1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include "viaduct_api.h"
#include "viaduct_helpers.h"
#define GEN_INIT_CONSTIDS
#define VIADUCT_CONSTIDS "viaduct/example/constids.inc"
#include "viaduct_constids.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct ExampleImpl : ViaductAPI
{
~ExampleImpl(){};
void init(Context *ctx) override
{
init_uarch_constids(ctx);
ViaductAPI::init(ctx);
h.init(ctx);
init_wires();
init_bels();
init_pips();
}
void pack() override
{
// Trim nextpnr IOBs - assume IO buffer insertion has been done in synthesis
const pool<CellTypePort> top_ports{
CellTypePort(id_INBUF, id_PAD),
CellTypePort(id_OUTBUF, id_PAD),
};
h.remove_nextpnr_iobs(top_ports);
// Replace constants with LUTs
const dict<IdString, Property> vcc_params = {{id_INIT, Property(0xFFFF, 16)}};
const dict<IdString, Property> gnd_params = {{id_INIT, Property(0x0000, 16)}};
h.replace_constants(CellTypePort(id_LUT4, id_F), CellTypePort(id_LUT4, id_F), vcc_params, gnd_params);
// Constrain directly connected LUTs and FFs together to use dedicated resources
int lutffs = h.constrain_cell_pairs(pool<CellTypePort>{{id_LUT4, id_F}}, pool<CellTypePort>{{id_DFF, id_D}}, 1);
log_info("Constrained %d LUTFF pairs.\n", lutffs);
}
void prePlace() override { assign_cell_info(); }
bool isBelLocationValid(BelId bel) const override
{
Loc l = ctx->getBelLocation(bel);
if (is_io(l.x, l.y)) {
return true;
} else {
return slice_valid(l.x, l.y, l.z / 2);
}
}
private:
ViaductHelpers h;
// Configuration
// Grid size including IOBs at edges
const int X = 32, Y = 32;
// SLICEs per tile
const int N = 8;
// LUT input count
const int K = 4;
// Number of local wires
const int Wl = N * (K + 1) + 8;
// 1/Fc for bel input wire pips; local wire pips and neighbour pips
const int Si = 4, Sq = 4, Sl = 8;
// For fast wire lookups
struct TileWires
{
std::vector<WireId> clk, q, f, d, i;
std::vector<WireId> l;
std::vector<WireId> pad;
};
std::vector<std::vector<TileWires>> wires_by_tile;
// Create wires to attach to bels and pips
void init_wires()
{
log_info("Creating wires...\n");
wires_by_tile.resize(Y);
for (int y = 0; y < Y; y++) {
auto &row_wires = wires_by_tile.at(y);
row_wires.resize(X);
for (int x = 0; x < X; x++) {
auto &w = row_wires.at(x);
for (int z = 0; z < N; z++) {
// Clock input
w.clk.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("CLK%d", z))), ctx->id("CLK"), x, y));
// FF input
w.d.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("D%d", z))), ctx->id("D"), x, y));
// FF and LUT outputs
w.q.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("Q%d", z))), ctx->id("Q"), x, y));
w.f.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("F%d", z))), ctx->id("F"), x, y));
// LUT inputs
for (int i = 0; i < K; i++)
w.i.push_back(
ctx->addWire(h.xy_id(x, y, ctx->id(stringf("L%dI%d", z, i))), ctx->id("I"), x, y));
}
// Local wires
for (int l = 0; l < Wl; l++)
w.l.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("LOCAL%d", l))), ctx->id("LOCAL"), x, y));
// Pad wires for IO
if (is_io(x, y) && x != y)
for (int z = 0; z < 2; z++)
w.pad.push_back(ctx->addWire(h.xy_id(x, y, ctx->id(stringf("PAD%d", z))), id_PAD, x, y));
}
}
}
bool is_io(int x, int y) const
{
// IO are on the edges of the device
return (x == 0) || (x == (X - 1)) || (y == 0) || (y == (Y - 1));
}
// Create IO bels in an IO tile
void add_io_bels(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
for (int z = 0; z < 2; z++) {
BelId b = ctx->addBel(h.xy_id(x, y, ctx->id(stringf("IO%d", z))), id_IOB, Loc(x, y, z), false, false);
ctx->addBelInout(b, id_PAD, w.pad.at(z));
ctx->addBelInput(b, id_I, w.i.at(z * K + 0));
ctx->addBelInput(b, id_EN, w.i.at(z * K + 1));
ctx->addBelOutput(b, id_O, w.q.at(z));
}
}
PipId add_pip(Loc loc, WireId src, WireId dst, delay_t delay = 0.05)
{
IdStringList name = IdStringList::concat(ctx->getWireName(dst), ctx->getWireName(src));
return ctx->addPip(name, ctx->id("PIP"), src, dst, delay, loc);
}
// Create LUT and FF bels in a logic tile
void add_slice_bels(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
for (int z = 0; z < N; z++) {
// Create LUT bel
BelId lut = ctx->addBel(h.xy_id(x, y, ctx->id(stringf("SLICE%d_LUT", z))), id_LUT4, Loc(x, y, z * 2), false,
false);
for (int k = 0; k < K; k++)
ctx->addBelInput(lut, ctx->id(stringf("I[%d]", k)), w.i.at(z * K + k));
ctx->addBelOutput(lut, id_F, w.f.at(z));
// FF data can come from LUT output or LUT I3
add_pip(Loc(x, y, 0), w.f.at(z), w.d.at(z));
add_pip(Loc(x, y, 0), w.i.at(z * K + (K - 1)), w.d.at(z));
// Create DFF bel
BelId dff = ctx->addBel(h.xy_id(x, y, ctx->id(stringf("SLICE%d_FF", z))), id_DFF, Loc(x, y, z * 2 + 1),
false, false);
ctx->addBelInput(dff, id_CLK, w.clk.at(z));
ctx->addBelInput(dff, id_D, w.d.at(z));
ctx->addBelOutput(dff, id_Q, w.q.at(z));
}
}
// Create bels according to tile type
void init_bels()
{
log_info("Creating bels...\n");
for (int y = 0; y < Y; y++) {
for (int x = 0; x < X; x++) {
if (is_io(x, y)) {
if (x == y)
continue; // don't put IO in corners
add_io_bels(x, y);
} else {
add_slice_bels(x, y);
}
}
}
}
// Create PIPs inside a tile; following an example synthetic routing pattern
void add_tile_pips(int x, int y)
{
auto &w = wires_by_tile.at(y).at(x);
Loc loc(x, y, 0);
auto create_input_pips = [&](WireId dst, int offset, int skip) {
for (int i = (offset % skip); i < Wl; i += skip)
add_pip(loc, w.l.at(i), dst, 0.05);
};
for (int z = 0; z < N; z++) {
create_input_pips(w.clk.at(z), 0, Si);
for (int k = 0; k < K; k++)
create_input_pips(w.i.at(z * K + k), k, Si);
}
auto create_output_pips = [&](WireId dst, int offset, int skip) {
for (int z = (offset % skip); z < N; z += skip) {
add_pip(loc, w.f.at(z), dst, 0.05);
add_pip(loc, w.q.at(z), dst, 0.05);
}
};
auto create_neighbour_pips = [&](WireId dst, int nx, int ny, int offset, int skip) {
if (nx < 0 || nx >= X)
return;
if (ny < 0 || ny >= Y)
return;
auto &nw = wires_by_tile.at(ny).at(nx);
for (int i = (offset % skip); i < Wl; i += skip)
add_pip(loc, dst, nw.l.at(i), 0.1);
};
for (int i = 0; i < Wl; i++) {
WireId dst = w.l.at(i);
create_output_pips(dst, i % Sq, Sq);
create_neighbour_pips(dst, x - 1, y - 1, (i + 1) % Sl, Sl);
create_neighbour_pips(dst, x - 1, y, (i + 2) % Sl, Sl);
create_neighbour_pips(dst, x - 1, y + 1, (i + 3) % Sl, Sl);
create_neighbour_pips(dst, x, y - 1, (i + 4) % Sl, Sl);
create_neighbour_pips(dst, x, y + 1, (i + 5) % Sl, Sl);
create_neighbour_pips(dst, x + 1, y - 1, (i + 6) % Sl, Sl);
create_neighbour_pips(dst, x + 1, y, (i + 7) % Sl, Sl);
create_neighbour_pips(dst, x + 1, y + 1, (i + 8) % Sl, Sl);
}
}
void init_pips()
{
log_info("Creating pips...\n");
for (int y = 0; y < Y; y++)
for (int x = 0; x < X; x++)
add_tile_pips(x, y);
}
// Validity checking
struct ExampleCellInfo
{
const NetInfo *lut_f = nullptr, *ff_d = nullptr;
bool lut_i3_used = false;
};
std::vector<ExampleCellInfo> fast_cell_info;
void assign_cell_info()
{
fast_cell_info.resize(ctx->cells.size());
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
auto &fc = fast_cell_info.at(ci->flat_index);
if (ci->type == id_LUT4) {
fc.lut_f = get_net_or_empty(ci, id_F);
fc.lut_i3_used = (get_net_or_empty(ci, ctx->id(stringf("I[%d]", K - 1))) != nullptr);
} else if (ci->type == id_DFF) {
fc.ff_d = get_net_or_empty(ci, id_D);
}
}
}
bool slice_valid(int x, int y, int z) const
{
const CellInfo *lut = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2)));
const CellInfo *ff = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(x, y, z * 2 + 1)));
if (!lut || !ff)
return true; // always valid if only LUT or FF used
const auto &lut_data = fast_cell_info.at(lut->flat_index);
const auto &ff_data = fast_cell_info.at(ff->flat_index);
// In our example arch; the FF D can either be driven from LUT F or LUT I3
// so either; FF D must equal LUT F or LUT I3 must be unused
if (ff_data.ff_d == lut_data.lut_f)
return true;
if (lut_data.lut_i3_used)
return false;
return true;
}
// Bel bucket functions
IdString getBelBucketForCellType(IdString cell_type) const override
{
if (cell_type.in(id_INBUF, id_OUTBUF))
return id_IOB;
return cell_type;
}
bool isValidBelForCellType(IdString cell_type, BelId bel) const override
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type == id_IOB)
return cell_type.in(id_INBUF, id_OUTBUF);
else
return (bel_type == cell_type);
}
};
struct ExampleArch : ViaductArch
{
ExampleArch() : ViaductArch("example"){};
std::unique_ptr<ViaductAPI> create(const dict<std::string, std::string> &args)
{
return std::make_unique<ExampleImpl>();
}
} exampleArch;
} // namespace
NEXTPNR_NAMESPACE_END
|