aboutsummaryrefslogtreecommitdiffstats
path: root/frontend/frontend_base.h
blob: dbf4b4bc1362cd236041f77ed3f5e558fddabe30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2019  David Shah <dave@ds0.me>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

/*
 * Generic Frontend Framework
 *
 * This is designed to make it possible to build frontends for parsing any format isomorphic to Yosys JSON [1]
 * with maximal inlining and minimal need for overhead such as runtime polymorphism or extra wrapper types.
 *
 * [1] http://www.clifford.at/yosys/cmd_write_json.html
 *
 * The frontend should implement a class referred to as FrontendType that defines the following type(def)s and
 * functions:
 *
 * Types:
 *   ModuleDataType: corresponds to a single entry in "modules"
 *   ModulePortDataType: corresponds to a single entry in "ports" of a module
 *   CellDataType: corresponds to a single entry in "cells"
 *   NetnameDataType: corresponds to a single entry in "netnames"
 *   BitVectorDataType: corresponds to a signal/constant bit vector (e.g. a "connections" field)
 *
 * Functions:
 *
 *   void foreach_module(Func);
 *       calls Func(const std::string &name, const ModuleDataType &mod);
 *       for each module in the netlist
 *
 *   void foreach_port(const ModuleDataType &mod, Func);
 *       calls Func(const std::string &name, const ModulePortDataType &port);
 *       for each port of mod
 *
 *   void foreach_cell(const ModuleDataType &mod, Func);
 *       calls Func(const std::string &name, const CellDataType &cell);
 *       for each cell of mod
 *
 *   void foreach_netname(const ModuleDataType &mod, Func);
 *       calls Func(const std::string &name, const NetnameDataType &cell);
 *       for each netname entry of mod
 *
 *   PortType get_port_dir(const ModulePortDataType &port);
 *       gets the PortType direction of a module port
 *
 *   int get_array_offset(const ModulePortDataType &port);
 *       gets the start bit number of a port or netname entry
 *
 *   bool is_array_upto(const ModulePortDataType &port);
 *       returns true if a port/net is an "upto" type port or netname entry
 *
 *   const BitVectorDataType &get_port_bits(const ModulePortDataType &port);
 *       gets the bit vector of a module port
 *
 *   const std::string& get_cell_type(const CellDataType &cell);
 *       gets the type of a cell
 *
 *   void foreach_attr(const {ModuleDataType|CellDataType|ModulePortDataType|NetnameDataType} &obj, Func);
 *       calls Func(const std::string &name, const Property &value);
 *       for each attribute on a module, cell, module port or net
 *
 *   void foreach_param(const CellDataType &obj, Func);
 *       calls Func(const std::string &name, const Property &value);
 *       for each parameter of a cell
 *
 *   void foreach_port_dir(const CellDataType &cell, Func);
 *       calls Func(const std::string &name, PortType dir);
 *       for each port direction of a cell
 *
 *   void foreach_port_conn(const CellDataType &cell, Func);
 *       calls Func(const std::string &name, const BitVectorDataType &conn);
 *       for each port connection of a cell
 *
 *   const BitVectorDataType &get_net_bits(const NetnameDataType &net);
 *       gets the BitVector corresponding to the bits entry of a netname field
 *
 *   int get_vector_length(const BitVectorDataType &bits);
 *       gets the length of a BitVector
 *
 *   bool is_vector_bit_constant(const BitVectorDataType &bits, int i);
 *       returns true if bit <i> of bits is constant
 *
 *   char get_vector_bit_constval(const BitVectorDataType &bits, int i);
 *       returns a char [01xz] corresponding to the constant value of bit <i>
 *
 *   int get_vector_bit_signal(const BitVectorDataType &bits, int i);
 *       returns the signal number of vector bit <i>
 *
 */

#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
NEXTPNR_NAMESPACE_BEGIN

namespace {

// Used for hierarchy resolution
struct ModuleInfo
{
    bool is_top = false, is_blackbox = false, is_whitebox = false;
    inline bool is_box() const { return is_blackbox || is_whitebox; }
    std::unordered_set<IdString> instantiated_celltypes;
};

template <typename FrontendType> struct GenericFrontend
{
    GenericFrontend(Context *ctx, const FrontendType &impl) : ctx(ctx), impl(impl) {}
    Context *ctx;
    const FrontendType &impl;
    using mod_dat_t = typename FrontendType::ModuleDataType;
    using mod_port_dat_t = typename FrontendType::ModulePortDataType;
    using cell_dat_t = typename FrontendType::CellDataType;
    using netname_dat_t = typename FrontendType::NetnameDataType;
    using bitvector_t = typename FrontendType::BitVectorDataType;

    std::unordered_map<IdString, ModuleInfo> mods;
    std::unordered_map<IdString, const mod_dat_t&> mod_refs;
    IdString top;

    // Process the list of modules and determine
    // the top module
    void find_top_module()
    {
        impl.foreach_module([&](const std::string &name, const mod_dat_t &mod) {
            IdString mod_id = ctx->id(name);
            auto &mi = mods[mod_id];
            mod_refs[mod_id] = mod;
            impl.foreach_attr(mod, [&](const std::string &name, const Property &value) {
                if (name == "top")
                    mi.is_top = (value.intval != 0);
                else if (name == "blackbox")
                    mi.is_blackbox = (value.intval != 0);
                else if (name == "whitebox")
                    mi.is_whitebox = (value.intval != 0);
            });
            impl.foreach_cell(mod, [&](const std::string &name, const cell_dat_t &cell) {
                mi.instantiated_celltypes.insert(ctx->id(impl.get_cell_type(cell)));
            });
        });
        // First of all, see if a top module has been manually specified
        if (ctx->settings.count(ctx->id("frontend/top"))) {
            IdString user_top = ctx->id(ctx->settings.at(ctx->id("frontend/top")).as_string());
            if (!mods.count(user_top))
                log_error("Top module '%s' not found!\n", ctx->nameOf(user_top));
            top = user_top;
            return;
        }
        // If not, look for a module with the top attribute set
        IdString top_by_attr;
        for (auto &mod : mods) {
            if (mod.second.is_top && !mod.second.is_box()) {
                if (top_by_attr != IdString())
                    log_error("Found multiple modules with (* top *) set (including %s and %s).\n",
                              ctx->nameOf(top_by_attr), ctx->nameOf(mod.first));
                top_by_attr = mod.first;
            }
        }
        if (top_by_attr != IdString()) {
            top = top_by_attr;
            return;
        }
        // Finally, attempt to autodetect the top module using hierarchy
        // (a module that is not a box and is not used as a cell by any other module)
        std::unordered_set<IdString> candidate_top;
        for (auto &mod : mods)
            if (!mod.second.is_box())
                candidate_top.insert(mod.first);
        for (auto &mod : mods)
            for (auto &c : mod.second.instantiated_celltypes)
                candidate_top.erase(c);
        if (candidate_top.size() != 1)
            log_error("Failed to autodetect top module, please specify using --top.\n");
        top = *(candidate_top.begin());
    }

    // Create a unique name (guaranteed collision free) for a net or a cell; based on
    // a base name and suffix. __unique__i will be be appended with increasing i
    // if a collision is found until no collision
    IdString unique_name(const std::string &base, const std::string &suffix, bool is_net)
    {
        IdString name;
        int incr = 0;
        do {
            std::string comb = base + suffix;
            if (incr > 0) {
                comb += "__unique__";
                comb += std::to_string(incr);
            }
            name = ctx->id(comb);
            incr++;
        } while (is_net ? ctx->nets.count(name) : ctx->cells.count(name));
        return name;
    }

    // A flat index of map; designed to cope with merging nets where pointers to nets would go stale
    // A net's udata points into this index
    std::vector<NetInfo *> net_flatindex;
    std::vector<std::vector<int>> net_old_indices; // the other indices of a net in net_flatindex for merging

    // This structure contains some structures specific to the import of a module at
    // a certain point in the hierarchy
    struct HierModuleState
    {
        bool is_toplevel;
        std::string prefix;
        // Map from index in module to "flat" index of nets
        std::vector<int> index_to_net_flatindex;
        // Get a reference to index_to_net; resizing if
        // appropriate
        int &net_by_idx(int idx)
        {
            NPNR_ASSERT(idx >= 0);
            if (idx >= int(index_to_net_flatindex.size()))
                index_to_net_flatindex.resize(idx + 1, -1);
            return index_to_net_flatindex.at(idx);
        }
        std::unordered_map<IdString, std::vector<int>> port_to_bus;
        // All of the names given to a net
        std::vector<std::vector<std::string>> net_names;
    };

    void import_module(HierModuleState &m, const mod_dat_t &data)
    {
        std::vector<NetInfo *> index_to_net;
        // Import port connections; for submodules only
        if (!m.is_toplevel) {
            import_port_connections(m, data);
        }
    }

    // Multiple labels might refer to the same net. Resolve conflicts for the primary name thus:
    //  - (toplevel) ports are always preferred
    //  - names with fewer $ are always prefered
    //  - between equal $ counts, fewer .s are prefered
    //  - ties are resolved alphabetically
    bool prefer_netlabel(HierModuleState &m, const std::string &a, const std::string &b)
    {
        if (m.port_to_bus.count(ctx->id(a)))
            return true;
        if (m.port_to_bus.count(ctx->id(b)))
            return false;

        if (b.empty())
            return true;
        long a_dollars = std::count(a.begin(), a.end(), '$'), b_dollars = std::count(b.begin(), b.end(), '$');
        if (a_dollars < b_dollars)
            return true;
        else if (a_dollars > b_dollars)
            return false;
        long a_dots = std::count(a.begin(), a.end(), '.'), b_dots = std::count(b.begin(), b.end(), '.');
        if (a_dots < b_dots)
            return true;
        else if (a_dots > b_dots)
            return false;
        return a < b;
    };

    // Get a net by index in modulestate (not flatindex); creating it if it doesn't already exist
    NetInfo *create_or_get_net(HierModuleState &m, int idx)
    {
        std::string name;
        if (idx < int(m.net_names.size()) && !m.net_names.at(idx).empty()) {
            // Use the rule above to find the preferred name for a net
            name = m.net_names.at(idx).at(0);
            for (size_t j = 1; j < m.net_names.at(idx).size(); j++)
                if (prefer_netlabel(m.net_names.at(idx).at(j), name))
                    name = m.net_names.at(idx).at(j);
        } else {
            name = "$frontend$" + std::to_string(idx);
        }
        NetInfo *net = ctx->createNet(unique_name(m.prefix, name, true));
        // Add to the flat index of nets
        net->udata = int(net_flatindex.size());
        net_flatindex.push_back(net);
        // Add to the module-level index of nets
        auto &midx = m.net_by_idx(idx);
        // Check we don't try and create more than one net with the same index
        NPNR_ASSERT(midx == -1);
        midx = net->udata;
        // Create aliases for all possible names
        if (idx < int(m.net_names.size()) && !m.net_names.at(idx).empty()) {
            for (const auto &name : m.net_names.at(idx)) {
                IdString name_id = ctx->id(name);
                net->aliases.push_back(name_id);
                ctx->net_aliases[name_id] = net->name;
            }
        } else {
            net->aliases.push_back(net->name);
            ctx->net_aliases[net->name] = net->name;
        }
    }

    // Get the name of a vector bit given basename; settings and index
    std::string get_bit_name(const std::string &base, int index, int length, int offset = 0, bool upto = false)
    {
        std::string port = base;
        if (length == 1 && offset == 0)
            return port;
        int real_index;
        if (upto)
            real_index = offset + length - index - 1; // reversed ports like [0:7]
        else
            real_index = offset + index; // normal 'downto' ports like [7:0]
        port += '[';
        port += std::to_string(real_index);
        port += ']';
        return port;
    }

    // Import the netnames section of a module
    void import_module_netnames(HierModuleState &m, const mod_dat_t &data)
    {
        impl.foreach_netname(data, [&](const std::string &basename, const netname_dat_t &nn) {
            bool upto = impl.is_array_upto(nn);
            int offset = impl.get_array_offset(nn);
            const auto &bits = impl.get_net_bits(nn);
            int width = impl.get_vector_length(bits);
            for (int i = 0; i < width; i++) {
                if (impl.is_vector_bit_constant(bits, i))
                    continue;

                std::string bit_name = get_bit_name(basename, i, width, offset, upto);

                int net_bit = impl.get_vecotr_bit_signal(bits, i);
                int mapped_bit = m.net_by_idx(net_bit);
                if (mapped_bit == -1) {
                    // Net doesn't exist yet. Add the name here to the list of candidate names so we have that for when
                    // we create it later
                    if (net_bit >= int(m.net_names.size()))
                        m.net_names.resize(net_bit + 1);
                    m.net_names.at(net_bit).push_back(bit_name);
                } else {
                    // Net already exists; add this name as an alias
                    NetInfo *ni = net_flatindex.at(mapped_bit);
                    IdString alias_name = ctx->id(m.prefix + bit_name);
                    if (ctx->net_aliases.count(alias_name))
                        continue; // don't add duplicate aliases
                    ctx->net_aliases[alias_name] = ni->name;
                    ni->aliases.push_back(alias_name);
                }
            }
        });
    }

    void create_constant_net(HierModuleState &m, const std::string name_hint, char constval) {
        IdString name = unique_name(m.base, name_hint);
        NetInfo *ni = ctx->createNet(name);
        add_constant_driver(m, ni, constval);
    }

    // Import a leaf cell - (white|black)box
    void import_leaf_cell(HierModuleState &m, const std::string &name, const cell_dat_t &cd) {
        IdString inst_name = unique_name(m.base, name, false);
        CellInfo *ci = ctx->createCell(inst_name, ctx->id(get_cell_type(cd)));
        // Import port directions
        std::unordered_map<IdString, PortType> port_dirs;
        impl.foreach_port_dir(cd, [&](const std::string &port, PortType dir) {
           port_dirs[ctx->id(port)] = dir;
        });
        // Import port connectivity
        impl.foreach_port_conn(cd, [&](const std::string &name, const bitvector_t &bits) {
           if (!port_dirs.count(ctx->id(name)))
               log_error("Failed to get direction for port '%s' of cell '%s'\n", name.c_str(), inst_name.c_str(ctx));
           PortType dir = port_dirs.at(ctx->id(name));
           int width = impl.get_vector_length(bits);
           for (int i = 0; i < width; i++) {
               std::string port_bit_name = get_bit_name(name, i, width);
               IdString port_bit_ids = ctx->id(port_bit_name);
               // Create cell port
               ci->ports[port_bit_ids].name = port_bit_ids;
               ci->ports[port_bit_ids].type = dir;
               // Resolve connectivity
               NetInfo *net;
               if (impl.is_vector_bit_constant(bits, i)) {
                   // Create a constant driver if one is needed
                   net = create_constant_net(m, name + "." + port_bit_name + "$const", impl.get_vector_bit_constval(bits, i));
               } else {
                   // Otherwise, lookup (creating if needed) the net with this index
                   net = create_or_get_net(m, impl.get_vector_bit_signal(bits, i));
               }
               NPNR_ASSERT(net != nullptr);

               // Check for multiple drivers
               if (dir == PORT_OUT && net->driver.cell != nullptr)
                   log_error("Net '%s' is multiply driven by cell ports %s.%s and %s.%s\n", ctx->nameOf(net),
                             ctx->nameOf(net->driver.cell), ctx->nameOf(net->driver.port), ctx->nameOf(inst_name), port_bit_name.c_str());
               connect_port(ctx, net, ci, port_bit_ids);
           }
        });
        // Import attributes and parameters
        impl.foreach_attr(cd, [&](const std::string &name, const Property &value) {
           ci->attrs[ctx->id(name)] = value;
        });
        impl.foreach_param(cd, [&](const std::string &name, const Property &value) {
            ci->params[ctx->id(name)] = value;
        });
    }

    // Import a submodule cell
    void import_submodule_cell(HierModuleState &m, const std::string &name, const cell_dat_t &cd) {
        HierModuleState submod;
        submod.is_toplevel = false;
        // Create mapping from submodule port to nets (referenced by index in flatindex)
        impl.foreach_port_conn(cd, [&](const std::string &name, const bitvector_t &bits) {
            int width = impl.get_vector_length(bits);
            for (int i = 0; i < width; i++) {
                // Index of port net in flatindex
                int net_ref = -1;
                if (impl.is_vector_bit_constant(bits, i)) {
                    // Create a constant driver if one is needed
                    std::string port_bit_name = get_bit_name(name, i, width);
                    NetInfo *cnet = create_constant_net(m, name + "." + port_bit_name + "$const", impl.get_vector_bit_constval(bits, i));
                    cnet->udata = int(net_flatindex.size());
                    net_flatindex.push_back(cnet);
                    net_ref = cnet->udata;
                } else {
                    // Otherwise, lookup (creating if needed) the net with given in-module index
                    net_ref = create_or_get_net(m, impl.get_vector_bit_signal(bits, i))->udata;
                }
                NPNR_ASSERT(net_ref != -1);
                submod.port_to_bus[ctx->id(name)].push_back(net_ref);
            }
        });
        // Create prefix for submodule
        submod.prefix = m.prefix;
        submod.prefix += name;
        submod.prefix += '.';
        // Do the submodule import
        import_module(submod, mod_refs.at(ctx->id(impl.get_cell_type(cd))));
    }

    // Import the cells section of a module
    void import_module_cells(HierModuleState &m, const mod_dat_t &data) {
        m.foreach_cell(data, [&](const std::string &cellname, const cell_dat_t &cd) {
           IdString type = ctx->id(get_cell_type(cd));
           if (mods.count(type) && !mods.at(type).is_box()) {
               // Module type is known; and not boxed. Import as a submodule by flattening hierarchy
               import_submodule_cell(m, cellname, cd);
           } else {
               // Module type is unknown or boxes. Import as a leaf cell (nextpnr CellInfo)
               import_leaf_cell(m, cellname, cd);
           }
        });
    }

    // Add a constant-driving VCC or GND cell to make a net constant
    // (constval can be [01xz], x and z or no-ops)
    int const_autoidx = 0;
    void add_constant_driver(HierModuleState &m, NetInfo *net, char constval)
    {

        if (constval == 'x' || constval == 'z')
            return; // 'x' or 'z' is the same as undriven
        NPNR_ASSERT(constval == '0' || constval == '1');
        IdString cell_name = unique_name(
                m.prefix, net->name.str(ctx) + (constval == '1' ? "$VCC$" : "$GND$") + std::to_string(const_autoidx++),
                false);
        CellInfo *cc = ctx->createCell(cell_name, ctx->id(constval == '1' ? "VCC" : "GND"));
        cc->ports[ctx->id("Y")].name = ctx->id("Y");
        cc->ports[ctx->id("Y")].type = PORT_OUT;
        if (net->driver.cell != nullptr)
            log_error("Net '%s' is multiply driven by port %s.%s and constant '%c'\n", ctx->nameOf(net),
                      ctx->nameOf(net->driver.cell), ctx->nameOf(net->driver.port), constval);
        connect_port(ctx, net, cc, ctx->id("Y"));
    }

    // Merge two nets - e.g. if one net in a submodule bifurcates to two output bits and therefore two different
    // parent nets
    void merge_nets(NetInfo *base, NetInfo *mergee)
    {
        // Resolve drivers
        if (mergee->driver.cell != nullptr) {
            if (base->driver.cell != nullptr)
                log_error("Attempting to merge nets '%s' and '%s' due to port connectivity; but this would result in a "
                          "multiply driven net\n",
                          ctx->nameOf(base), ctx->nameOf(mergee));
            else {
                mergee->driver.cell->ports[mergee->driver.port].net = base;
                base->driver = mergee->driver;
            }
        }
        // Combine users
        for (auto &usr : mergee->users) {
            usr.cell->ports[usr.port].net = base;
            base->users.push_back(usr);
        }
        // Point aliases to the new net
        for (IdString alias : mergee->aliases) {
            ctx->net_aliases[alias] = base->name;
            base->aliases.push_back(alias);
        }
        // Create a new alias from mergee's name to new base name
        ctx->net_aliases[mergee->name] = base->name;
        // Update flat index of nets
        for (auto old_idx : net_old_indices.at(mergee->udata)) {
            net_old_indices.at(base->udata).push_back(old_idx);
            net_flatindex.at(old_idx) = base;
        }
        net_old_indices.at(base->udata).push_back(mergee->udata);
        net_flatindex.at(mergee->udata) = base;
        net_old_indices.at(mergee->udata).clear();
        // Remove merged net from context
        ctx->nets.erase(mergee->name);
    }

    // Import connections between a submodule and its parent
    void import_port_connections(HierModuleState &m, const mod_dat_t &data)
    {
        impl.foreach_port(data, [&](const std::string &name, const mod_port_dat_t &port) {
            // CHECK: should disconnected module inputs really just be skipped; or is it better
            // to insert a ground driver?
            if (!m.port_to_bus.count(ctx->id(name)))
                return;
            auto &p2b = m.port_to_bus.at(ctx->id(name));
            // Get direction and vector of port bits
            PortType dir = impl.get_port_dir(port);
            const auto &bv = impl.get_port_bits(port);
            int bv_size = impl.get_vector_length(bv);
            // Iterate over bits of port; making connections
            for (int i = 0; i < std::min<int>(bv_size, p2b.size()); i++) {
                int conn_net = p2b.at(i);
                if (conn_net == -1)
                    continue;
                NetInfo *conn_ni = net_flatindex.at(conn_net);
                NPNR_ASSERT(conn_ni != nullptr);
                if (impl.is_vector_bit_constant(bv, i)) {
                    // It is a constant, we might need to insert a constant driver here to drive the corresponding
                    // net in the parent
                    char constval = impl.get_vector_bit_constval(bv, i);
                    // Inputs cannot be driving a constant back to the parent
                    if (dir == PORT_IN)
                        log_error("Input port %s%s[%d] cannot be driving a constant '%c'.\n", m.prefix.c_str(),
                                  port.c_str(), i, constval);
                    // Insert the constant driver
                    add_constant_driver(m, conn_ni, constval);
                } else {
                    // If not driving a constant; simply make the port bit net index in the submodule correspond
                    // to connected net in the parent module
                    int &submod_net = m.net_by_idx(impl.get_vector_bit_signal(bv, i));
                    if (submod_net == -1) {
                        // A net at this index doesn't yet exist
                        // We can simply set this index to point to the net in the parent
                        submod_net = conn_net;
                    } else {
                        // A net at this index already exists (this would usually be a submodule net
                        // connected to more than one I/O port)
                        merge_nets(net_flatindex.at(submod_net), net_flatindex.at(conn_net));
                    }
                }
            }
        });
    }
};
} // namespace

template <typename FrontendType> void run_frontend(Context *ctx, const FrontendType &impl)
{
    GenericFrontend<FrontendType>(ctx, impl);
}

NEXTPNR_NAMESPACE_END