aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/pybind11/tests/test_numpy_vectorize.cpp
blob: 274b7558a9e80cab3cc390b03dd303eb37533f5d (plain)
1
2
3
4
5
6
7
8
9
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /*
/*
    tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
    arguments

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#include "pybind11_tests.h"
#include <pybind11/numpy.h>

double my_func(int x, float y, double z) {
    py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
    return (float) x*y*z;
}

TEST_SUBMODULE(numpy_vectorize, m) {
    try { py::module_::import("numpy"); }
    catch (...) { return; }

    // test_vectorize, test_docs, test_array_collapse
    // Vectorize all arguments of a function (though non-vector arguments are also allowed)
    m.def("vectorized_func", py::vectorize(my_func));

    // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
    m.def("vectorized_func2",
        [](py::array_t<int> x, py::array_t<float> y, float z) {
            return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
        }
    );

    // Vectorize a complex-valued function
    m.def("vectorized_func3", py::vectorize(
        [](std::complex<double> c) { return c * std::complex<double>(2.f); }
    ));

    // test_type_selection
    // NumPy function which only accepts specific data types
    m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
    m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
    m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });


    // test_passthrough_arguments
    // Passthrough test: references and non-pod types should be automatically passed through (in the
    // function definition below, only `b`, `d`, and `g` are vectorized):
    struct NonPODClass {
        NonPODClass(int v) : value{v} {}
        int value;
    };
    py::class_<NonPODClass>(m, "NonPODClass")
        .def(py::init<int>())
        .def_readwrite("value", &NonPODClass::value);
    m.def("vec_passthrough", py::vectorize(
        [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) {
            return *a + b + c.at(0) + d + e + f.value + g;
        }
    ));

    // test_method_vectorization
    struct VectorizeTestClass {
        VectorizeTestClass(int v) : value{v} {};
        float method(int x, float y) { return y + (float) (x + value); }
        int value = 0;
    };
    py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass");
    vtc .def(py::init<int>())
        .def_readwrite("value", &VectorizeTestClass::value);

    // Automatic vectorizing of methods
    vtc.def("method", py::vectorize(&VectorizeTestClass::method));

    // test_trivial_broadcasting
    // Internal optimization test for whether the input is trivially broadcastable:
    py::enum_<py::detail::broadcast_trivial>(m, "trivial")
        .value("f_trivial", py::detail::broadcast_trivial::f_trivial)
        .value("c_trivial", py::detail::broadcast_trivial::c_trivial)
        .value("non_trivial", py::detail::broadcast_trivial::non_trivial);
    m.def("vectorized_is_trivial", [](
                py::array_t<int, py::array::forcecast> arg1,
                py::array_t<float, py::array::forcecast> arg2,
                py::array_t<double, py::array::forcecast> arg3
                ) {
        py::ssize_t ndim;
        std::vector<py::ssize_t> shape;
        std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }};
        return py::detail::broadcast(buffers, ndim, shape);
    });

    m.def("add_to", py::vectorize([](NonPODClass& x, int a) { x.value += a; }));
}