1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2020 gatecat <gatecat@ds0.me>
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include <boost/range/adaptor/reversed.hpp>
#include <queue>
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct NexusFasmWriter
{
const Context *ctx;
std::ostream &out;
std::vector<std::string> fasm_ctx;
bool is_lifcl_17;
NexusFasmWriter(const Context *ctx, std::ostream &out)
: ctx(ctx), out(out), is_lifcl_17(ctx->args.device.find("LIFCL-17") != std::string::npos)
{
}
// Add a 'dot' prefix to the FASM context stack
void push(const std::string &x) { fasm_ctx.push_back(x); }
// Remove a prefix from the FASM context stack
void pop() { fasm_ctx.pop_back(); }
// Remove N prefices from the FASM context stack
void pop(int N)
{
for (int i = 0; i < N; i++)
fasm_ctx.pop_back();
}
bool last_was_blank = true;
// Insert a blank line if the last wasn't blank
void blank()
{
if (!last_was_blank)
out << std::endl;
last_was_blank = true;
}
// Write out all prefices from the stack, interspersed with .
void write_prefix()
{
for (auto &x : fasm_ctx)
out << x << ".";
last_was_blank = false;
}
// Write a single config bit; if value is true
void write_bit(const std::string &name, bool value = true)
{
if (value) {
write_prefix();
out << name << std::endl;
}
}
// Write a FASM attribute
void write_attribute(const std::string &key, const std::string &value, bool str = true)
{
std::string qu = str ? "\"" : "";
out << "{ " << key << "=" << qu << value << qu << " }" << std::endl;
last_was_blank = false;
}
// Write a FASM comment
void write_comment(const std::string &cmt) { out << "# " << cmt << std::endl; }
// Write a FASM bitvector; optionally inverting the values in the process
void write_vector(const std::string &name, const std::vector<bool> &value, bool invert = false)
{
write_prefix();
out << name << " = " << int(value.size()) << "'b";
for (auto bit : boost::adaptors::reverse(value))
out << ((bit ^ invert) ? '1' : '0');
out << std::endl;
}
// Write a FASM bitvector given an integer value
void write_int_vector(const std::string &name, uint64_t value, int width, bool invert = false)
{
std::vector<bool> bits(width, false);
for (int i = 0; i < width; i++)
bits[i] = (value & (1ULL << i)) != 0;
write_vector(name, bits, invert);
}
// Write an int vector param
void write_int_vector_param(const CellInfo *cell, const std::string &name, uint64_t defval, int width,
bool invert = false)
{
uint64_t value = int_or_default(cell->params, ctx->id(name), defval);
std::vector<bool> bits(width, false);
for (int i = 0; i < width; i++)
bits[i] = (value & (1ULL << i)) != 0;
write_vector(stringf("%s[%d:0]", name.c_str(), width - 1), bits, invert);
}
// Look up an enum value in a cell's parameters and write it to the FASM in name.value format
void write_enum(const CellInfo *cell, const std::string &name, const std::string &defval = "")
{
auto fnd = cell->params.find(ctx->id(name));
if (fnd == cell->params.end()) {
if (!defval.empty())
write_bit(stringf("%s.%s", name.c_str(), defval.c_str()));
} else {
write_bit(stringf("%s.%s", name.c_str(), fnd->second.c_str()));
}
}
// Look up an IO attribute in the cell's attributes and write it to the FASM in name.value format
void write_ioattr(const CellInfo *cell, const std::string &name, const std::string &defval = "")
{
auto fnd = cell->attrs.find(ctx->id(name));
if (fnd == cell->attrs.end()) {
if (!defval.empty())
write_bit(stringf("%s.%s", name.c_str(), defval.c_str()));
} else {
write_bit(stringf("%s.%s", name.c_str(), fnd->second.c_str()));
}
}
void write_ioattr_postfix(const CellInfo *cell, const std::string &name, const std::string &postfix,
const std::string &defval = "")
{
auto fnd = cell->attrs.find(ctx->id(name));
if (fnd == cell->attrs.end()) {
if (!defval.empty())
write_bit(stringf("%s_%s.%s", name.c_str(), postfix.c_str(), defval.c_str()));
} else {
write_bit(stringf("%s_%s.%s", name.c_str(), postfix.c_str(), fnd->second.c_str()));
}
}
// Gets the full name of a tile
std::string tile_name(int loc, const PhysicalTileInfoPOD &tile)
{
int r = loc / ctx->chip_info->width;
int c = loc % ctx->chip_info->width;
return stringf("%sR%dC%d__%s", ctx->nameOf(IdString(tile.prefix)), r, c, ctx->nameOf(IdString(tile.tiletype)));
}
// Look up a tile by location index and tile type
const PhysicalTileInfoPOD &tile_by_type_and_loc(int loc, IdString type)
{
auto &ploc = ctx->chip_info->grid[loc];
for (auto &pt : ploc.phys_tiles) {
if (pt.tiletype == type.index)
return pt;
}
log_error("No tile of type %s found at location R%dC%d", ctx->nameOf(type), loc / ctx->chip_info->width,
loc % ctx->chip_info->width);
}
// Gets the single tile at a location
const PhysicalTileInfoPOD &tile_at_loc(int loc)
{
auto &ploc = ctx->chip_info->grid[loc];
NPNR_ASSERT(ploc.phys_tiles.size() == 1);
return ploc.phys_tiles[0];
}
// Escape an internal prjoxide name for FASM by replacing : with __
std::string escape_name(const std::string &name)
{
std::string escaped;
for (char c : name) {
if (c == ':')
escaped += "__";
else
escaped += c;
}
return escaped;
}
// Push a tile name onto the prefix stack
void push_tile(int loc, IdString tile_type) { push(tile_name(loc, tile_by_type_and_loc(loc, tile_type))); }
void push_tile(int loc) { push(tile_name(loc, tile_at_loc(loc))); }
// Push a bel name onto the prefix stack
void push_belname(BelId bel) { push(ctx->nameOf(IdString(ctx->bel_data(bel).name))); }
// Push the tile group name corresponding to a bel onto the prefix stack
void push_belgroup(BelId bel)
{
int r = bel.tile / ctx->chip_info->width;
int c = bel.tile % ctx->chip_info->width;
auto &bel_data = ctx->bel_data(bel);
r += bel_data.rel_y;
c += bel_data.rel_x;
std::string s = stringf("R%dC%d_%s", r, c, ctx->nameOf(IdString(ctx->bel_data(bel).name)));
push(s);
}
// Push a bel's group and name
void push_bel(BelId bel)
{
push_belgroup(bel);
fasm_ctx.back() += stringf(".%s", ctx->nameOf(IdString(ctx->bel_data(bel).name)));
}
// Write out a pip in tile.dst.src format
void write_pip(PipId pip)
{
auto &pd = ctx->pip_data(pip);
if (pd.flags & PIP_FIXED_CONN)
return;
std::string tile = tile_name(pip.tile, tile_by_type_and_loc(pip.tile, IdString(pd.tile_type)));
std::string source_wire = escape_name(ctx->pip_src_wire_name(pip).str(ctx));
std::string dest_wire = escape_name(ctx->pip_dst_wire_name(pip).str(ctx));
out << stringf("%s.PIP.%s.%s", tile.c_str(), dest_wire.c_str(), source_wire.c_str()) << std::endl;
}
// Write out all the pips corresponding to a net
void write_net(const NetInfo *net)
{
write_comment(stringf("Net %s", ctx->nameOf(net)));
std::set<PipId> sorted_pips;
for (auto &w : net->wires)
if (w.second.pip != PipId())
sorted_pips.insert(w.second.pip);
for (auto p : sorted_pips)
write_pip(p);
blank();
}
// Find the CIBMUX output for a signal
WireId find_cibmux(WireId cursor)
{
if (cursor == WireId())
return WireId();
for (int i = 0; i < 10; i++) {
std::string cursor_name = IdString(ctx->wire_data(cursor).name).str(ctx);
if (cursor_name.find("JCIBMUXOUT") == 0) {
return cursor;
}
for (PipId pip : ctx->getPipsUphill(cursor))
if (ctx->checkPipAvail(pip)) {
cursor = ctx->getPipSrcWire(pip);
break;
}
}
return WireId();
}
// Write out the mux config for a cell
void write_cell_muxes(const CellInfo *cell)
{
for (auto &port : cell->ports) {
// Only relevant to inputs
if (port.second.type != PORT_IN)
continue;
auto pin_style = ctx->get_cell_pin_style(cell, port.first);
auto pin_mux = ctx->get_cell_pinmux(cell, port.first);
// Invertible pins
if (pin_style & PINOPT_INV) {
if (pin_mux == PINMUX_INV || pin_mux == PINMUX_0)
write_bit(stringf("%sMUX.INV", ctx->nameOf(port.first)));
else if (pin_mux == PINMUX_SIG && !(pin_style & PINBIT_GATED))
write_bit(stringf("%sMUX.%s", ctx->nameOf(port.first), ctx->nameOf(port.first)));
}
// Pins that must be explictly enabled
if ((pin_style & PINBIT_GATED) && (pin_mux == PINMUX_SIG) && (port.second.net != nullptr))
write_bit(stringf("%sMUX.%s", ctx->nameOf(port.first), ctx->nameOf(port.first)));
// Pins that must be explictly set to 1 rather than just left floating
if ((pin_style & PINBIT_1) && (pin_mux == PINMUX_1))
write_bit(stringf("%sMUX.1", ctx->nameOf(port.first)));
// Handle CIB muxes - these must be set such that floating pins really are floating to VCC and not connected
// to another CIB signal
if ((pin_style & PINBIT_CIBMUX) && port.second.net == nullptr) {
WireId cibmuxout = find_cibmux(ctx->getBelPinWire(cell->bel, port.first));
if (cibmuxout != WireId()) {
write_comment(stringf("CIBMUX for unused pin %s", ctx->nameOf(port.first)));
bool found = false;
for (PipId pip : ctx->getPipsUphill(cibmuxout)) {
if (ctx->checkPipAvail(pip) && ctx->checkWireAvail(ctx->getPipSrcWire(pip))) {
write_pip(pip);
found = true;
break;
}
}
NPNR_ASSERT(found);
}
}
}
}
// Handle route-through DCCs
void write_dcc_thru()
{
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_DCC)
continue;
if (!ctx->checkBelAvail(bel))
continue;
WireId dst = ctx->getBelPinWire(bel, id_CLKO);
if (ctx->getBoundWireNet(dst) == nullptr)
continue;
// Set up the CIBMUX so CE is guaranteed to be tied high
WireId ce = ctx->getBelPinWire(bel, id_CE);
WireId cibmuxout = find_cibmux(ce);
NPNR_ASSERT(cibmuxout != WireId());
write_comment(stringf("CE CIBMUX for DCC route-thru %s", ctx->nameOfBel(bel)));
bool found = false;
for (PipId pip : ctx->getPipsUphill(cibmuxout)) {
if (ctx->checkPipAvail(pip) && ctx->checkWireAvail(ctx->getPipSrcWire(pip))) {
write_pip(pip);
found = true;
break;
}
}
NPNR_ASSERT(found);
}
}
// Write config for an OXIDE_COMB cell
void write_comb(const CellInfo *cell)
{
BelId bel = cell->bel;
int z = ctx->bel_data(bel).z;
int k = z & 0x1;
char slice = 'A' + (z >> 3);
push_tile(bel.tile, id_PLC);
push(stringf("SLICE%c", slice));
if (cell->params.count(id_INIT))
write_int_vector(stringf("K%d.INIT[15:0]", k), int_or_default(cell->params, id_INIT, 0), 16);
if (cell->lutInfo.is_carry) {
write_bit("MODE.CCU2");
write_enum(cell, "CCU2.INJECT", "NO");
}
pop(2);
}
// Write config for an OXIDE_FF cell
void write_ff(const CellInfo *cell)
{
BelId bel = cell->bel;
int z = ctx->bel_data(bel).z;
int k = z & 0x1;
char slice = 'A' + (z >> 3);
push_tile(bel.tile, id_PLC);
push(stringf("SLICE%c", slice));
push(stringf("REG%d", k));
write_bit("USED.YES");
write_enum(cell, "REGSET", "RESET");
write_enum(cell, "LSRMODE", "LSR");
write_enum(cell, "SEL", "DF");
pop();
write_enum(cell, "REGDDR");
write_enum(cell, "SRMODE");
write_cell_muxes(cell);
pop(2);
}
// Write out config for an OXIDE_RAMW cell
void write_ramw(const CellInfo *cell)
{
BelId bel = cell->bel;
push_tile(bel.tile, id_PLC);
push("SLICEC");
write_bit("MODE.RAMW");
write_cell_muxes(cell);
pop(2);
}
pool<BelId> used_io;
struct BankConfig
{
bool diff_used = false;
bool lvds_used = false;
bool slvs_used = false;
bool dphy_used = false;
};
std::map<int, BankConfig> bank_cfg;
// Write config for an SEIO33_CORE cell
void write_io33(const CellInfo *cell)
{
BelId bel = cell->bel;
used_io.insert(bel);
push_bel(bel);
const NetInfo *t = get_net_or_empty(cell, id_T);
auto tmux = ctx->get_cell_pinmux(cell, id_T);
bool is_input = false, is_output = false;
if (tmux == PINMUX_0) {
is_output = true;
} else if (tmux == PINMUX_1 || t == nullptr) {
is_input = true;
}
const char *iodir = is_input ? "INPUT" : (is_output ? "OUTPUT" : "BIDIR");
write_bit(stringf("BASE_TYPE.%s_%s", iodir, str_or_default(cell->attrs, id_IO_TYPE, "LVCMOS33").c_str()));
write_ioattr(cell, "PULLMODE", "NONE");
write_ioattr(cell, "GLITCHFILTER", "OFF");
write_ioattr(cell, "SLEWRATE", "MED");
write_cell_muxes(cell);
pop();
}
// Write config for an SEIO18_CORE cell
void write_io18(const CellInfo *cell)
{
BelId bel = cell->bel;
used_io.insert(bel);
push_bel(bel);
push("SEIO18");
const NetInfo *t = get_net_or_empty(cell, id_T);
auto tmux = ctx->get_cell_pinmux(cell, id_T);
bool is_input = false, is_output = false;
if (tmux == PINMUX_0) {
is_output = true;
} else if (tmux == PINMUX_1 || t == nullptr) {
is_input = true;
}
auto &bank = bank_cfg[ctx->get_bel_pad(bel)->bank];
if (is_lifcl_17 && (is_output || !is_input))
bank.diff_used = true; // what exactly should this bit be called?
const char *iodir = is_input ? "INPUT" : (is_output ? "OUTPUT" : "BIDIR");
write_bit(stringf("BASE_TYPE.%s_%s", iodir, str_or_default(cell->attrs, id_IO_TYPE, "LVCMOS18H").c_str()));
write_ioattr(cell, "PULLMODE", "NONE");
write_ioattr(cell, "SLEWRATE", "MED");
pop();
write_cell_muxes(cell);
pop();
}
// Write config for an SEIO18_CORE cell
void write_diffio18(const CellInfo *cell)
{
BelId bel = cell->bel;
Loc bel_loc = ctx->getBelLocation(bel);
for (int i = 0; i < 2; i++) {
// Mark both A and B pins as used
used_io.insert(ctx->getBelByLocation(Loc(bel_loc.x, bel_loc.y, i)));
}
push_belgroup(bel);
push("PIOA");
push("DIFFIO18");
auto &bank = bank_cfg[ctx->get_bel_pad(ctx->getBelByLocation(Loc(bel_loc.x, bel_loc.y, 0)))->bank];
bank.diff_used = true;
const NetInfo *t = get_net_or_empty(cell, id_T);
auto tmux = ctx->get_cell_pinmux(cell, id_T);
bool is_input = false, is_output = false;
if (tmux == PINMUX_0) {
is_output = true;
} else if (tmux == PINMUX_1 || t == nullptr) {
is_input = true;
}
const char *iodir = is_input ? "INPUT" : (is_output ? "OUTPUT" : "BIDIR");
std::string type = str_or_default(cell->attrs, id_IO_TYPE, "LVDS");
write_bit(stringf("BASE_TYPE.%s_%s", iodir, type.c_str()));
if (type == "LVDS") {
write_ioattr_postfix(cell, "DIFFDRIVE", "LVDS", "3P5");
bank.lvds_used = true;
} else if (type == "SLVS") {
write_ioattr_postfix(cell, "DIFFDRIVE", "SLVS", "2P0");
bank.slvs_used = true;
} else if (type == "MIPI_DPHY") {
write_ioattr_postfix(cell, "DIFFDRIVE", "MIPI_DPHY", "2P0");
bank.dphy_used = true;
}
write_ioattr(cell, "PULLMODE", "FAILSAFE");
write_ioattr(cell, "DIFFRESISTOR");
pop();
write_cell_muxes(cell);
pop(2);
}
// Write config for an OSC_CORE cell
void write_osc(const CellInfo *cell)
{
BelId bel = cell->bel;
push_tile(bel.tile);
push_belname(bel);
write_enum(cell, "HF_OSC_EN", "ENABLED");
write_enum(cell, "HF_FABRIC_EN");
write_enum(cell, "HFDIV_FABRIC_EN", "ENABLED");
write_enum(cell, "LF_FABRIC_EN");
write_enum(cell, "LF_OUTPUT_EN");
write_enum(cell, "DEBUG_N", "DISABLED");
write_int_vector(stringf("HF_CLK_DIV[7:0]"), ctx->parse_lattice_param(cell, id_HF_CLK_DIV, 8, 0).intval, 8);
write_cell_muxes(cell);
pop(2);
}
// Write config for an OXIDE_EBR cell
void write_bram(const CellInfo *cell)
{
// EBR configuration
BelId bel = cell->bel;
push_bel(bel);
int wid = int_or_default(cell->params, id_WID, 0);
std::string mode = str_or_default(cell->params, id_MODE, "");
write_bit(stringf("MODE.%s_MODE", mode.c_str()));
write_enum(cell, "INIT_DATA", "STATIC");
write_enum(cell, "GSR", "DISABLED");
write_int_vector("WID[10:0]", wid, 11);
push(stringf("%s_MODE", mode.c_str()));
if (mode == "DP16K") {
write_int_vector_param(cell, "CSDECODE_A", 7, 3, true);
write_int_vector_param(cell, "CSDECODE_B", 7, 3, true);
write_enum(cell, "ASYNC_RST_RELEASE_A");
write_enum(cell, "ASYNC_RST_RELEASE_B");
write_enum(cell, "DATA_WIDTH_A");
write_enum(cell, "DATA_WIDTH_B");
write_enum(cell, "OUTREG_A");
write_enum(cell, "OUTREG_B");
write_enum(cell, "RESETMODE_A");
write_enum(cell, "RESETMODE_B");
} else if (mode == "PDP16K" || mode == "PDPSC16K") {
write_int_vector_param(cell, "CSDECODE_W", 7, 3, true);
write_int_vector_param(cell, "CSDECODE_R", 7, 3, true);
write_enum(cell, "ASYNC_RST_RELEASE");
write_enum(cell, "DATA_WIDTH_W");
write_enum(cell, "DATA_WIDTH_R");
write_enum(cell, "OUTREG");
write_enum(cell, "RESETMODE");
}
pop();
push("DP16K_MODE"); // muxes always use the DP16K perspective
write_cell_muxes(cell);
pop(2);
blank();
// EBR initialisation
if (wid > 0) {
push(stringf("IP_EBR_WID%d", wid));
for (int i = 0; i < 64; i++) {
IdString param = ctx->id(stringf("INITVAL_%02X", i));
if (!cell->params.count(param))
continue;
auto &prop = cell->params.at(param);
std::string value;
if (prop.is_string) {
NPNR_ASSERT(prop.str.substr(0, 2) == "0x");
// Lattice-style hex string
value = prop.str.substr(2);
value = stringf("320'h%s", value.c_str());
} else {
// True Verilog bitvector
value = stringf("320'b%s", prop.str.c_str());
}
write_bit(stringf("INITVAL_%02X[319:0] = %s", i, value.c_str()));
}
pop();
}
}
bool is_mux_param(const std::string &key)
{
return (key.size() >= 3 && (key.compare(key.size() - 3, 3, "MUX") == 0));
}
// Write config for some kind of IOLOGIC cell
void write_iol(const CellInfo *cell)
{
BelId bel = cell->bel;
push_bel(bel);
write_enum(cell, "MODE");
write_enum(cell, "IDDRX1_ODDRX1.OUTPUT");
write_enum(cell, "IDDRX1_ODDRX1.TRISTATE");
write_enum(cell, "GSR", "DISABLED");
write_enum(cell, "TSREG.REGSET", "RESET");
write_cell_muxes(cell);
pop();
}
// Write config for some kind of DSP cell
void write_dsp(const CellInfo *cell)
{
BelId bel = cell->bel;
push_bel(bel);
if (cell->type != id_MULT18_CORE && cell->type != id_MULT18X36_CORE && cell->type != id_MULT36_CORE)
write_bit(stringf("MODE.%s", ctx->nameOf(cell->type)));
for (auto ¶m : cell->params) {
const std::string ¶m_name = param.first.str(ctx);
if (is_mux_param(param_name))
continue;
if (param.first == id_ROUNDBIT) {
// currently unsupported in oxide, but appears rarely used
NPNR_ASSERT(param.second.as_string() == "ROUND_TO_BIT0");
continue;
}
write_enum(cell, param_name);
}
write_cell_muxes(cell);
pop();
}
// Which PLL params are 'word' values
/* clang-format off */
const dict<std::string, int> pll_word_params = {
{"DIVA", 7}, {"DELA", 7}, {"PHIA", 3}, {"DIVB", 7},
{"DELB", 7}, {"PHIB", 3}, {"DIVC", 7}, {"DELC", 7},
{"PHIC", 3}, {"DIVD", 7}, {"DELD", 7}, {"PHID", 3},
{"DIVE", 7}, {"DELE", 7}, {"PHIE", 3}, {"DIVF", 7},
{"DELF", 7}, {"PHIF", 3}, {"BW_CTL_BIAS", 4},
{"CLKOP_TRIM", 4}, {"CLKOS_TRIM", 4}, {"CLKOS2_TRIM", 4},
{"CLKOS3_TRIM", 4}, {"CLKOS4_TRIM", 4}, {"CLKOS5_TRIM", 4},
{"DIV_DEL", 7}, {"DYN_SEL", 3}, {"FBK_CUR_BLE", 8}, {"FBK_IF_TIMING_CTL", 2},
{"FBK_MASK", 8}, {"FBK_MMD_DIG", 8}, {"FBK_MMD_PULS_CTL", 4},
{"FBK_MODE", 2}, {"FBK_PI_RC", 4}, {"FBK_PR_CC", 4},
{"FBK_PR_IC", 4}, {"FBK_RSV", 16},
{"IPI_CMP", 4}, {"IPI_CMPN", 4},
{"IPP_CTRL", 4}, {"IPP_SEL", 4},
{"KP_VCO", 5},
{"MFG_CTRL", 4}, {"MFGOUT1_SEL", 3}, {"MFGOUT2_SEL", 3},
{"REF_MASK", 8}, {"REF_MMD_DIG", 8}, {"REF_MMD_IN", 8},
{"REF_MMD_PULS_CTL", 4}, {"REF_TIMING_CTL", 2},
{"RESERVED", 7}, {"SSC_DELTA", 15},
{"SSC_DELTA_CTL", 2}, {"SSC_F_CODE", 15},
{"SSC_N_CODE", 9}, {"SSC_REG_WEIGHTING_SEL", 3},
{"SSC_STEP_IN", 7}, {"SSC_TBASE", 12},
{"V2I_PP_ICTRL", 5},
};
// Which MIPI params are 'word' values
const dict<std::string, int> dphy_word_params = {
{"CM", 8}, {"CN", 5}, {"CO", 3}, {"RSEL", 2}, {"RXCDRP", 2},
{"RXDATAWIDTHHS", 2}, {"RXLPRP", 3}, {"TEST_ENBL", 6},
{"TEST_PATTERN", 32}, {"TST", 4}, {"TXDATAWIDTHHS", 2},
{"UC_PRG_RXHS_SETTLE", 6}, {"U_PRG_HS_PREPARE", 2},
{"U_PRG_HS_TRAIL", 6}, {"U_PRG_HS_ZERO", 6}, {"U_PRG_RXHS_SETTLE", 6}
};
/* clang-format on */
// Write out config for some kind of PLL cell
void write_pll(const CellInfo *cell)
{
BelId bel = cell->bel;
push_bel(bel);
write_bit("MODE.PLL_CORE");
write_enum(cell, "CLKMUX_FB");
write_cell_muxes(cell);
pop();
push(stringf("IP_%s", ctx->nameOf(IdString(ctx->bel_data(bel).name))));
for (auto ¶m : cell->params) {
const std::string &name = param.first.str(ctx);
if (is_mux_param(name) || name == "CLKMUX_FB" || name == "SEL_FBK")
continue;
auto fnd_word = pll_word_params.find(name);
if (fnd_word != pll_word_params.end()) {
write_int_vector(stringf("%s[%d:0]", name.c_str(), fnd_word->second - 1),
ctx->parse_lattice_param(cell, param.first, fnd_word->second, 0).as_int64(),
fnd_word->second);
} else {
write_bit(stringf("%s.%s", name.c_str(), param.second.as_string().c_str()));
}
}
pop();
}
// Write out config for a DPHY_CORE cell
// TODO: duplication with PLL and other hard IP...
void write_dphy(const CellInfo *cell)
{
BelId bel = cell->bel;
push(stringf("IP_%s", ctx->nameOf(IdString(ctx->bel_data(bel).name))));
for (auto ¶m : cell->params) {
const std::string &name = param.first.str(ctx);
if (is_mux_param(name) || name == "GSR")
continue;
auto fnd_word = dphy_word_params.find(name);
if (fnd_word != dphy_word_params.end()) {
write_int_vector(stringf("%s[%d:0]", name.c_str(), fnd_word->second - 1),
ctx->parse_lattice_param(cell, param.first, fnd_word->second, 0).as_int64(),
fnd_word->second);
} else {
write_bit(stringf("%s.%s", name.c_str(), param.second.as_string().c_str()));
}
}
pop();
}
// Write out config for an LRAM_CORE cell
void write_lram(const CellInfo *cell)
{
BelId bel = cell->bel;
push_bel(bel);
if (is_lifcl_17)
write_bit("MODE.LRAM_CORE");
write_enum(cell, "ASYNC_RST_RELEASE", "SYNC");
write_enum(cell, "EBR_SP_EN", "DISABLE");
write_enum(cell, "ECC_BYTE_SEL", "BYTE_EN");
write_enum(cell, "GSR", "DISABLED");
write_enum(cell, "OUT_REGMODE_A", "NO_REG");
write_enum(cell, "OUT_REGMODE_B", "NO_REG");
write_enum(cell, "RESETMODE", "SYNC");
write_enum(cell, "UNALIGNED_READ", "DISABLE");
write_cell_muxes(cell);
pop();
blank();
Loc l = ctx->getBelLocation(bel);
if (is_lifcl_17 && l.x == 0)
l.x = 1;
push(stringf("IP_LRAM_CORE_R%dC%d", l.y, l.x));
for (int i = 0; i < 128; i++) {
IdString param = ctx->id(stringf("INITVAL_%02X", i));
if (!cell->params.count(param))
continue;
auto &prop = cell->params.at(param);
std::string value;
if (prop.is_string) {
NPNR_ASSERT(prop.str.substr(0, 2) == "0x");
// Lattice-style hex string
value = prop.str.substr(2);
value = stringf("5120'h%s", value.c_str());
} else {
// True Verilog bitvector
value = stringf("5120'b%s", prop.str.c_str());
}
write_bit(stringf("INITVAL_%02X[5119:0] = %s", i, value.c_str()));
}
pop();
}
// Write out FASM for unused bels where needed
void write_unused()
{
write_comment("# Unused bels");
// DSP primitives are configured to a default mode; even if unused
static const dict<IdString, std::vector<std::string>> dsp_defconf = {
{id_MULT9_CORE,
{
"GSR.ENABLED",
"MODE.NONE",
"RSTAMUX.RSTA",
"RSTPMUX.RSTP",
}},
{id_PREADD9_CORE,
{
"GSR.ENABLED",
"MODE.NONE",
"RSTBMUX.RSTB",
"RSTCLMUX.RSTCL",
}},
{id_REG18_CORE,
{
"GSR.ENABLED",
"MODE.NONE",
"RSTPMUX.RSTP",
}},
{id_ACC54_CORE,
{
"ACCUBYPS.BYPASS",
"MODE.NONE",
}},
};
for (BelId bel : ctx->getBels()) {
IdString type = ctx->getBelType(bel);
if (type == id_SEIO33_CORE && !used_io.count(bel)) {
push_bel(bel);
write_bit("BASE_TYPE.NONE");
pop();
blank();
} else if (type == id_SEIO18_CORE && !used_io.count(bel)) {
push_bel(bel);
push("SEIO18");
write_bit("BASE_TYPE.NONE");
pop(2);
blank();
} else if (dsp_defconf.count(type) && ctx->getBoundBelCell(bel) == nullptr) {
push_bel(bel);
for (const auto &cbit : dsp_defconf.at(type))
write_bit(cbit);
pop();
blank();
}
}
}
dict<int, int> bank_vcco;
// bank VccO in mV
int get_bank_vcco(const std::string &iostd)
{
if (iostd == "LVCMOS33" || iostd == "LVCMOS33D")
return 3300;
else if (iostd == "LVCMOS25" || iostd == "LVCMOS25D")
return 2500;
else if (iostd == "LVCMOS18")
return 1800;
else if (iostd == "LVCMOS15")
return 1500;
else if (iostd == "LVCMOS12")
return 1200;
else
return -1;
}
// Write out placeholder bankref config
void write_bankcfg()
{
for (auto &c : ctx->cells) {
const CellInfo *ci = c.second.get();
if (ci->type != id_SEIO33_CORE)
continue;
if (!ci->attrs.count(id_IO_TYPE))
continue;
// VccO only concerns outputs
const NetInfo *t = get_net_or_empty(ci, id_T);
auto tmux = ctx->get_cell_pinmux(ci, id_T);
if (tmux == PINMUX_1 || (tmux != PINMUX_0 && t == nullptr))
continue;
int bank = ctx->get_bel_pad(ci->bel)->bank;
std::string iostd = ci->attrs.at(id_IO_TYPE).as_string();
int vcco = get_bank_vcco(iostd);
if (vcco == -1) {
log_warning("Unexpected IO standard '%s' on port '%s'\n", iostd.c_str(), ctx->nameOf(ci));
continue;
}
if (bank_vcco.count(bank) && bank_vcco.at(bank) != vcco) {
log_warning("Conflicting Vcco %.1fV and %.1fV on bank %d\n", bank_vcco.at(bank) / 1000.0, vcco / 1000.0,
bank);
continue;
}
bank_vcco[bank] = vcco;
}
for (int i = 0; i < 8; i++) {
if (i >= 3 && i <= 5) {
// 1.8V banks
push(stringf("GLOBAL.BANK%d", i));
auto &bank = bank_cfg[i];
write_bit("DIFF_IO.ON", bank.diff_used);
write_bit("LVDS_IO.ON", bank.lvds_used);
write_bit("SLVS_IO.ON", bank.slvs_used);
write_bit("MIPI_DPHY_IO.ON", bank.dphy_used);
pop();
} else {
if (is_lifcl_17 && (i != 0) && (i != 1))
continue;
auto vcco = bank_vcco.find(i);
if (vcco != bank_vcco.end())
write_bit(stringf("GLOBAL.BANK%d.VCC.%dV%d", i, vcco->second / 1000, (vcco->second / 100) % 10));
else
write_bit(stringf("GLOBAL.BANK%d.VCC.3V3", i));
}
}
blank();
}
// Write out FASM for the whole design
void operator()()
{
// Write device config
write_attribute("oxide.device", ctx->device);
write_attribute("oxide.device_variant", ctx->variant);
blank();
// Write routing
for (auto &n : ctx->nets) {
write_net(n.second.get());
}
// Write cell config
for (auto &c : ctx->cells) {
const CellInfo *ci = c.second.get();
write_comment(stringf("# Cell %s", ctx->nameOf(ci)));
if (ci->type == id_OXIDE_COMB)
write_comb(ci);
else if (ci->type == id_OXIDE_FF)
write_ff(ci);
else if (ci->type == id_RAMW)
write_ramw(ci);
else if (ci->type == id_SEIO33_CORE)
write_io33(ci);
else if (ci->type == id_SEIO18_CORE)
write_io18(ci);
else if (ci->type == id_DIFFIO18_CORE)
write_diffio18(ci);
else if (ci->type == id_OSC_CORE)
write_osc(ci);
else if (ci->type == id_OXIDE_EBR)
write_bram(ci);
else if (ci->type == id_MULT9_CORE || ci->type == id_PREADD9_CORE || ci->type == id_MULT18_CORE ||
ci->type == id_MULT18X36_CORE || ci->type == id_MULT36_CORE || ci->type == id_REG18_CORE ||
ci->type == id_ACC54_CORE)
write_dsp(ci);
else if (ci->type == id_PLL_CORE)
write_pll(ci);
else if (ci->type == id_LRAM_CORE)
write_lram(ci);
else if (ci->type == id_DPHY_CORE)
write_dphy(ci);
else if (ci->type == id_IOLOGIC || ci->type == id_SIOLOGIC)
write_iol(ci);
blank();
}
// Handle DCC route-throughs
write_dcc_thru();
// Write config for unused bels
write_unused();
// Write bank config
write_bankcfg();
}
};
} // namespace
void Arch::write_fasm(std::ostream &out) const { NexusFasmWriter(getCtx(), out)(); }
NEXTPNR_NAMESPACE_END
|