset + mem.size; + int bits = ceil_log2(hi); + for (int i = 0; i < bits; i++) { + int new_lo = lo; + if (lo & 1 << i) + new_lo -= 1 << i; + int new_hi = hi; + if (hi & 1 << i) + new_hi += 1 << i; + if (new_hi - new_lo > (1 << (hi_bits + swz.addr_shift))) + break; + lo = new_lo; + hi = new_hi; + } + SigSpec in_range = mem.module->And(NEW_ID, mem.module->Ge(NEW_ID, addr, lo), mem.module->Lt(NEW_ID, addr, hi)); + sig_a = mem.module->Mux(NEW_ID, Const(State::S0, GetSize(sig_a)), sig_a, in_range); + } + addr.extend_u0(swz.addr_shift + hi_bits, false); + SigSpec sig_s; + for (int x : swz.addr_mux_bits) + sig_s.append(addr[x]); + for (int i = 0; i < hi_bits; i++) + sig_s.append(addr[swz.addr_shift + i]); + SigSpec sig_y; + if (GetSize(sig_s) == 0) + sig_y = sig_a; + else + sig_y = mem.module->Demux(NEW_ID, sig_a, sig_s); + for (int i = 0; i < ((swz.addr_end - swz.addr_start) >> swz.addr_shift); i++) { + for (int j = 0; j < (1 << GetSize(swz.addr_mux_bits)); j++) { + int hi = ((swz.addr_start >> swz.addr_shift) + i) & ((1 << hi_bits) - 1); + int pos = (hi << GetSize(swz.addr_mux_bits) | j) * GetSize(sig_a); + res.push_back(port.decompress_en(compressed.second, sig_y.extract(pos, GetSize(sig_a)))); + } + } + return res; +} + +std::vector<SigSpec> generate_mux(Mem &mem, int rpidx, const Swizzle &swz) { + auto &port = mem.rd_ports[rpidx]; + std::vector<SigSpec> res; + int hi_bits = ceil_log2(swz.addr_end - swz.addr_start) - swz.addr_shift; + SigSpec sig_s; + SigSpec addr = port.addr; + addr.extend_u0(swz.addr_shift + hi_bits, false); + for (int x : swz.addr_mux_bits) + sig_s.append(addr[x]); + for (int i = 0; i < hi_bits; i++) + sig_s.append(addr[swz.addr_shift + i]); + if (GetSize(sig_s) == 0) { + return {port.data}; + } + if (port.clk_enable) { + SigSpec new_sig_s = mem.module->addWire(NEW_ID, GetSize(sig_s)); + mem.module->addDffe(NEW_ID, port.clk, port.en, sig_s, new_sig_s, port.clk_polarity); + sig_s = new_sig_s; + } + SigSpec sig_a = Const(State::Sx, GetSize(port.data) << hi_bits << GetSize(swz.addr_mux_bits)); + for (int i = 0; i < ((swz.addr_end - swz.addr_start) >> swz.addr_shift); i++) { + for (int j = 0; j < (1 << GetSize(swz.addr_mux_bits)); j++) { + SigSpec sig = mem.module->addWire(NEW_ID, GetSize(port.data)); + int hi = ((swz.addr_start >> swz.addr_shift) + i) & ((1 << hi_bits) - 1); + int pos = (hi << GetSize(swz.addr_mux_bits) | j) * GetSize(port.data); + for (int k = 0; k < GetSize(port.data); k++) + sig_a[pos + k] = sig[k]; + res.push_back(sig); + } + } + mem.module->addBmux(NEW_ID, sig_a, sig_s, port.data); + return res; +} + +void MemMapping::emit_port(const MemConfig &cfg, std::vector<Cell*> &cells, const PortVariant &pdef, const char *name, int wpidx, int rpidx, const std::vector<int> &hw_addr_swizzle) { + for (auto &it: pdef.options) + for (auto cell: cells) + cell->setParam(stringf("\\PORT_%s_OPTION_%s", name, it.first.c_str()), it.second); + SigSpec addr = Const(State::Sx, cfg.def->abits); + int wide_log2 = 0, wr_wide_log2 = 0, rd_wide_log2 = 0; + SigSpec clk = State::S0; + SigSpec clk_en = State::S0; + bool clk_pol = true; + if (wpidx != -1) { + auto &wport = mem.wr_ports[wpidx]; + clk = wport.clk; + clk_pol = wport.clk_polarity; + addr = wport.addr; + wide_log2 = wr_wide_log2 = wport.wide_log2; + if (rpidx != -1) { + auto &rport = mem.rd_ports[rpidx]; + auto &rpcfg = cfg.rd_ports[rpidx]; + rd_wide_log2 = rport.wide_log2; + if (rd_wide_log2 > wr_wide_log2) + wide_log2 = rd_wide_log2; + else + addr = rport.addr; + if (pdef.clk_en) { + if (rpcfg.rd_en_to_clk_en) { + if (pdef.rdwr == RdWrKind::NoChange) { + clk_en = mem.module->Or(NEW_ID, rport.en, mem.module->ReduceOr(NEW_ID, wport.en)); + } else { + clk_en = rport.en; + } + } else { + clk_en = State::S1; + } + } + } else { + if (pdef.clk_en) + clk_en = State::S1; + } + } else if (rpidx != -1) { + auto &rport = mem.rd_ports[rpidx]; + auto &rpcfg = cfg.rd_ports[rpidx]; + if (rport.clk_enable) { + clk = rport.clk; + clk_pol = rport.clk_polarity; + } + addr = rport.addr; + wide_log2 = rd_wide_log2 = rport.wide_log2; + if (pdef.clk_en) { + if (rpcfg.rd_en_to_clk_en) + clk_en = rport.en; + else + clk_en = State::S1; + } + + } + addr = worker.sigmap_xmux(addr); + if (pdef.kind != PortKind::Ar) { + switch (pdef.clk_pol) { + case ClkPolKind::Posedge: + if (!clk_pol) + clk = mem.module->Not(NEW_ID, clk); + break; + case ClkPolKind::Negedge: + if (clk_pol) + clk = mem.module->Not(NEW_ID, clk); + break; + case ClkPolKind::Anyedge: + for (auto cell: cells) + cell->setParam(stringf("\\PORT_%s_CLK_POL", name), clk_pol); + } + for (auto cell: cells) { + cell->setPort(stringf("\\PORT_%s_CLK", name), clk); + if (pdef.clk_en) + cell->setPort(stringf("\\PORT_%s_CLK_EN", name), clk_en); + } + } + + // Width determination. + if (pdef.width_tied) { + rd_wide_log2 = wr_wide_log2 = wide_log2; + } + int hw_wr_wide_log2 = cfg.base_width_log2; + for (int i = 0; i < wr_wide_log2; i++) + if (cfg.hard_wide_mask & (1 << i)) + hw_wr_wide_log2++; + if (hw_wr_wide_log2 < pdef.min_wr_wide_log2) + hw_wr_wide_log2 = pdef.min_wr_wide_log2; + if (hw_wr_wide_log2 > pdef.max_wr_wide_log2) + hw_wr_wide_log2 = pdef.max_wr_wide_log2; + int hw_rd_wide_log2 = cfg.base_width_log2; + for (int i = 0; i < rd_wide_log2; i++) + if (cfg.hard_wide_mask & (1 << i)) + hw_rd_wide_log2++; + if (hw_rd_wide_log2 < pdef.min_rd_wide_log2) + hw_rd_wide_log2 = pdef.min_rd_wide_log2; + if (hw_rd_wide_log2 > pdef.max_rd_wide_log2) + hw_rd_wide_log2 = pdef.max_rd_wide_log2; + if (pdef.width_tied) { + // For unused ports, pick max available width, + // in case narrow ports require disabling parity + // bits etc. + if (wpidx == -1 && rpidx == -1) { + hw_wr_wide_log2 = pdef.max_wr_wide_log2; + hw_rd_wide_log2 = pdef.max_rd_wide_log2; + } + } else { + if (wpidx == -1) + hw_wr_wide_log2 = pdef.max_wr_wide_log2; + if (rpidx == -1) + hw_rd_wide_log2 = pdef.max_rd_wide_log2; + } + if (cfg.def->width_mode == WidthMode::PerPort) { + for (auto cell: cells) { + if (pdef.width_tied) { + cell->setParam(stringf("\\PORT_%s_WIDTH", name), cfg.def->dbits[hw_wr_wide_log2]); + } else { + if (pdef.kind != PortKind::Ar && pdef.kind != PortKind::Sr) + cell->setParam(stringf("\\PORT_%s_WR_WIDTH", name), cfg.def->dbits[hw_wr_wide_log2]); + if (pdef.kind != PortKind::Sw) + cell->setParam(stringf("\\PORT_%s_RD_WIDTH", name), cfg.def->dbits[hw_rd_wide_log2]); + } + } + } + + // Address determination. + SigSpec hw_addr; + for (int x: hw_addr_swizzle) { + if (x == -1 || x >= GetSize(addr)) + hw_addr.append(State::S0); + else + hw_addr.append(addr[x]); + } + for (int i = 0; i < hw_wr_wide_log2 && i < hw_rd_wide_log2; i++) + hw_addr[i] = State::S0; + for (auto cell: cells) + cell->setPort(stringf("\\PORT_%s_ADDR", name), hw_addr); + + // Write part. + if (pdef.kind != PortKind::Ar && pdef.kind != PortKind::Sr) { + int width = cfg.def->dbits[hw_wr_wide_log2]; + int effective_byte = cfg.def->byte; + if (effective_byte == 0 || effective_byte > width) + effective_byte = width; + if (wpidx != -1) { + auto &wport = mem.wr_ports[wpidx]; + Swizzle port_swz = gen_swizzle(mem, cfg, wport.wide_log2, hw_wr_wide_log2); + std::vector<SigSpec> big_wren = generate_demux(mem, wpidx, port_swz); + for (int rd = 0; rd < cfg.repl_d; rd++) { + auto cell = cells[rd]; + SigSpec hw_wdata; + SigSpec hw_wren; + for (auto &bit : port_swz.bits[rd]) { + if (!bit.valid) { + hw_wdata.append(State::Sx); + } else { + hw_wdata.append(wport.data[bit.bit]); + } + } + for (int i = 0; i < GetSize(port_swz.bits[rd]); i += effective_byte) { + auto &bit = port_swz.bits[rd][i]; + if (!bit.valid) { + hw_wren.append(State::S0); + } else { + hw_wren.append(big_wren[bit.mux_idx][bit.bit]); + } + } + cell->setPort(stringf("\\PORT_%s_WR_DATA", name), hw_wdata); + if (pdef.wrbe_separate) { + // TODO make some use of it + SigSpec en = mem.module->ReduceOr(NEW_ID, hw_wren); + cell->setPort(stringf("\\PORT_%s_WR_EN", name), en); + cell->setPort(stringf("\\PORT_%s_WR_BE", name), hw_wren); + if (cfg.def->width_mode != WidthMode::Single) + cell->setParam(stringf("\\PORT_%s_WR_BE_WIDTH", name), GetSize(hw_wren)); + } else { + cell->setPort(stringf("\\PORT_%s_WR_EN", name), hw_wren); + if (cfg.def->byte != 0 && cfg.def->width_mode != WidthMode::Single) + cell->setParam(stringf("\\PORT_%s_WR_EN_WIDTH", name), GetSize(hw_wren)); + } + } + } else { + for (auto cell: cells) { + cell->setPort(stringf("\\PORT_%s_WR_DATA", name), Const(State::Sx, width)); + SigSpec hw_wren = Const(State::S0, width / effective_byte); + if (pdef.wrbe_separate) { + cell->setPort(stringf("\\PORT_%s_WR_EN", name), State::S0); + cell->setPort(stringf("\\PORT_%s_WR_BE", name), hw_wren); + cell->setParam(stringf("\\PORT_%s_WR_BE_WIDTH", name), GetSize(hw_wren)); + } else { + cell->setPort(stringf("\\PORT_%s_WR_EN", name), hw_wren); + if (cfg.def->byte != 0) + cell->setParam(stringf("\\PORT_%s_WR_EN_WIDTH", name), GetSize(hw_wren)); + } + } + } + } + + // Read part. + if (pdef.kind != PortKind::Sw) { + int width = cfg.def->dbits[hw_rd_wide_log2]; + if (rpidx != -1) { + auto &rport = mem.rd_ports[rpidx]; + auto &rpcfg = cfg.rd_ports[rpidx]; + Swizzle port_swz = gen_swizzle(mem, cfg, rport.wide_log2, hw_rd_wide_log2); + std::vector<SigSpec> big_rdata = generate_mux(mem, rpidx, port_swz); + for (int rd = 0; rd < cfg.repl_d; rd++) { + auto cell = cells[rd]; + if (pdef.kind == PortKind::Sr || pdef.kind == PortKind::Srsw) { + if (pdef.rd_en) + cell->setPort(stringf("\\PORT_%s_RD_EN", name), rpcfg.rd_en_to_clk_en ? State::S1 : rport.en); + if (pdef.rdarstval != ResetValKind::None) + cell->setPort(stringf("\\PORT_%s_RD_ARST", name), rport.arst); + if (pdef.rdsrstval != ResetValKind::None) + cell->setPort(stringf("\\PORT_%s_RD_SRST", name), rport.srst); + if (pdef.rdinitval == ResetValKind::Any || pdef.rdinitval == ResetValKind::NoUndef) { + Const val = rport.init_value; + if (pdef.rdarstval == ResetValKind::Init && rport.arst != State::S0) { + log_assert(val.is_fully_undef() || val == rport.arst_value); + val = rport.arst_value; + } + if (pdef.rdsrstval == ResetValKind::Init && rport.srst != State::S0) { + log_assert(val.is_fully_undef() || val == rport.srst_value); + val = rport.srst_value; + } + std::vector<State> hw_val; + for (auto &bit : port_swz.bits[rd]) { + if (!bit.valid) { + hw_val.push_back(State::Sx); + } else { + hw_val.push_back(val.bits[bit.bit]); + } + } + if (pdef.rdinitval == ResetValKind::NoUndef) + clean_undef(hw_val); + cell->setParam(stringf("\\PORT_%s_RD_INIT_VALUE", name), hw_val); + } + if (pdef.rdarstval == ResetValKind::Any || pdef.rdarstval == ResetValKind::NoUndef) { + std::vector<State> hw_val; + for (auto &bit : port_swz.bits[rd]) { + if (!bit.valid) { + hw_val.push_back(State::Sx); + } else { + hw_val.push_back(rport.arst_value.bits[bit.bit]); + } + } + if (pdef.rdarstval == ResetValKind::NoUndef) + clean_undef(hw_val); + cell->setParam(stringf("\\PORT_%s_RD_ARST_VALUE", name), hw_val); + } + if (pdef.rdsrstval == ResetValKind::Any || pdef.rdsrstval == ResetValKind::NoUndef) { + std::vector<State> hw_val; + for (auto &bit : port_swz.bits[rd]) { + if (!bit.valid) { + hw_val.push_back(State::Sx); + } else { + hw_val.push_back(rport.srst_value.bits[bit.bit]); + } + } + if (pdef.rdsrstval == ResetValKind::NoUndef) + clean_undef(hw_val); + cell->setParam(stringf("\\PORT_%s_RD_SRST_VALUE", name), hw_val); + } + } + SigSpec hw_rdata = mem.module->addWire(NEW_ID, width); + cell->setPort(stringf("\\PORT_%s_RD_DATA", name), hw_rdata); + SigSpec lhs; + SigSpec rhs; + for (int i = 0; i < GetSize(hw_rdata); i++) { + auto &bit = port_swz.bits[rd][i]; + if (bit.valid) { + lhs.append(big_rdata[bit.mux_idx][bit.bit]); + rhs.append(hw_rdata[i]); + } + } + mem.module->connect(lhs, rhs); + } + } else { + for (auto cell: cells) { + if (pdef.kind == PortKind::Sr || pdef.kind == PortKind::Srsw) { + if (pdef.rd_en) + cell->setPort(stringf("\\PORT_%s_RD_EN", name), State::S0); + if (pdef.rdarstval != ResetValKind::None) + cell->setPort(stringf("\\PORT_%s_RD_ARST", name), State::S0); + if (pdef.rdsrstval != ResetValKind::None) + cell->setPort(stringf("\\PORT_%s_RD_SRST", name), State::S0); + if (pdef.rdinitval == ResetValKind::Any) + cell->setParam(stringf("\\PORT_%s_RD_INIT_VALUE", name), Const(State::Sx, width)); + else if (pdef.rdinitval == ResetValKind::NoUndef) + cell->setParam(stringf("\\PORT_%s_RD_INIT_VALUE", name), Const(State::S0, width)); + if (pdef.rdarstval == ResetValKind::Any) + cell->setParam(stringf("\\PORT_%s_RD_ARST_VALUE", name), Const(State::Sx, width)); + else if (pdef.rdarstval == ResetValKind::NoUndef) + cell->setParam(stringf("\\PORT_%s_RD_ARST_VALUE", name), Const(State::S0, width)); + if (pdef.rdsrstval == ResetValKind::Any) + cell->setParam(stringf("\\PORT_%s_RD_SRST_VALUE", name), Const(State::Sx, width)); + else if (pdef.rdsrstval == ResetValKind::NoUndef) + cell->setParam(stringf("\\PORT_%s_RD_SRST_VALUE", name), Const(State::S0, width)); + } + SigSpec hw_rdata = mem.module->addWire(NEW_ID, width); + cell->setPort(stringf("\\PORT_%s_RD_DATA", name), hw_rdata); + } + } + } +} + +void MemMapping::emit(const MemConfig &cfg) { + log("mapping memory %s.%s via %s\n", log_id(mem.module->name), log_id(mem.memid), log_id(cfg.def->id)); + // First, handle emulations. + if (cfg.emu_read_first) + mem.emulate_read_first(&worker.initvals); + for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) { + auto &pcfg = cfg.rd_ports[pidx]; + auto &port = mem.rd_ports[pidx]; + if (pcfg.emu_sync) + mem.extract_rdff(pidx, &worker.initvals); + else if (pcfg.emu_en) + mem.emulate_rden(pidx, &worker.initvals); + else { + if (pcfg.emu_srst_en_prio) { + if (port.ce_over_srst) + mem.emulate_rd_ce_over_srst(pidx); + else + mem.emulate_rd_srst_over_ce(pidx); + } + mem.emulate_reset(pidx, pcfg.emu_init, pcfg.emu_arst, pcfg.emu_srst, &worker.initvals); + } + } + for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) { + auto &pcfg = cfg.wr_ports[pidx]; + for (int opidx: pcfg.emu_prio) { + mem.emulate_priority(opidx, pidx, &worker.initvals); + } + } + for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) { + auto &port = mem.rd_ports[pidx]; + auto &pcfg = cfg.rd_ports[pidx]; + for (int opidx: pcfg.emu_trans) { + // The port may no longer be transparent due to transparency being + // nuked as part of emu_sync or emu_prio. + if (port.transparency_mask[opidx]) + mem.emulate_transparency(opidx, pidx, &worker.initvals); + } + } + + // tgt (repl, port group, port) -> mem (wr port, rd port), where -1 means no port. + std::vector<std::vector<std::vector<std::pair<int, int>>>> ports(cfg.repl_port); + for (int i = 0; i < cfg.repl_port; i++) + ports[i].resize(cfg.def->port_groups.size()); + for (int i = 0; i < GetSize(cfg.wr_ports); i++) { + auto &pcfg = cfg.wr_ports[i]; + for (int j = 0; j < cfg.repl_port; j++) { + if (j == 0) { + ports[j][pcfg.port_group].push_back({i, pcfg.rd_port}); + } else { + ports[j][pcfg.port_group].push_back({i, -1}); + } + } + } + for (int i = 0; i < GetSize(cfg.rd_ports); i++) { + auto &pcfg = cfg.rd_ports[i]; + if (pcfg.wr_port != -1) + continue; + auto &pg = cfg.def->port_groups[pcfg.port_group]; + int j = 0; + while (GetSize(ports[j][pcfg.port_group]) >= GetSize(pg.names)) + j++; + ports[j][pcfg.port_group].push_back({-1, i}); + } + + Swizzle init_swz = gen_swizzle(mem, cfg, 0, GetSize(cfg.def->dbits) - 1); + Const init_data = mem.get_init_data(); + + std::vector<int> hw_addr_swizzle; + for (int i = 0; i < cfg.base_width_log2; i++) + hw_addr_swizzle.push_back(-1); + for (int i = 0; i < init_swz.addr_shift; i++) + if (!(cfg.emu_wide_mask & 1 << i)) + hw_addr_swizzle.push_back(i); + log_assert(GetSize(hw_addr_swizzle) == cfg.def->abits); + + for (int rp = 0; rp < cfg.repl_port; rp++) { + std::vector<Cell *> cells; + for (int rd = 0; rd < cfg.repl_d; rd++) { + Cell *cell = mem.module->addCell(stringf("%s.%d.%d", mem.memid.c_str(), rp, rd), cfg.def->id); + if (cfg.def->width_mode == WidthMode::Global) + cell->setParam(ID::WIDTH, cfg.def->dbits[cfg.base_width_log2]); + if (cfg.def->widthscale) { + std::vector<State> val; + for (auto &bit: init_swz.bits[rd]) + val.push_back(bit.valid ? State::S1 : State::S0); + cell->setParam(ID::BITS_USED, val); + } + for (auto &it: cfg.def->options) + cell->setParam(stringf("\\OPTION_%s", it.first.c_str()), it.second); + for (int i = 0; i < GetSize(cfg.def->shared_clocks); i++) { + auto &cdef = cfg.def->shared_clocks[i]; + auto &ccfg = cfg.shared_clocks[i]; + if (cdef.anyedge) { + cell->setParam(stringf("\\CLK_%s_POL", cdef.name.c_str()), ccfg.used ? ccfg.polarity : true); + cell->setPort(stringf("\\CLK_%s", cdef.name.c_str()), ccfg.used ? ccfg.clk : State::S0); + } else { + SigSpec sig = ccfg.used ? ccfg.clk : State::S0; + if (ccfg.used && ccfg.invert) + sig = mem.module->Not(NEW_ID, sig); + cell->setPort(stringf("\\CLK_%s", cdef.name.c_str()), sig); + } + } + if (cfg.def->init == MemoryInitKind::Any || cfg.def->init == MemoryInitKind::NoUndef) { + std::vector<State> initval; + for (int hwa = 0; hwa < (1 << cfg.def->abits); hwa += 1 << (GetSize(cfg.def->dbits) - 1)) { + for (auto &bit: init_swz.bits[rd]) { + if (!bit.valid) { + initval.push_back(State::Sx); + } else { + int addr = bit.addr; + for (int i = GetSize(cfg.def->dbits) - 1; i < cfg.def->abits; i++) + if (hwa & 1 << i) + addr += 1 << hw_addr_swizzle[i]; + if (addr >= mem.start_offset && addr < mem.start_offset + mem.size) + initval.push_back(init_data.bits[(addr - mem.start_offset) * mem.width + bit.bit]); + else + initval.push_back(State::Sx); + } + } + } + if (cfg.def->init == MemoryInitKind::NoUndef) + clean_undef(initval); + cell->setParam(ID::INIT, initval); + } + cells.push_back(cell); + } + for (int pgi = 0; pgi < GetSize(cfg.def->port_groups); pgi++) { + auto &pg = cfg.def->port_groups[pgi]; + for (int pi = 0; pi < GetSize(pg.names); pi++) { + bool used = pi < GetSize(ports[rp][pgi]); + bool used_r = false; + bool used_w = false; + if (used) { + auto &pd = ports[rp][pgi][pi]; + const PortVariant *pdef; + if (pd.first != -1) + pdef = cfg.wr_ports[pd.first].def; + else + pdef = cfg.rd_ports[pd.second].def; + used_w = pd.first != -1; + used_r = pd.second != -1; + emit_port(cfg, cells, *pdef, pg.names[pi].c_str(), pd.first, pd.second, hw_addr_swizzle); + } else { + emit_port(cfg, cells, pg.variants[0], pg.names[pi].c_str(), -1, -1, hw_addr_swizzle); + } + if (pg.optional) + for (auto cell: cells) + cell->setParam(stringf("\\PORT_%s_USED", pg.names[pi].c_str()), used); + if (pg.optional_rw) + for (auto cell: cells) { + cell->setParam(stringf("\\PORT_%s_RD_USED", pg.names[pi].c_str()), used_r); + cell->setParam(stringf("\\PORT_%s_WR_USED", pg.names[pi].c_str()), used_w); + } + } + } + } + mem.remove(); +} + +struct MemoryLibMapPass : public Pass { + MemoryLibMapPass() : Pass("memory_libmap", "map memories to cells") { } + void help() override + { + // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| + log("\n"); + log(" memory_libmap -lib <library_file> [-D <condition>] [selection]\n"); + log("\n"); + log("This pass takes a description of available RAM cell types and maps\n"); + log("all selected memories to one of them, or leaves them to be mapped to FFs.\n"); + log("\n"); + log(" -lib <library_file>\n"); + log(" Selects a library file containing RAM cell definitions. This option\n"); + log(" can be passed more than once to select multiple libraries.\n"); + log(" See passes/memory/memlib.md for description of the library format.\n"); + log("\n"); + log(" -D <condition>\n"); + log(" Enables a condition that can be checked within the library file\n"); + log(" to eg. select between slightly different hardware variants.\n"); + log(" This option can be passed any number of times.\n"); + log("\n"); + log(" -logic-cost-rom <num>\n"); + log(" -logic-cost-ram <num>\n"); + log(" Sets the cost of a single bit for memory lowered to soft logic.\n"); + log("\n"); + log(" -no-auto-distributed\n"); + log(" -no-auto-block\n"); + log(" -no-auto-huge\n"); + log(" Disables automatic mapping of given kind of RAMs. Manual mapping\n"); + log(" (using ram_style or other attributes) is still supported.\n"); + log("\n"); + } + void execute(std::vector<std::string> args, RTLIL::Design *design) override + { + std::vector<std::string> lib_files; + pool<std::string> defines; + PassOptions opts; + opts.no_auto_distributed = false; + opts.no_auto_block = false; + opts.no_auto_huge = false; + opts.logic_cost_ram = 1.0; + opts.logic_cost_rom = 1.0/16.0; + log_header(design, "Executing MEMORY_LIBMAP pass (mapping memories to cells).\n"); + + size_t argidx; + for (argidx = 1; argidx < args.size(); argidx++) { + if (args[argidx] == "-lib" && argidx+1 < args.size()) { + lib_files.push_back(args[++argidx]); + continue; + } + if (args[argidx] == "-D" && argidx+1 < args.size()) { + defines.insert(args[++argidx]); + continue; + } + if (args[argidx] == "-no-auto-distributed") { + opts.no_auto_distributed = true; + continue; + } + if (args[argidx] == "-no-auto-block") { + opts.no_auto_block = true; + continue; + } + if (args[argidx] == "-no-auto-huge") { + opts.no_auto_huge = true; + continue; + } + if (args[argidx] == "-logic-cost-rom" && argidx+1 < args.size()) { + opts.logic_cost_rom = strtod(args[++argidx].c_str(), nullptr); + continue; + } + if (args[argidx] == "-logic-cost-ram" && argidx+1 < args.size()) { + opts.logic_cost_ram = strtod(args[++argidx].c_str(), nullptr); + continue; + } + break; + } + extra_args(args, argidx, design); + + Library lib = parse_library(lib_files, defines); + + for (auto module : design->selected_modules()) { + MapWorker worker(module); + auto mems = Mem::get_selected_memories(module); + for (auto &mem : mems) + { + MemMapping map(worker, mem, lib, opts); + int idx = -1; + int best = map.logic_cost; + if (!map.logic_ok) { + if (map.cfgs.empty()) + log_error("no valid mapping found for memory %s.%s\n", log_id(module->name), log_id(mem.memid)); + idx = 0; + best = map.cfgs[0].cost; + } + for (int i = 0; i < GetSize(map.cfgs); i++) { + if (map.cfgs[i].cost < best) { + idx = i; + best = map.cfgs[i].cost; + } + } + if (idx == -1) { + log("using FF mapping for memory %s.%s\n", log_id(module->name), log_id(mem.memid)); + } else { + map.emit(map.cfgs[idx]); + } + } + } + } +} MemoryLibMapPass; + +PRIVATE_NAMESPACE_END |