aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/pybind11/tests/test_numpy_vectorize.cpp
blob: 274b7558a9e80cab3cc390b03dd303eb37533f5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
    tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
    arguments

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#include "pybind11_tests.h"
#include <pybind11/numpy.h>

double my_func(int x, float y, double z) {
    py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
    return (float) x*y*z;
}

TEST_SUBMODULE(numpy_vectorize, m) {
    try { py::module_::import("numpy"); }
    catch (...) { return; }

    // test_vectorize, test_docs, test_array_collapse
    // Vectorize all arguments of a function (though non-vector arguments are also allowed)
    m.def("vectorized_func", py::vectorize(my_func));

    // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
    m.def("vectorized_func2",
        [](py::array_t<int> x, py::array_t<float> y, float z) {
            return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
        }
    );

    // Vectorize a complex-valued function
    m.def("vectorized_func3", py::vectorize(
        [](std::complex<double> c) { return c * std::complex<double>(2.f); }
    ));

    // test_type_selection
    // NumPy function which only accepts specific data types
    m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
    m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
    m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });


    // test_passthrough_arguments
    // Passthrough test: references and non-pod types should be automatically passed through (in the
    // function definition below, only `b`, `d`, and `g` are vectorized):
    struct NonPODClass {
        NonPODClass(int v) : value{v} {}
        int value;
    };
    py::class_<NonPODClass>(m, "NonPODClass")
        .def(py::init<int>())
        .def_readwrite("value", &NonPODClass::value);
    m.def("vec_passthrough", py::vectorize(
        [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) {
            return *a + b + c.at(0) + d + e + f.value + g;
        }
    ));

    // test_method_vectorization
    struct VectorizeTestClass {
        VectorizeTestClass(int v) : value{v} {};
        float method(int x, float y) { return y + (float) (x + value); }
        int value = 0;
    };
    py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass");
    vtc .def(py::init<int>())
        .def_readwrite("value", &VectorizeTestClass::value);

    // Automatic vectorizing of methods
    vtc.def("method", py::vectorize(&VectorizeTestClass::method));

    // test_trivial_broadcasting
    // Internal optimization test for whether the input is trivially broadcastable:
    py::enum_<py::detail::broadcast_trivial>(m, "trivial")
        .value("f_trivial", py::detail::broadcast_trivial::f_trivial)
        .value("c_trivial", py::detail::broadcast_trivial::c_trivial)
        .value("non_trivial", py::detail::broadcast_trivial::non_trivial);
    m.def("vectorized_is_trivial", [](
                py::array_t<int, py::array::forcecast> arg1,
                py::array_t<float, py::array::forcecast> arg2,
                py::array_t<double, py::array::forcecast> arg3
                ) {
        py::ssize_t ndim;
        std::vector<py::ssize_t> shape;
        std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }};
        return py::detail::broadcast(buffers, ndim, shape);
    });

    m.def("add_to", py::vectorize([](NonPODClass& x, int a) { x.value += a; }));
}
/span> & NUL, Sect_Data => ".data" & NUL & NUL & NUL, Sect_Bss => ".bss" & NUL & NUL & NUL & NUL); type Unsigned32_Array is array (Sect_Text .. Sect_Bss) of Unsigned_32; Sect_Flags : constant Unsigned32_Array := (Sect_Text => STYP_TEXT, Sect_Data => STYP_DATA, Sect_Bss => STYP_BSS); -- If true, do local relocs. Flag_Reloc : constant Boolean := True; -- If true, discard local symbols; Flag_Discard_Local : Boolean := True; begin -- If relocations are not performs, then local symbols cannot be -- discarded. if not Flag_Reloc then Flag_Discard_Local := False; end if; -- Fill sections. Sect := Section_Chain; Nbr_Sect := 3; declare N : Natural; begin while Sect /= null loop if Sect.Name.all = ".text" then N := Sect_Text; elsif Sect.Name.all = ".data" then N := Sect_Data; elsif Sect.Name.all = ".bss" then N := Sect_Bss; else Nbr_Sect := Nbr_Sect + 1; N := Nbr_Sect; end if; Sections (N).Sect := Sect; Sect.Number := N; Sect := Sect.Next; end loop; end; -- Set data offset. Offset := Filehdr_Size + Nbr_Sect * Scnhdr_Size; for I in 1 .. Nbr_Sect loop if Sections (I).Sect /= null and then Sections (I).Sect.Data /= null then Sections (I).Data_Offset := Offset; Offset := Offset + Natural (Sections (I).Sect.Pc); else Sections (I).Data_Offset := 0; end if; end loop; -- Set relocs offset. declare Rel : Reloc_Acc; begin for I in 1 .. Nbr_Sect loop Sections (I).Nbr_Relocs := 0; if Sections (I).Sect /= null then Sections (I).Reloc_Offset := Offset; if not Flag_Reloc then -- Do local relocations. Rel := Sections (I).Sect.First_Reloc; while Rel /= null loop if S_Local (Rel.Sym) then if Get_Section (Rel.Sym) = Sections (I).Sect then -- Intra section local reloc. Apply_Reloc (Sections (I).Sect, Rel); else -- Inter section local reloc. -- A relocation is still required. Sections (I).Nbr_Relocs := Sections (I).Nbr_Relocs + 1; -- FIXME: todo. raise Program_Error; end if; else Sections (I).Nbr_Relocs := Sections (I).Nbr_Relocs + 1; end if; Rel := Rel.Sect_Next; end loop; else Sections (I).Nbr_Relocs := Sections (I).Sect.Nbr_Relocs; end if; Offset := Offset + Sections (I).Nbr_Relocs * Relsz; else Sections (I).Reloc_Offset := 0; end if; end loop; end; Symtab_Offset := Offset; Nbr_Symbols := 2 + Nbr_Sect * 2; -- 2 for file. for I in Symbols.First .. Symbols.Last loop Set_Number (I, Nbr_Symbols); Nbr_Symbols := Nbr_Symbols + 1; end loop; Offset := Offset + Nbr_Symbols * Symesz; Strtab_Offset := Offset; Offset := Offset + 4; -- Write file header. declare Hdr : Filehdr; begin Hdr.F_Magic := I386magic; Hdr.F_Nscns := Unsigned_16 (Nbr_Sect); Hdr.F_Timdat := 0; Hdr.F_Symptr := Unsigned_32 (Symtab_Offset); Hdr.F_Nsyms := Unsigned_32 (Nbr_Symbols); Hdr.F_Opthdr := 0; Hdr.F_Flags := F_Lnno; Xwrite (Hdr'Address, Filehdr_Size); end; -- Write sections header. for I in 1 .. Nbr_Sect loop declare Hdr : Scnhdr; L : Natural; begin case I is when Sect_Text | Sect_Data | Sect_Bss => Hdr.S_Name := Sect_Name (I); Hdr.S_Flags := Sect_Flags (I); when others => Hdr.S_Flags := 0; L := Sections (I).Sect.Name'Length; if L > Hdr.S_Name'Length then Hdr.S_Name := Sections (I).Sect.Name (Sections (I).Sect.Name'First .. Sections (I).Sect.Name'First + Hdr.S_Name'Length - 1); else Hdr.S_Name (1 .. L) := Sections (I).Sect.Name.all; Hdr.S_Name (L + 1 .. Hdr.S_Name'Last) := (others => NUL); end if; end case; Hdr.S_Paddr := 0; Hdr.S_Vaddr := 0; Hdr.S_Scnptr := Unsigned_32 (Sections (I).Data_Offset); Hdr.S_Relptr := Unsigned_32 (Sections (I).Reloc_Offset); Hdr.S_Lnnoptr := 0; Hdr.S_Nreloc := Unsigned_16 (Sections (I).Nbr_Relocs); if Sections (I).Sect /= null then Hdr.S_Size := Unsigned_32 (Sections (I).Sect.Pc); else Hdr.S_Size := 0; end if; Hdr.S_Nlnno := 0; Xwrite (Hdr'Address, Scnhdr_Size); end; end loop; -- Write sections content. for I in 1 .. Nbr_Sect loop if Sections (I).Sect /= null and then Sections (I).Sect.Data /= null then Xwrite (Sections (I).Sect.Data (0)'Address, Natural (Sections (I).Sect.Pc)); end if; end loop; -- Write sections reloc. for I in 1 .. Nbr_Sect loop if Sections (I).Sect /= null then declare R : Reloc_Acc; Rel : Reloc; begin R := Sections (I).Sect.First_Reloc; while R /= null loop case R.Kind is when Reloc_32 => Rel.R_Type := Reloc_Addr32; when Reloc_Pc32 => Rel.R_Type := Reloc_Rel32; when others => raise Program_Error; end case; Rel.R_Vaddr := Unsigned_32 (R.Addr); Rel.R_Symndx := Unsigned_32 (Get_Number (R.Sym)); Xwrite (Rel'Address, Relsz); R := R.Sect_Next; end loop; end; end if; end loop; -- Write symtab. -- Write file symbol + aux declare Sym : Syment; A_File : Auxent_File; begin Sym := (E => (Inline => True, E_Name => ".file" & NUL & NUL & NUL), E_Value => 0, E_Scnum => N_DEBUG, E_Type => 0, E_Sclass => C_FILE, E_Numaux => 1); Xwrite (Sym'Address, Symesz); A_File := (Inline => True, X_Fname => "testfile.xxxxx"); Xwrite (A_File'Address, Symesz); end; -- Write sections symbol + aux for I in 1 .. Nbr_Sect loop declare A_Scn : Auxent_Scn; Sym : Syment; begin Sym := (E => (Inline => True, E_Name => (others => NUL)), E_Value => 0, E_Scnum => Unsigned_16 (I), E_Type => 0, E_Sclass => C_STAT, E_Numaux => 1); if I <= Sect_Bss then Sym.E.E_Name := Sect_Name (I); else Sym.E := Gen_String (Sections (I).Sect.Name.all); end if; Xwrite (Sym'Address, Symesz); if Sections (I).Sect /= null and then Sections (I).Sect.Data /= null then A_Scn := (X_Scnlen => Unsigned_32 (Sections (I).Sect.Pc), X_Nreloc => Unsigned_16 (Sections (I).Nbr_Relocs), X_Nlinno => 0); else A_Scn := (X_Scnlen => 0, X_Nreloc => 0, X_Nlinno => 0); end if; Xwrite (A_Scn'Address, Symesz); end; end loop; -- Write symbols. declare procedure Write_Symbol (S : Symbol) is Sym : Syment; begin Sym := (E => Gen_String (Get_Symbol_Name (S)), E_Value => Unsigned_32 (Get_Symbol_Value (S)), E_Scnum => 0, E_Type => 0, E_Sclass => C_EXT, E_Numaux => 0); case Get_Scope (S) is when Sym_Local | Sym_Private => Sym.E_Sclass := C_STAT; when Sym_Undef | Sym_Global => Sym.E_Sclass := C_EXT; end case; if Get_Section (S) /= null then Sym.E_Scnum := Unsigned_16 (Get_Section (S).Number); end if; Xwrite (Sym'Address, Symesz); end Write_Symbol; begin -- First the non-local symbols (1). for I in Symbols.First .. Symbols.Last loop if Get_Scope (I) in Symbol_Scope_External then Write_Symbol (I); end if; end loop; -- Then the local symbols (2). if not Flag_Discard_Local then for I in Symbols.First .. Symbols.Last loop if Get_Scope (I) not in Symbol_Scope_External then Write_Symbol (I); end if; end loop; end if; end; -- Write strtab. -- Write strtab length. declare L : Unsigned_32; procedure Write_String (Str : String) is begin if Str (Str'Last) /= NUL then raise Program_Error; end if; if Str'Length <= 9 then return; end if; Xwrite (Str'Address, Str'Length); Strtab_Offset := Strtab_Offset + Str'Length; end Write_String; begin L := Unsigned_32 (Offset - Strtab_Offset); Xwrite (L'Address, 4); -- Write section name string. for I in Sect_Bss + 1 .. Nbr_Sect loop if Sections (I).Sect /= null and then Sections (I).Sect.Name'Length > 8 then Write_String (Sections (I).Sect.Name.all & NUL); end if; end loop; for I in Symbols.First .. Symbols.Last loop declare Str : constant String := Get_Symbol_Name (I); begin Write_String (Str & NUL); end; end loop; if Strtab_Offset + 4 /= Offset then raise Program_Error; end if; end; end Write; end Binary_File.Coff;