diff options
author | KrystalDelusion <krystinedawn@yosyshq.com> | 2022-12-08 05:54:08 +1300 |
---|---|---|
committer | KrystalDelusion <krystinedawn@yosyshq.com> | 2022-12-08 05:54:08 +1300 |
commit | 1eec255e60f2854b4dd1fa212f02d57eb31c9f19 (patch) | |
tree | 9aae278e98bb5f210061c22bcf22d40854d98e8c /manual/CHAPTER_Intro.tex | |
parent | 4b95fac13934a39525a934329648cf76e4b4f219 (diff) | |
download | yosys-1eec255e60f2854b4dd1fa212f02d57eb31c9f19.tar.gz yosys-1eec255e60f2854b4dd1fa212f02d57eb31c9f19.tar.bz2 yosys-1eec255e60f2854b4dd1fa212f02d57eb31c9f19.zip |
Removing manual files
Diffstat (limited to 'manual/CHAPTER_Intro.tex')
-rw-r--r-- | manual/CHAPTER_Intro.tex | 98 |
1 files changed, 0 insertions, 98 deletions
diff --git a/manual/CHAPTER_Intro.tex b/manual/CHAPTER_Intro.tex deleted file mode 100644 index 76e5d847b..000000000 --- a/manual/CHAPTER_Intro.tex +++ /dev/null @@ -1,98 +0,0 @@ - -\chapter{Introduction} -\label{chapter:intro} - -This document presents the Free and Open Source (FOSS) Verilog HDL synthesis tool ``Yosys''. -Its design and implementation as well as its performance on real-world designs -is discussed in this document. - -\section{History of Yosys} - -A Hardware Description Language (HDL) is a computer language used to describe -circuits. A HDL synthesis tool is a computer program that takes a formal -description of a circuit written in an HDL as input and generates a netlist -that implements the given circuit as output. - -Currently the most widely used and supported HDLs for digital circuits are -Verilog \cite{Verilog2005}\cite{VerilogSynth} and -VHDL\footnote{VHDL is an acronym for ``VHSIC hardware description language'' -and VHSIC is an acronym for ``Very-High-Speed Integrated -Circuits''.} \cite{VHDL}\cite{VHDLSynth}. -Both HDLs are used for test and verification purposes as well as logic -synthesis, resulting in a set of synthesizable and a set of non-synthesizable -language features. In this document we only look at the synthesizable subset -of the language features. - -In recent work on heterogeneous coarse-grain reconfigurable -logic \cite{intersynth} the need for a custom application-specific HDL synthesis -tool emerged. It was soon realised that a synthesis tool that understood Verilog -or VHDL would be preferred over a synthesis tool for a custom HDL. Given an -existing Verilog or VHDL front end, the work for writing the necessary -additional features and integrating them in an existing tool can be estimated to be -about the same as writing a new tool with support for a minimalistic custom HDL. - -The proposed custom HDL synthesis tool should be licensed under a Free -and Open Source Software (FOSS) licence. So an existing FOSS Verilog or VHDL -synthesis tool would have been needed as basis to build upon. The main advantages -of choosing Verilog or VHDL is the ability to synthesize existing HDL code and -to mitigate the requirement for circuit-designers to learn a new language. In order to take full advantage of any existing FOSS Verilog or VHDL tool, -such a tool would have to provide a feature-complete implementation of the -synthesizable HDL subset. - -Basic RTL synthesis is a well understood field \cite{LogicSynthesis}. Lexing, -parsing and processing of computer languages \cite{Dragonbook} is a thoroughly -researched field. All the information required to write such tools has been openly -available for a long time, and it is therefore likely that a FOSS HDL synthesis tool -with a feature-complete Verilog or VHDL front end must exist which can be used as a basis for a custom RTL synthesis tool. - -Due to the author's preference for Verilog over VHDL it was decided early -on to go for Verilog instead of VHDL\footnote{A quick investigation into FOSS -VHDL tools yielded similar grim results for FOSS VHDL synthesis tools.}. -So the existing FOSS Verilog synthesis tools were evaluated (see -App.~\ref{chapter:sota}). The results of this evaluation are utterly -devastating. Therefore a completely new Verilog synthesis tool was implemented -and is recommended as basis for custom synthesis tools. This is the tool that -is discussed in this document. - -\section{Structure of this Document} - -The structure of this document is as follows: - -Chapter~\ref{chapter:intro} is this introduction. - -Chapter~\ref{chapter:basics} covers a short introduction to the world of HDL -synthesis. Basic principles and the terminology are outlined in this chapter. - -Chapter~\ref{chapter:approach} gives the quickest possible outline to how the -problem of implementing a HDL synthesis tool is approached in the case of -Yosys. - -Chapter~\ref{chapter:overview} contains a more detailed overview of the -implementation of Yosys. This chapter covers the data structures used in -Yosys to represent a design in detail and is therefore recommended reading -for everyone who is interested in understanding the Yosys internals. - -Chapter~\ref{chapter:celllib} covers the internal cell library used by Yosys. -This is especially important knowledge for anyone who wants to understand the -intermediate netlists used internally by Yosys. - -Chapter~ \ref{chapter:prog} gives a tour to the internal APIs of Yosys. This -is recommended reading for everyone who actually wants to read or write -Yosys source code. The chapter concludes with an example loadable module -for Yosys. - -Chapters~\ref{chapter:verilog}, \ref{chapter:opt}, and \ref{chapter:techmap} -cover three important pieces of the synthesis pipeline: The Verilog frontend, -the optimization passes and the technology mapping to the target architecture, -respectively. - -Chapter~\ref{chapter:eval} covers the evaluation of the performance -(correctness and quality) of Yosys on real-world input data. -The chapter concludes the main part of this document with conclusions and -outlook to future work. - -Various appendices, including a command reference manual -(App.~\ref{commandref}) and an evaluation of pre-existing FOSS Verilog -synthesis tools (App.~\ref{chapter:sota}) complete this document. - - |