1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 gatecat <gatecat@ds0.me>
* Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "timing.h"
#include <algorithm>
#include <boost/range/adaptor/reversed.hpp>
#include <deque>
#include <map>
#include <utility>
#include "log.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
const char *edge_name(ClockEdge edge) { return (edge == FALLING_EDGE) ? "negedge" : "posedge"; }
} // namespace
void TimingAnalyser::setup()
{
init_ports();
get_cell_delays();
topo_sort();
setup_port_domains();
identify_related_domains();
run();
}
void TimingAnalyser::run(bool update_route_delays)
{
reset_times();
if (update_route_delays)
get_route_delays();
walk_forward();
walk_backward();
compute_slack();
compute_criticality();
}
void TimingAnalyser::init_ports()
{
// Per cell port structures
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
for (auto &port : ci->ports) {
auto &data = ports[CellPortKey(ci->name, port.first)];
data.type = port.second.type;
data.cell_port = CellPortKey(ci->name, port.first);
}
}
}
void TimingAnalyser::get_cell_delays()
{
for (auto &port : ports) {
CellInfo *ci = cell_info(port.first);
auto &pi = port_info(port.first);
auto &pd = port.second;
IdString name = port.first.port;
// Ignore dangling ports altogether for timing purposes
if (!pi.net)
continue;
pd.cell_arcs.clear();
int clkInfoCount = 0;
TimingPortClass cls = ctx->getPortTimingClass(ci, name, clkInfoCount);
if (cls == TMG_STARTPOINT || cls == TMG_ENDPOINT || cls == TMG_CLOCK_INPUT || cls == TMG_GEN_CLOCK ||
cls == TMG_IGNORE)
continue;
if (pi.type == PORT_IN) {
// Input ports might have setup/hold relationships
if (cls == TMG_REGISTER_INPUT) {
for (int i = 0; i < clkInfoCount; i++) {
auto info = ctx->getPortClockingInfo(ci, name, i);
if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
continue;
pd.cell_arcs.emplace_back(CellArc::SETUP, info.clock_port, DelayQuad(info.setup, info.setup),
info.edge);
pd.cell_arcs.emplace_back(CellArc::HOLD, info.clock_port, DelayQuad(info.hold, info.hold),
info.edge);
}
}
// Combinational delays through cell
for (auto &other_port : ci->ports) {
auto &op = other_port.second;
// ignore dangling ports and non-outputs
if (op.net == nullptr || op.type != PORT_OUT)
continue;
DelayQuad delay;
bool is_path = ctx->getCellDelay(ci, name, other_port.first, delay);
if (is_path)
pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
}
} else if (pi.type == PORT_OUT) {
// Output ports might have clk-to-q relationships
if (cls == TMG_REGISTER_OUTPUT) {
for (int i = 0; i < clkInfoCount; i++) {
auto info = ctx->getPortClockingInfo(ci, name, i);
if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
continue;
pd.cell_arcs.emplace_back(CellArc::CLK_TO_Q, info.clock_port, info.clockToQ, info.edge);
}
}
// Combinational delays through cell
for (auto &other_port : ci->ports) {
auto &op = other_port.second;
// ignore dangling ports and non-inputs
if (op.net == nullptr || op.type != PORT_IN)
continue;
DelayQuad delay;
bool is_path = ctx->getCellDelay(ci, other_port.first, name, delay);
if (is_path)
pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
}
}
}
}
void TimingAnalyser::get_route_delays()
{
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
if (ni->driver.cell == nullptr || ni->driver.cell->bel == BelId())
continue;
for (auto &usr : ni->users) {
if (usr.cell->bel == BelId())
continue;
ports.at(CellPortKey(usr)).route_delay = DelayPair(ctx->getNetinfoRouteDelay(ni, usr));
}
}
}
void TimingAnalyser::set_route_delay(CellPortKey port, DelayPair value) { ports.at(port).route_delay = value; }
void TimingAnalyser::topo_sort()
{
TopoSort<CellPortKey> topo;
for (auto &port : ports) {
auto &pd = port.second;
// All ports are nodes
topo.node(port.first);
if (pd.type == PORT_IN) {
// inputs: combinational arcs through the cell are edges
for (auto &arc : pd.cell_arcs) {
if (arc.type != CellArc::COMBINATIONAL)
continue;
topo.edge(port.first, CellPortKey(port.first.cell, arc.other_port));
}
} else if (pd.type == PORT_OUT) {
// output: routing arcs are edges
const NetInfo *pn = port_info(port.first).net;
if (pn != nullptr) {
for (auto &usr : pn->users)
topo.edge(port.first, CellPortKey(usr));
}
}
}
bool no_loops = topo.sort();
if (!no_loops && verbose_mode) {
log_info("Found %d combinational loops:\n", int(topo.loops.size()));
int i = 0;
for (auto &loop : topo.loops) {
log_info(" loop %d:\n", ++i);
for (auto &port : loop) {
log_info(" %s.%s (%s)\n", ctx->nameOf(port.cell), ctx->nameOf(port.port),
ctx->nameOf(port_info(port).net));
}
}
}
have_loops = !no_loops;
std::swap(topological_order, topo.sorted);
}
void TimingAnalyser::setup_port_domains()
{
for (auto &d : domains) {
d.startpoints.clear();
d.endpoints.clear();
}
// Go forward through the topological order (domains from the PoV of arrival time)
bool first_iter = true;
do {
updated_domains = false;
for (auto port : topological_order) {
auto &pd = ports.at(port);
auto &pi = port_info(port);
if (pi.type == PORT_OUT) {
if (first_iter) {
for (auto &fanin : pd.cell_arcs) {
if (fanin.type != CellArc::CLK_TO_Q)
continue;
// registered outputs are startpoints
auto dom = domain_id(port.cell, fanin.other_port, fanin.edge);
// create per-domain data
pd.arrival[dom];
domains.at(dom).startpoints.emplace_back(port, fanin.other_port);
}
}
// copy domains across routing
if (pi.net != nullptr)
for (auto &usr : pi.net->users)
copy_domains(port, CellPortKey(usr), false);
} else {
// copy domains from input to output
for (auto &fanout : pd.cell_arcs) {
if (fanout.type != CellArc::COMBINATIONAL)
continue;
copy_domains(port, CellPortKey(port.cell, fanout.other_port), false);
}
}
}
// Go backward through the topological order (domains from the PoV of required time)
for (auto port : reversed_range(topological_order)) {
auto &pd = ports.at(port);
auto &pi = port_info(port);
if (pi.type == PORT_OUT) {
// copy domains from output to input
for (auto &fanin : pd.cell_arcs) {
if (fanin.type != CellArc::COMBINATIONAL)
continue;
copy_domains(port, CellPortKey(port.cell, fanin.other_port), true);
}
} else {
if (first_iter) {
for (auto &fanout : pd.cell_arcs) {
if (fanout.type != CellArc::SETUP)
continue;
// registered inputs are endpoints
auto dom = domain_id(port.cell, fanout.other_port, fanout.edge);
// create per-domain data
pd.required[dom];
domains.at(dom).endpoints.emplace_back(port, fanout.other_port);
}
}
// copy port to driver
if (pi.net != nullptr && pi.net->driver.cell != nullptr)
copy_domains(port, CellPortKey(pi.net->driver), true);
}
}
// Iterate over ports and find domain paris
for (auto port : topological_order) {
auto &pd = ports.at(port);
for (auto &arr : pd.arrival)
for (auto &req : pd.required) {
pd.domain_pairs[domain_pair_id(arr.first, req.first)];
}
}
first_iter = false;
// If there are loops, repeat the process until a fixed point is reached, as there might be unusual ways to
// visit points, which would result in a missing domain key and therefore crash later on
} while (have_loops && updated_domains);
for (auto &dp : domain_pairs) {
auto &launch_data = domains.at(dp.key.launch);
auto &capture_data = domains.at(dp.key.capture);
if (launch_data.key.clock != capture_data.key.clock)
continue;
IdString clk = launch_data.key.clock;
delay_t period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
if (ctx->nets.count(clk)) {
NetInfo *clk_net = ctx->nets.at(clk).get();
if (clk_net->clkconstr) {
period = clk_net->clkconstr->period.minDelay();
}
}
if (launch_data.key.edge != capture_data.key.edge)
period /= 2;
dp.period = DelayPair(period);
}
}
void TimingAnalyser::identify_related_domains()
{
// Identify clock nets
pool<IdString> clock_nets;
for (const auto &domain : domains) {
clock_nets.insert(domain.key.clock);
}
// For each clock net identify all nets that can possibly drive it. Compute
// cumulative delays to each of them.
std::function<void(const NetInfo *, dict<IdString, delay_t> &, delay_t)> find_net_drivers =
[&](const NetInfo *ni, dict<IdString, delay_t> &drivers, delay_t delay_acc) {
// Get driving cell and port
const CellInfo *cell = ni->driver.cell;
const IdString port = ni->driver.port;
bool didGoUpstream = false;
// The cell has only one port
if (cell->ports.size() == 1) {
drivers[ni->name] = delay_acc;
return;
}
// Get the driver timing class
int info_count = 0;
auto timing_class = ctx->getPortTimingClass(cell, port, info_count);
// The driver must be a combinational output
if (timing_class != TMG_COMB_OUTPUT) {
drivers[ni->name] = delay_acc;
return;
}
// Recurse upstream through all input ports that have combinational
// paths to this driver
for (const auto &it : cell->ports) {
const auto &pi = it.second;
// Only connected inputs
if (pi.type != PORT_IN) {
continue;
}
if (pi.net == nullptr) {
continue;
}
// The input must be a combinational input
timing_class = ctx->getPortTimingClass(cell, pi.name, info_count);
if (timing_class != TMG_COMB_INPUT) {
continue;
}
// There must be a combinational arc
DelayQuad delay;
if (!ctx->getCellDelay(cell, pi.name, port, delay)) {
continue;
}
// Recurse
find_net_drivers(pi.net, drivers, delay_acc + delay.maxDelay());
didGoUpstream = true;
}
// Did not propagate upstream through the cell, mark the net as driver
if (!didGoUpstream) {
drivers[ni->name] = delay_acc;
}
};
// Identify possible drivers for each clock domain
dict<IdString, dict<IdString, delay_t>> clock_drivers;
for (const auto &domain : domains) {
const NetInfo *ni = ctx->nets.at(domain.key.clock).get();
dict<IdString, delay_t> drivers;
find_net_drivers(ni, drivers, 0);
clock_drivers[domain.key.clock] = drivers;
if (ctx->debug) {
log("Clock '%s' can be driven by:\n", domain.key.clock.str(ctx).c_str());
for (const auto &it : drivers) {
const NetInfo *net = ctx->nets.at(it.first).get();
log(" %s.%s delay %.3fns\n", net->driver.cell->name.str(ctx).c_str(), net->driver.port.str(ctx).c_str(),
ctx->getDelayNS(it.second));
}
}
}
// Identify related clocks. For simplicity do it both for A->B and B->A
// cases.
for (const auto &c1 : clock_drivers) {
for (const auto &c2 : clock_drivers) {
if (c1 == c2) {
continue;
}
// Make an intersection of the two drivers sets
pool<IdString> common_drivers;
for (const auto &it : c1.second) {
common_drivers.insert(it.first);
}
for (const auto &it : c2.second) {
common_drivers.insert(it.first);
}
for (auto it = common_drivers.begin(); it != common_drivers.end();) {
if (!c1.second.count(*it) || !c2.second.count(*it)) {
it = common_drivers.erase(it);
} else {
++it;
}
}
if (ctx->debug) {
log("Possible common driver(s) for clocks '%s' and '%s'\n", c1.first.str(ctx).c_str(),
c2.first.str(ctx).c_str());
for (const auto &it : common_drivers) {
const NetInfo *ni = ctx->nets.at(it).get();
const CellInfo *cell = ni->driver.cell;
const IdString port = ni->driver.port;
log(" net '%s', cell %s (%s), port %s\n", it.str(ctx).c_str(), cell->name.str(ctx).c_str(),
cell->type.str(ctx).c_str(), port.str(ctx).c_str());
}
}
// If there is no single driver then consider the two clocks
// unrelated.
if (common_drivers.size() != 1) {
continue;
}
// Compute delay from c1 to c2 and store it
auto driver = *common_drivers.begin();
auto delay = c2.second.at(driver) - c1.second.at(driver);
clock_delays[std::make_pair(c1.first, c2.first)] = delay;
}
}
}
void TimingAnalyser::reset_times()
{
for (auto &port : ports) {
auto do_reset = [&](dict<domain_id_t, ArrivReqTime> ×) {
for (auto &t : times) {
t.second.value = init_delay;
t.second.path_length = 0;
t.second.bwd_min = CellPortKey();
t.second.bwd_max = CellPortKey();
}
};
do_reset(port.second.arrival);
do_reset(port.second.required);
for (auto &dp : port.second.domain_pairs) {
dp.second.setup_slack = std::numeric_limits<delay_t>::max();
dp.second.hold_slack = std::numeric_limits<delay_t>::max();
dp.second.max_path_length = 0;
dp.second.criticality = 0;
dp.second.budget = 0;
}
port.second.worst_crit = 0;
port.second.worst_setup_slack = std::numeric_limits<delay_t>::max();
port.second.worst_hold_slack = std::numeric_limits<delay_t>::max();
}
}
void TimingAnalyser::set_arrival_time(CellPortKey target, domain_id_t domain, DelayPair arrival, int path_length,
CellPortKey prev)
{
auto &arr = ports.at(target).arrival.at(domain);
if (arrival.max_delay > arr.value.max_delay) {
arr.value.max_delay = arrival.max_delay;
arr.bwd_max = prev;
}
if (!setup_only && (arrival.min_delay < arr.value.min_delay)) {
arr.value.min_delay = arrival.min_delay;
arr.bwd_min = prev;
}
arr.path_length = std::max(arr.path_length, path_length);
}
void TimingAnalyser::set_required_time(CellPortKey target, domain_id_t domain, DelayPair required, int path_length,
CellPortKey prev)
{
auto &req = ports.at(target).required.at(domain);
if (required.min_delay < req.value.min_delay) {
req.value.min_delay = required.min_delay;
req.bwd_min = prev;
}
if (!setup_only && (required.max_delay > req.value.max_delay)) {
req.value.max_delay = required.max_delay;
req.bwd_max = prev;
}
req.path_length = std::max(req.path_length, path_length);
}
void TimingAnalyser::walk_forward()
{
// Assign initial arrival time to domain startpoints
for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
auto &dom = domains.at(dom_id);
for (auto &sp : dom.startpoints) {
auto &pd = ports.at(sp.first);
DelayPair init_arrival(0);
CellPortKey clock_key;
// TODO: clock routing delay, if analysis of that is enabled
if (sp.second != IdString()) {
// clocked startpoints have a clock-to-out time
for (auto &fanin : pd.cell_arcs) {
if (fanin.type == CellArc::CLK_TO_Q && fanin.other_port == sp.second) {
init_arrival = init_arrival + fanin.value.delayPair();
break;
}
}
clock_key = CellPortKey(sp.first.cell, sp.second);
}
set_arrival_time(sp.first, dom_id, init_arrival, 1, clock_key);
}
}
// Walk forward in topological order
for (auto p : topological_order) {
auto &pd = ports.at(p);
for (auto &arr : pd.arrival) {
if (pd.type == PORT_OUT) {
// Output port: propagate delay through net, adding route delay
NetInfo *net = port_info(p).net;
if (net != nullptr)
for (auto &usr : net->users) {
CellPortKey usr_key(usr);
auto &usr_pd = ports.at(usr_key);
set_arrival_time(usr_key, arr.first, arr.second.value + usr_pd.route_delay,
arr.second.path_length, p);
}
} else if (pd.type == PORT_IN) {
// Input port; propagate delay through cell, adding combinational delay
for (auto &fanout : pd.cell_arcs) {
if (fanout.type != CellArc::COMBINATIONAL)
continue;
set_arrival_time(CellPortKey(p.cell, fanout.other_port), arr.first,
arr.second.value + fanout.value.delayPair(), arr.second.path_length + 1, p);
}
}
}
}
}
void TimingAnalyser::walk_backward()
{
// Assign initial required time to domain endpoints
// Note that clock frequency will be considered later in the analysis for, for now all required times are normalised
// to 0ns
for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
auto &dom = domains.at(dom_id);
for (auto &ep : dom.endpoints) {
auto &pd = ports.at(ep.first);
DelayPair init_setuphold(0);
CellPortKey clock_key;
// TODO: clock routing delay, if analysis of that is enabled
if (ep.second != IdString()) {
// Add setup/hold time, if this endpoint is clocked
for (auto &fanin : pd.cell_arcs) {
if (fanin.type == CellArc::SETUP && fanin.other_port == ep.second)
init_setuphold.min_delay -= fanin.value.maxDelay();
if (fanin.type == CellArc::HOLD && fanin.other_port == ep.second)
init_setuphold.max_delay -= fanin.value.maxDelay();
}
clock_key = CellPortKey(ep.first.cell, ep.second);
}
set_required_time(ep.first, dom_id, init_setuphold, 1, clock_key);
}
}
// Walk backwards in topological order
for (auto p : reversed_range(topological_order)) {
auto &pd = ports.at(p);
for (auto &req : pd.required) {
if (pd.type == PORT_IN) {
// Input port: propagate delay back through net, subtracting route delay
NetInfo *net = port_info(p).net;
if (net != nullptr && net->driver.cell != nullptr)
set_required_time(CellPortKey(net->driver), req.first,
req.second.value - DelayPair(pd.route_delay.maxDelay()), req.second.path_length,
p);
} else if (pd.type == PORT_OUT) {
// Output port : propagate delay back through cell, subtracting combinational delay
for (auto &fanin : pd.cell_arcs) {
if (fanin.type != CellArc::COMBINATIONAL)
continue;
set_required_time(CellPortKey(p.cell, fanin.other_port), req.first,
req.second.value - DelayPair(fanin.value.maxDelay()), req.second.path_length + 1,
p);
}
}
}
}
}
void TimingAnalyser::print_fmax()
{
// Temporary testing code for comparison only
dict<int, double> domain_fmax;
for (auto p : topological_order) {
auto &pd = ports.at(p);
for (auto &req : pd.required) {
if (pd.arrival.count(req.first)) {
auto &arr = pd.arrival.at(req.first);
double fmax = 1000.0 / ctx->getDelayNS(arr.value.maxDelay() - req.second.value.minDelay());
if (!domain_fmax.count(req.first) || domain_fmax.at(req.first) > fmax)
domain_fmax[req.first] = fmax;
}
}
}
for (auto &fm : domain_fmax) {
log_info("Domain %s Worst Fmax %.02f\n", ctx->nameOf(domains.at(fm.first).key.clock), fm.second);
}
}
void TimingAnalyser::compute_slack()
{
for (auto &dp : domain_pairs) {
dp.worst_setup_slack = std::numeric_limits<delay_t>::max();
dp.worst_hold_slack = std::numeric_limits<delay_t>::max();
}
for (auto p : topological_order) {
auto &pd = ports.at(p);
for (auto &pdp : pd.domain_pairs) {
auto &dp = domain_pairs.at(pdp.first);
// Get clock names
const auto &launch_clock = domains.at(dp.key.launch).key.clock;
const auto &capture_clock = domains.at(dp.key.capture).key.clock;
// Get clock-to-clock delay if any
delay_t clock_to_clock = 0;
auto clocks = std::make_pair(launch_clock, capture_clock);
if (clock_delays.count(clocks)) {
clock_to_clock = clock_delays.at(clocks);
}
auto &arr = pd.arrival.at(dp.key.launch);
auto &req = pd.required.at(dp.key.capture);
pdp.second.setup_slack = 0 - (arr.value.maxDelay() - req.value.minDelay() + clock_to_clock);
if (!setup_only)
pdp.second.hold_slack = arr.value.minDelay() - req.value.maxDelay() + clock_to_clock;
pdp.second.max_path_length = arr.path_length + req.path_length;
if (dp.key.launch == dp.key.capture)
pd.worst_setup_slack = std::min(pd.worst_setup_slack, dp.period.minDelay() + pdp.second.setup_slack);
dp.worst_setup_slack = std::min(dp.worst_setup_slack, pdp.second.setup_slack);
if (!setup_only) {
pd.worst_hold_slack = std::min(pd.worst_hold_slack, pdp.second.hold_slack);
dp.worst_hold_slack = std::min(dp.worst_hold_slack, pdp.second.hold_slack);
}
}
}
}
void TimingAnalyser::compute_criticality()
{
for (auto p : topological_order) {
auto &pd = ports.at(p);
for (auto &pdp : pd.domain_pairs) {
auto &dp = domain_pairs.at(pdp.first);
float crit =
1.0f - (float(pdp.second.setup_slack) - float(dp.worst_setup_slack)) / float(-dp.worst_setup_slack);
crit = std::min(crit, 1.0f);
crit = std::max(crit, 0.0f);
pdp.second.criticality = crit;
pd.worst_crit = std::max(pd.worst_crit, crit);
}
}
}
std::vector<CellPortKey> TimingAnalyser::get_failing_eps(domain_id_t domain_pair, int count)
{
std::vector<CellPortKey> failing_eps;
delay_t last_slack = std::numeric_limits<delay_t>::min();
auto &dp = domain_pairs.at(domain_pair);
auto &cap_d = domains.at(dp.key.capture);
while (int(failing_eps.size()) < count) {
CellPortKey next;
delay_t next_slack = std::numeric_limits<delay_t>::max();
for (auto ep : cap_d.endpoints) {
auto &pd = ports.at(ep.first);
if (!pd.domain_pairs.count(domain_pair))
continue;
delay_t ep_slack = pd.domain_pairs.at(domain_pair).setup_slack;
if (ep_slack < next_slack && ep_slack > last_slack) {
next = ep.first;
next_slack = ep_slack;
}
}
if (next == CellPortKey())
break;
failing_eps.push_back(next);
last_slack = next_slack;
}
return failing_eps;
}
void TimingAnalyser::print_critical_path(CellPortKey endpoint, domain_id_t domain_pair)
{
CellPortKey cursor = endpoint;
auto &dp = domain_pairs.at(domain_pair);
log(" endpoint %s.%s (slack %.02fns):\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port),
ctx->getDelayNS(ports.at(cursor).domain_pairs.at(domain_pair).setup_slack));
while (cursor != CellPortKey()) {
log(" %s.%s (net %s)\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port),
ctx->nameOf(get_net_or_empty(ctx->cells.at(cursor.cell).get(), cursor.port)));
if (!ports.at(cursor).arrival.count(dp.key.launch))
break;
cursor = ports.at(cursor).arrival.at(dp.key.launch).bwd_max;
}
}
void TimingAnalyser::print_report()
{
for (int i = 0; i < int(domain_pairs.size()); i++) {
auto &dp = domain_pairs.at(i);
auto &launch = domains.at(dp.key.launch);
auto &capture = domains.at(dp.key.capture);
log("Worst endpoints for %s %s -> %s %s\n", edge_name(launch.key.edge), ctx->nameOf(launch.key.clock),
edge_name(capture.key.edge), ctx->nameOf(capture.key.clock));
auto failing_eps = get_failing_eps(i, 5);
for (auto &ep : failing_eps)
print_critical_path(ep, i);
log_break();
}
print_fmax();
for (const auto &it : clock_delays) {
log_info("Clock-to-clock %s -> %s: %0.02f ns\n", it.first.first.str(ctx).c_str(),
it.first.second.str(ctx).c_str(), ctx->getDelayNS(it.second));
}
}
domain_id_t TimingAnalyser::domain_id(IdString cell, IdString clock_port, ClockEdge edge)
{
return domain_id(ctx->cells.at(cell)->ports.at(clock_port).net, edge);
}
domain_id_t TimingAnalyser::domain_id(const NetInfo *net, ClockEdge edge)
{
NPNR_ASSERT(net != nullptr);
ClockDomainKey key{net->name, edge};
auto inserted = domain_to_id.emplace(key, domains.size());
if (inserted.second) {
domains.emplace_back(key);
}
return inserted.first->second;
}
domain_id_t TimingAnalyser::domain_pair_id(domain_id_t launch, domain_id_t capture)
{
ClockDomainPairKey key{launch, capture};
auto inserted = pair_to_id.emplace(key, domain_pairs.size());
if (inserted.second) {
domain_pairs.emplace_back(key);
}
return inserted.first->second;
}
void TimingAnalyser::copy_domains(const CellPortKey &from, const CellPortKey &to, bool backward)
{
auto &f = ports.at(from), &t = ports.at(to);
for (auto &dom : (backward ? f.required : f.arrival)) {
updated_domains |= (backward ? t.required : t.arrival).emplace(dom.first, ArrivReqTime{}).second;
}
}
CellInfo *TimingAnalyser::cell_info(const CellPortKey &key) { return ctx->cells.at(key.cell).get(); }
PortInfo &TimingAnalyser::port_info(const CellPortKey &key) { return ctx->cells.at(key.cell)->ports.at(key.port); }
/** LEGACY CODE BEGIN **/
typedef std::vector<const PortRef *> PortRefVector;
typedef std::map<int, unsigned> DelayFrequency;
struct CriticalPathData
{
PortRefVector ports;
delay_t path_delay;
delay_t path_period;
};
typedef dict<ClockPair, CriticalPathData> CriticalPathDataMap;
typedef dict<IdString, std::vector<NetSinkTiming>> DetailedNetTimings;
struct Timing
{
Context *ctx;
bool net_delays;
bool update;
delay_t min_slack;
CriticalPathDataMap *crit_path;
DelayFrequency *slack_histogram;
DetailedNetTimings *detailed_net_timings;
IdString async_clock;
struct TimingData
{
TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
delay_t max_arrival;
unsigned max_path_length = 0;
delay_t min_remaining_budget;
bool false_startpoint = false;
std::vector<delay_t> min_required;
dict<ClockEvent, delay_t> arrival_time;
};
Timing(Context *ctx, bool net_delays, bool update, CriticalPathDataMap *crit_path = nullptr,
DelayFrequency *slack_histogram = nullptr, DetailedNetTimings *detailed_net_timings = nullptr)
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->setting<float>("target_freq")),
crit_path(crit_path), slack_histogram(slack_histogram), detailed_net_timings(detailed_net_timings),
async_clock(ctx->id("$async$"))
{
}
delay_t walk_paths()
{
const auto clk_period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
// First, compute the topological order of nets to walk through the circuit, assuming it is a _acyclic_ graph
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
std::vector<NetInfo *> topological_order;
dict<const NetInfo *, dict<ClockEvent, TimingData>, hash_ptr_ops> net_data;
// In lieu of deleting edges from the graph, simply count the number of fanins to each output port
dict<const PortInfo *, unsigned, hash_ptr_ops> port_fanin;
std::vector<IdString> input_ports;
std::vector<const PortInfo *> output_ports;
pool<IdString> ooc_port_nets;
// In out-of-context mode, top-level inputs look floating but aren't
if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
for (auto &p : ctx->ports) {
if (p.second.type != PORT_IN || p.second.net == nullptr)
continue;
ooc_port_nets.insert(p.second.net->name);
}
}
for (auto &cell : ctx->cells) {
input_ports.clear();
output_ports.clear();
for (auto &port : cell.second->ports) {
if (!port.second.net)
continue;
if (port.second.type == PORT_OUT)
output_ports.push_back(&port.second);
else
input_ports.push_back(port.first);
}
for (auto o : output_ports) {
int clocks = 0;
TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clocks);
// If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing
// start-point
if (portClass == TMG_REGISTER_OUTPUT) {
topological_order.emplace_back(o->net);
for (int i = 0; i < clocks; i++) {
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(cell.second.get(), o->name, i);
const NetInfo *clknet = get_net_or_empty(cell.second.get(), clkInfo.clock_port);
IdString clksig = clknet ? clknet->name : async_clock;
net_data[o->net][ClockEvent{clksig, clknet ? clkInfo.edge : RISING_EDGE}] =
TimingData{clkInfo.clockToQ.maxDelay()};
}
} else {
if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) {
topological_order.emplace_back(o->net);
TimingData td;
td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE);
td.max_arrival = 0;
net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
}
// Don't analyse paths from a clock input to other pins - they will be considered by the
// special-case handling register input/output class ports
if (portClass == TMG_CLOCK_INPUT)
continue;
// Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and
// the current output port, increment fanin counter
for (auto i : input_ports) {
DelayQuad comb_delay;
NetInfo *i_net = cell.second->ports[i].net;
if (i_net->driver.cell == nullptr && !ooc_port_nets.count(i_net->name))
continue;
bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
if (is_path)
port_fanin[o]++;
}
// If there is no fanin, add the port as a false startpoint
if (!port_fanin.count(o) && !net_data.count(o->net)) {
topological_order.emplace_back(o->net);
TimingData td;
td.false_startpoint = true;
td.max_arrival = 0;
net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
}
}
}
}
// In out-of-context mode, handle top-level ports correctly
if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
for (auto &p : ctx->ports) {
if (p.second.type != PORT_IN || p.second.net == nullptr)
continue;
topological_order.emplace_back(p.second.net);
}
}
std::deque<NetInfo *> queue(topological_order.begin(), topological_order.end());
// Now walk the design, from the start points identified previously, building up a topological order
while (!queue.empty()) {
const auto net = queue.front();
queue.pop_front();
for (auto &usr : net->users) {
int user_clocks;
TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, user_clocks);
if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT)
continue;
for (auto &port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, port_clocks);
// Skip if this is a clocked output (but allow non-clocked ones)
if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE ||
portClass == TMG_GEN_CLOCK)
continue;
DelayQuad comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
// Decrement the fanin count, and only add to topological order if all its fanins have already
// been visited
auto it = port_fanin.find(&port.second);
if (it == port_fanin.end())
log_error("Timing counted negative fanin count for port %s.%s (net %s), please report this "
"error.\n",
ctx->nameOf(usr.cell), ctx->nameOf(port.first), ctx->nameOf(port.second.net));
if (--it->second == 0) {
topological_order.emplace_back(port.second.net);
queue.emplace_back(port.second.net);
port_fanin.erase(it);
}
}
}
}
// Sanity check to ensure that all ports where fanins were recorded were indeed visited
if (!port_fanin.empty() && !bool_or_default(ctx->settings, ctx->id("timing/ignoreLoops"), false)) {
for (auto fanin : port_fanin) {
NetInfo *net = fanin.first->net;
if (net != nullptr) {
log_info(" remaining fanin includes %s (net %s)\n", fanin.first->name.c_str(ctx),
net->name.c_str(ctx));
if (net->driver.cell != nullptr)
log_info(" driver = %s.%s\n", net->driver.cell->name.c_str(ctx),
net->driver.port.c_str(ctx));
for (auto net_user : net->users)
log_info(" user: %s.%s\n", net_user.cell->name.c_str(ctx), net_user.port.c_str(ctx));
} else {
log_info(" remaining fanin includes %s (no net)\n", fanin.first->name.c_str(ctx));
}
}
if (ctx->force)
log_warning("timing analysis failed due to presence of combinatorial loops, incomplete specification "
"of timing ports, etc.\n");
else
log_error("timing analysis failed due to presence of combinatorial loops, incomplete specification of "
"timing ports, etc.\n");
}
// Go forwards topologically to find the maximum arrival time and max path length for each net
std::vector<ClockEvent> startdomains;
for (auto net : topological_order) {
if (!net_data.count(net))
continue;
// Updates later on might invalidate a reference taken here to net_data, so iterate over a list of domains
// instead
startdomains.clear();
{
auto &nd_map = net_data.at(net);
for (auto &startdomain : nd_map)
startdomains.push_back(startdomain.first);
}
for (auto &start_clk : startdomains) {
auto &nd = net_data.at(net).at(start_clk);
if (nd.false_startpoint)
continue;
const auto net_arrival = nd.max_arrival;
const auto net_length_plus_one = nd.max_path_length + 1;
nd.min_remaining_budget = clk_period;
for (auto &usr : net->users) {
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto usr_arrival = net_arrival + net_delay;
if (portClass == TMG_ENDPOINT || portClass == TMG_IGNORE || portClass == TMG_CLOCK_INPUT) {
// Skip
} else {
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
// Iterate over all output ports on the same cell as the sink
for (auto port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayQuad comb_delay;
// Look up delay through this path
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
auto &data = net_data[port.second.net][start_clk];
auto &arrival = data.max_arrival;
arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
if (!budget_override) { // Do not increment path length if budget overridden since it
// doesn't
// require a share of the slack
auto &path_length = data.max_path_length;
path_length = std::max(path_length, net_length_plus_one);
}
}
}
}
}
}
dict<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets;
// Now go backwards topologically to determine the minimum path slack, and to distribute all path slack evenly
// between all nets on the path
for (auto net : boost::adaptors::reverse(topological_order)) {
if (!net_data.count(net))
continue;
auto &nd_map = net_data.at(net);
for (auto &startdomain : nd_map) {
auto &nd = startdomain.second;
// Ignore false startpoints
if (nd.false_startpoint)
continue;
const delay_t net_length_plus_one = nd.max_path_length + 1;
auto &net_min_remaining_budget = nd.min_remaining_budget;
for (auto &usr : net->users) {
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
const auto net_arrival = nd.max_arrival;
const auto endpoint_arrival = net_arrival + net_delay + setup;
delay_t period;
// Set default period
if (edge == startdomain.first.edge) {
period = clk_period;
} else {
period = clk_period / 2;
}
if (clksig != async_clock) {
if (ctx->nets.at(clksig)->clkconstr) {
if (edge == startdomain.first.edge) {
// same edge
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
} else if (edge == RISING_EDGE) {
// falling -> rising
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
} else if (edge == FALLING_EDGE) {
// rising -> falling
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
}
}
}
auto path_budget = period - endpoint_arrival;
if (update) {
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget =
std::min(net_min_remaining_budget, path_budget - budget_share);
}
if (path_budget < min_slack)
min_slack = path_budget;
if (slack_histogram) {
int slack_ps = ctx->getDelayNS(path_budget) * 1000;
(*slack_histogram)[slack_ps]++;
}
ClockEvent dest_ev{clksig, edge};
ClockPair clockPair{startdomain.first, dest_ev};
nd.arrival_time[dest_ev] = std::max(nd.arrival_time[dest_ev], endpoint_arrival);
// Store the detailed timing for each net and user (a.k.a. sink)
if (detailed_net_timings) {
NetSinkTiming sink_timing;
sink_timing.clock_pair = clockPair;
sink_timing.cell_port = std::make_pair(usr.cell->name, usr.port);
sink_timing.delay = endpoint_arrival;
sink_timing.budget = period;
(*detailed_net_timings)[net->name].push_back(sink_timing);
}
if (crit_path) {
if (!crit_nets.count(clockPair) || crit_nets.at(clockPair).first < endpoint_arrival) {
crit_nets[clockPair] = std::make_pair(endpoint_arrival, net);
(*crit_path)[clockPair].path_delay = endpoint_arrival;
(*crit_path)[clockPair].path_period = period;
(*crit_path)[clockPair].ports.clear();
(*crit_path)[clockPair].ports.push_back(&usr);
}
}
};
if (portClass == TMG_REGISTER_INPUT) {
for (int i = 0; i < port_clocks; i++) {
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, i);
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
IdString clksig = clknet ? clknet->name : async_clock;
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, clkInfo.setup.maxDelay());
}
} else {
process_endpoint(async_clock, RISING_EDGE, 0);
}
} else if (update) {
// Iterate over all output ports on the same cell as the sink
for (const auto &port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayQuad comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
if (net_data.count(port.second.net) &&
net_data.at(port.second.net).count(startdomain.first)) {
auto path_budget =
net_data.at(port.second.net).at(startdomain.first).min_remaining_budget;
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget =
std::min(net_min_remaining_budget, path_budget - budget_share);
}
}
}
}
}
}
if (crit_path) {
// Walk backwards from the most critical net
for (auto crit_pair : crit_nets) {
NetInfo *crit_net = crit_pair.second.second;
auto &cp_ports = (*crit_path)[crit_pair.first].ports;
while (crit_net) {
const PortInfo *crit_ipin = nullptr;
delay_t max_arrival = std::numeric_limits<delay_t>::min();
// Look at all input ports on its driving cell
for (const auto &port : crit_net->driver.cell->ports) {
if (port.second.type != PORT_IN || !port.second.net)
continue;
DelayQuad comb_delay;
bool is_path =
ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
if (!is_path)
continue;
// If input port is influenced by a clock, skip
int port_clocks;
TimingPortClass portClass =
ctx->getPortTimingClass(crit_net->driver.cell, port.first, port_clocks);
if (portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE)
continue;
// And find the fanin net with the latest arrival time
if (net_data.count(port.second.net) &&
net_data.at(port.second.net).count(crit_pair.first.start)) {
auto net_arrival = net_data.at(port.second.net).at(crit_pair.first.start).max_arrival;
if (net_delays) {
for (auto &user : port.second.net->users)
if (user.port == port.first && user.cell == crit_net->driver.cell) {
net_arrival += ctx->getNetinfoRouteDelay(port.second.net, user);
break;
}
}
net_arrival += comb_delay.maxDelay();
if (net_arrival > max_arrival) {
max_arrival = net_arrival;
crit_ipin = &port.second;
}
}
}
if (!crit_ipin)
break;
// Now convert PortInfo* into a PortRef*
for (auto &usr : crit_ipin->net->users) {
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
cp_ports.push_back(&usr);
break;
}
}
crit_net = crit_ipin->net;
}
std::reverse(cp_ports.begin(), cp_ports.end());
}
}
return min_slack;
}
void assign_budget()
{
// Clear delays to a very high value first
for (auto &net : ctx->nets) {
for (auto &usr : net.second->users) {
usr.budget = std::numeric_limits<delay_t>::max();
}
}
walk_paths();
}
};
void assign_budget(Context *ctx, bool quiet)
{
if (!quiet) {
log_break();
log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n",
ctx->setting<float>("target_freq") / 1e6);
}
Timing timing(ctx, ctx->setting<int>("slack_redist_iter") > 0 /* net_delays */, true /* update */);
timing.assign_budget();
if (!quiet || ctx->verbose) {
for (auto &net : ctx->nets) {
for (auto &user : net.second->users) {
// Post-update check
if (!ctx->setting<bool>("auto_freq") && user.budget < 0)
log_info("port %s.%s, connected to net '%s', has negative "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
else if (ctx->debug)
log_info("port %s.%s, connected to net '%s', has "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
}
}
}
// For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the
// currently achieved maximum
if (ctx->setting<bool>("auto_freq") && ctx->setting<int>("slack_redist_iter") > 0) {
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->setting<float>("target_freq"));
ctx->settings[ctx->id("target_freq")] =
std::to_string(1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack));
if (ctx->verbose)
log_info("minimum slack for this assign = %.2f ns, target Fmax for next "
"update = %.2f MHz\n",
ctx->getDelayNS(timing.min_slack), ctx->setting<float>("target_freq") / 1e6);
}
if (!quiet)
log_info("Checksum: 0x%08x\n", ctx->checksum());
}
CriticalPath build_critical_path_report(Context *ctx, ClockPair &clocks, const PortRefVector &crit_path)
{
CriticalPath report;
report.clock_pair = clocks;
auto &front = crit_path.front();
auto &front_port = front->cell->ports.at(front->port);
auto &front_driver = front_port.net->driver;
int port_clocks;
auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);
const CellInfo *last_cell = front->cell;
IdString last_port = front_driver.port;
int clock_start = -1;
if (portClass == TMG_REGISTER_OUTPUT) {
for (int i = 0; i < port_clocks; i++) {
TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port);
if (clknet != nullptr && clknet->name == clocks.start.clock && clockInfo.edge == clocks.start.edge) {
last_port = clockInfo.clock_port;
clock_start = i;
break;
}
}
}
for (auto sink : crit_path) {
auto sink_cell = sink->cell;
auto &port = sink_cell->ports.at(sink->port);
auto net = port.net;
auto &driver = net->driver;
auto driver_cell = driver.cell;
CriticalPath::Segment seg_logic;
DelayQuad comb_delay;
if (clock_start != -1) {
auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start);
comb_delay = clockInfo.clockToQ;
clock_start = -1;
seg_logic.type = CriticalPath::Segment::Type::CLK_TO_Q;
} else if (last_port == driver.port) {
// Case where we start with a STARTPOINT etc
comb_delay = DelayQuad(0);
seg_logic.type = CriticalPath::Segment::Type::SOURCE;
} else {
ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
seg_logic.type = CriticalPath::Segment::Type::LOGIC;
}
seg_logic.delay = comb_delay.maxDelay();
seg_logic.budget = 0;
seg_logic.from = std::make_pair(last_cell->name, last_port);
seg_logic.to = std::make_pair(driver_cell->name, driver.port);
seg_logic.net = IdString();
report.segments.push_back(seg_logic);
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
CriticalPath::Segment seg_route;
seg_route.type = CriticalPath::Segment::Type::ROUTING;
seg_route.delay = net_delay;
seg_route.budget = sink->budget;
seg_route.from = std::make_pair(driver_cell->name, driver.port);
seg_route.to = std::make_pair(sink_cell->name, sink->port);
seg_route.net = net->name;
report.segments.push_back(seg_route);
last_cell = sink_cell;
last_port = sink->port;
}
int clockCount = 0;
auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount);
if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
delay_t setup = sinkClockInfo.setup.maxDelay();
CriticalPath::Segment seg_logic;
seg_logic.type = CriticalPath::Segment::Type::SETUP;
seg_logic.delay = setup;
seg_logic.budget = 0;
seg_logic.from = std::make_pair(last_cell->name, last_port);
seg_logic.to = seg_logic.from;
seg_logic.net = IdString();
report.segments.push_back(seg_logic);
}
return report;
}
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure,
bool update_results)
{
auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
std::string value;
if (e.clock == ctx->id("$async$"))
value = std::string("<async>");
else
value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
if (int(value.length()) < field_width)
value.insert(value.length(), field_width - int(value.length()), ' ');
return value;
};
CriticalPathDataMap crit_paths;
DelayFrequency slack_histogram;
DetailedNetTimings detailed_net_timings;
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
print_histogram ? &slack_histogram : nullptr,
(update_results && ctx->detailed_timing_report) ? &detailed_net_timings : nullptr);
timing.walk_paths();
// Use TimingAnalyser to determine clock-to-clock relations
TimingAnalyser timingAnalyser(ctx);
timingAnalyser.setup();
bool report_critical_paths = print_path || print_fmax || update_results;
dict<IdString, CriticalPath> clock_reports;
std::vector<CriticalPath> xclock_reports;
dict<IdString, ClockFmax> clock_fmax;
std::set<IdString> empty_clocks; // set of clocks with no interior paths
if (report_critical_paths) {
for (auto path : crit_paths) {
const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end;
empty_clocks.insert(a.clock);
empty_clocks.insert(b.clock);
}
for (auto path : crit_paths) {
const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end;
if (a.clock != b.clock || a.clock == ctx->id("$async$"))
continue;
double Fmax;
empty_clocks.erase(a.clock);
if (a.edge == b.edge)
Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
else
Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock).achieved) {
clock_fmax[a.clock].achieved = Fmax;
clock_fmax[a.clock].constraint = 0.0f; // Will be filled later
clock_reports[a.clock] = build_critical_path_report(ctx, path.first, path.second.ports);
clock_reports[a.clock].period = path.second.path_period;
}
}
for (auto &path : crit_paths) {
const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end;
if (a.clock == b.clock && a.clock != ctx->id("$async$"))
continue;
auto &crit_path = crit_paths.at(path.first).ports;
xclock_reports.push_back(build_critical_path_report(ctx, path.first, crit_path));
xclock_reports.back().period = path.second.path_period;
}
if (clock_reports.empty() && xclock_reports.empty()) {
log_info("No Fmax available; no interior timing paths found in design.\n");
}
std::sort(xclock_reports.begin(), xclock_reports.end(), [ctx](const CriticalPath &ra, const CriticalPath &rb) {
const auto &a = ra.clock_pair;
const auto &b = rb.clock_pair;
if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
return true;
if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
return false;
if (a.start.edge < b.start.edge)
return true;
if (a.start.edge > b.start.edge)
return false;
if (a.end.clock.str(ctx) < b.end.clock.str(ctx))
return true;
if (a.end.clock.str(ctx) > b.end.clock.str(ctx))
return false;
if (a.end.edge < b.end.edge)
return true;
return false;
});
for (auto &clock : clock_reports) {
float target = ctx->setting<float>("target_freq") / 1e6;
if (ctx->nets.at(clock.first)->clkconstr)
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
clock_fmax[clock.first].constraint = target;
}
}
// Print critical paths
if (print_path) {
static auto print_net_source = [ctx](const NetInfo *net) {
// Check if this net is annotated with a source list
auto sources = net->attrs.find(ctx->id("src"));
if (sources == net->attrs.end()) {
// No sources for this net, can't print anything
return;
}
// Sources are separated by pipe characters.
// There is no guaranteed ordering on sources, so we just print all
auto sourcelist = sources->second.as_string();
std::vector<std::string> source_entries;
size_t current = 0, prev = 0;
while ((current = sourcelist.find("|", prev)) != std::string::npos) {
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
prev = current + 1;
}
// Ensure we emplace the final entry
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
// Iterate and print our source list at the correct indentation level
log_info(" Defined in:\n");
for (auto entry : source_entries) {
log_info(" %s\n", entry.c_str());
}
};
// A helper function for reporting one critical path
auto print_path_report = [ctx](const CriticalPath &path) {
delay_t total = 0, logic_total = 0, route_total = 0;
log_info("curr total\n");
for (const auto &segment : path.segments) {
total += segment.delay;
if (segment.type == CriticalPath::Segment::Type::CLK_TO_Q ||
segment.type == CriticalPath::Segment::Type::SOURCE ||
segment.type == CriticalPath::Segment::Type::LOGIC ||
segment.type == CriticalPath::Segment::Type::SETUP) {
logic_total += segment.delay;
const std::string type_name =
(segment.type == CriticalPath::Segment::Type::SETUP) ? "Setup" : "Source";
log_info("%4.1f %4.1f %s %s.%s\n", ctx->getDelayNS(segment.delay), ctx->getDelayNS(total),
type_name.c_str(), segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
} else if (segment.type == CriticalPath::Segment::Type::ROUTING) {
route_total += segment.delay;
const auto &driver = ctx->cells.at(segment.from.first);
const auto &sink = ctx->cells.at(segment.to.first);
auto driver_loc = ctx->getBelLocation(driver->bel);
auto sink_loc = ctx->getBelLocation(sink->bel);
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(segment.delay),
ctx->getDelayNS(total), segment.net.c_str(ctx), ctx->getDelayNS(segment.budget),
driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y);
log_info(" Sink %s.%s\n", segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
const NetInfo *net = ctx->nets.at(segment.net).get();
if (ctx->verbose) {
PortRef sink_ref;
sink_ref.cell = sink.get();
sink_ref.port = segment.to.second;
sink_ref.budget = segment.budget;
auto driver_wire = ctx->getNetinfoSourceWire(net);
auto sink_wire = ctx->getNetinfoSinkWire(net, sink_ref, 0);
log_info(" prediction: %f ns estimate: %f ns\n",
ctx->getDelayNS(ctx->predictArcDelay(net, sink_ref)),
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
auto cursor = sink_wire;
delay_t delay;
while (driver_wire != cursor) {
#ifdef ARCH_ECP5
if (net->is_global)
break;
#endif
auto it = net->wires.find(cursor);
assert(it != net->wires.end());
auto pip = it->second.pip;
NPNR_ASSERT(pip != PipId());
delay = ctx->getPipDelay(pip).maxDelay();
log_info(" %1.3f %s\n", ctx->getDelayNS(delay), ctx->nameOfPip(pip));
cursor = ctx->getPipSrcWire(pip);
}
}
if (!ctx->disable_critical_path_source_print) {
print_net_source(net);
}
}
}
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
};
// Single domain paths
for (auto &clock : clock_reports) {
log_break();
std::string start = clock.second.clock_pair.start.edge == FALLING_EDGE ? std::string("negedge")
: std::string("posedge");
std::string end =
clock.second.clock_pair.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
end.c_str());
auto &report = clock.second;
print_path_report(report);
}
// Cross-domain paths
for (auto &report : xclock_reports) {
log_break();
std::string start = format_event(report.clock_pair.start);
std::string end = format_event(report.clock_pair.end);
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
print_path_report(report);
}
}
if (print_fmax) {
log_break();
unsigned max_width = 0;
for (auto &clock : clock_reports)
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
for (auto &clock : clock_reports) {
const auto &clock_name = clock.first.str(ctx);
const int width = max_width - clock_name.size();
float fmax = clock_fmax[clock.first].achieved;
float target = clock_fmax[clock.first].constraint;
bool passed = target < fmax;
if (!warn_on_failure || passed)
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false))
log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
}
log_break();
// All clock to clock delays
const auto &clock_delays = timingAnalyser.get_clock_delays();
// Clock to clock delays for xpaths
dict<ClockPair, delay_t> xclock_delays;
for (auto &report : xclock_reports) {
const auto &clock1_name = report.clock_pair.start.clock;
const auto &clock2_name = report.clock_pair.end.clock;
const auto key = std::make_pair(clock1_name, clock2_name);
if (clock_delays.count(key)) {
xclock_delays[report.clock_pair] = clock_delays.at(key);
}
}
unsigned max_width_xca = 0;
unsigned max_width_xcb = 0;
for (auto &report : xclock_reports) {
max_width_xca = std::max((unsigned)format_event(report.clock_pair.start).length(), max_width_xca);
max_width_xcb = std::max((unsigned)format_event(report.clock_pair.end).length(), max_width_xcb);
}
// Check and report xpath delays for related clocks
if (!xclock_reports.empty()) {
for (auto &report : xclock_reports) {
const auto &clock_a = report.clock_pair.start.clock;
const auto &clock_b = report.clock_pair.end.clock;
const auto key = std::make_pair(clock_a, clock_b);
if (!clock_delays.count(key)) {
continue;
}
delay_t path_delay = 0;
for (const auto &segment : report.segments) {
path_delay += segment.delay;
}
// Compensate path delay for clock-to-clock delay. If the
// result is negative then only the latter matters. Otherwise
// the compensated path delay is taken.
auto clock_delay = clock_delays.at(key);
path_delay -= clock_delay;
float fmax = std::numeric_limits<float>::infinity();
if (path_delay < 0) {
fmax = 1e3f / ctx->getDelayNS(clock_delay);
} else if (path_delay > 0) {
fmax = 1e3f / ctx->getDelayNS(path_delay);
}
// Both clocks are related so they should have the same
// frequency. However, they may get different constraints from
// user input. In case of only one constraint preset take it,
// otherwise get the worst case (min.)
float target;
if (clock_fmax.count(clock_a) && !clock_fmax.count(clock_b)) {
target = clock_fmax.at(clock_a).constraint;
} else if (!clock_fmax.count(clock_a) && clock_fmax.count(clock_b)) {
target = clock_fmax.at(clock_b).constraint;
} else {
target = std::min(clock_fmax.at(clock_a).constraint, clock_fmax.at(clock_b).constraint);
}
bool passed = target < fmax;
auto ev_a = format_event(report.clock_pair.start, max_width_xca);
auto ev_b = format_event(report.clock_pair.end, max_width_xcb);
if (!warn_on_failure || passed)
log_info("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(), ev_b.c_str(),
fmax, passed ? "PASS" : "FAIL", target);
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false) ||
bool_or_default(ctx->settings, ctx->id("timing/ignoreRelClk"), false))
log_warning("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(),
ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(),
ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
}
log_break();
}
// Report clock delays for xpaths
if (!clock_delays.empty()) {
for (auto &pair : xclock_delays) {
auto ev_a = format_event(pair.first.start, max_width_xca);
auto ev_b = format_event(pair.first.end, max_width_xcb);
delay_t delay = pair.second;
if (pair.first.start.edge != pair.first.end.edge) {
delay /= 2;
}
log_info("Clock to clock delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(),
ctx->getDelayNS(delay));
}
log_break();
}
for (auto &eclock : empty_clocks) {
if (eclock != ctx->id("$async$"))
log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx));
}
log_break();
int start_field_width = 0, end_field_width = 0;
for (auto &report : xclock_reports) {
start_field_width = std::max((int)format_event(report.clock_pair.start).length(), start_field_width);
end_field_width = std::max((int)format_event(report.clock_pair.end).length(), end_field_width);
}
for (auto &report : xclock_reports) {
const ClockEvent &a = report.clock_pair.start;
const ClockEvent &b = report.clock_pair.end;
delay_t path_delay = 0;
for (const auto &segment : report.segments) {
path_delay += segment.delay;
}
auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width);
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path_delay));
}
log_break();
}
if (print_histogram && slack_histogram.size() > 0) {
unsigned num_bins = 20;
unsigned bar_width = 60;
auto min_slack = slack_histogram.begin()->first;
auto max_slack = slack_histogram.rbegin()->first;
auto bin_size = std::max<unsigned>(1, ceil((max_slack - min_slack + 1) / float(num_bins)));
std::vector<unsigned> bins(num_bins);
unsigned max_freq = 0;
for (const auto &i : slack_histogram) {
int bin_idx = int((i.first - min_slack) / bin_size);
if (bin_idx < 0)
bin_idx = 0;
else if (bin_idx >= int(num_bins))
bin_idx = num_bins - 1;
auto &bin = bins.at(bin_idx);
bin += i.second;
max_freq = std::max(max_freq, bin);
}
bar_width = std::min(bar_width, max_freq);
log_break();
log_info("Slack histogram:\n");
log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
for (unsigned i = 0; i < num_bins; ++i)
log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1),
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
}
// Update timing results in the context
if (update_results) {
auto &results = ctx->timing_result;
results.clock_fmax = std::move(clock_fmax);
results.clock_paths = std::move(clock_reports);
results.xclock_paths = std::move(xclock_reports);
results.detailed_net_timings = std::move(detailed_net_timings);
}
}
NEXTPNR_NAMESPACE_END
|