1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*
* Timing-optimised detailed placement algorithm
* Based on "An Effective Timing-Driven Detailed Placement Algorithm for FPGAs"
* https://www.cerc.utexas.edu/utda/publications/C205.pdf
*/
#include "timing_opt.h"
#include "nextpnr.h"
NEXTPNR_NAMESPACE_BEGIN
class TimingOptimiser
{
public:
TimingOptimiser(Context *ctx) : ctx(ctx){};
bool optimise() {}
private:
// Ratio of available to already-candidates to begin borrowing
const float borrow_thresh = 0.2;
bool check_cell_delay_limits(CellInfo *cell) {
}
bool acceptable_bel_candidate(CellInfo *cell, BelId newBel) {
bool result = true;
// At the moment we have to actually do the swap to get an accurate legality result
// Switching to macro swaps might help with this
BelId oldBel = cell->bel;
CellInfo *other_cell = ctx->getBoundBelCell(newBel);
if (other_cell != nullptr && other_cell->belStrength > STRENGTH_WEAK) {
return false;
}
ctx->bindBel(newBel, cell, STRENGTH_WEAK);
if (other_cell != nullptr) {
ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK);
}
if (!ctx->isBelLocationValid(newBel) || ((other_cell != nullptr && !ctx->isBelLocationValid(oldBel)))) {
result = false;
goto unbind;
}
unbind:
ctx->unbindBel(newBel);
if (other_cell != nullptr)
ctx->unbindBel(oldBel);
// Undo the swap
ctx->bindBel(oldBel, cell, STRENGTH_WEAK);
if (other_cell != nullptr) {
ctx->bindBel(newBel, other_cell, STRENGTH_WEAK);
}
return result;
}
void find_neighbours(CellInfo *cell, int d) {
BelId curr = cell->bel;
Loc curr_loc = ctx->getBelLocation(curr);
for (int dy = -d; dy <= d; dy++) {
for (int dx = -d; dx <= d; dx++) {
if (dx == 0 && dy == 0)
continue;
// Go through all the Bels at this location
// First, find all bels of the correct type that are either unbound or bound normally
// Strongly bound bels are ignored
// FIXME: This means that we cannot touch carry chains or similar relatively constrained macros
std::vector<BelId> free_bels_at_loc;
std::vector<BelId> bound_bels_at_loc;
for (auto bel : ctx->getBelsByTile(curr_loc.x + dx, curr_loc.y + dy)) {
if (ctx->getBelType(bel) != cell->type)
continue;
CellInfo *bound = ctx->getBoundBelCell(bel);
if (bound == nullptr) {
free_bels_at_loc.push_back(bel);
} else if (bound->belStrength <= STRENGTH_WEAK) {
bound_bels_at_loc.push_back(bel);
}
}
bool found = false;
if (found)
continue;
}
}
}
// Current candidate Bels for cells (linked in both direction>
std::vector<IdString> path_cells;
std::unordered_map<IdString, std::unordered_set<BelId>> cell_neighbour_bels;
std::unordered_map<BelId, std::unordered_set<IdString>> bel_candidate_cells;
// Map net users to net delay limit
std::unordered_map<IdString, std::vector<delay_t>> max_net_delay;
Context *ctx;
};
bool timing_opt(Context *ctx, TimingOptCfg cfg) { return TimingOptimiser(ctx).optimise(); }
NEXTPNR_NAMESPACE_END
|