1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
.. _embedding:
Embedding the interpreter
#########################
While pybind11 is mainly focused on extending Python using C++, it's also
possible to do the reverse: embed the Python interpreter into a C++ program.
All of the other documentation pages still apply here, so refer to them for
general pybind11 usage. This section will cover a few extra things required
for embedding.
Getting started
===============
A basic executable with an embedded interpreter can be created with just a few
lines of CMake and the ``pybind11::embed`` target, as shown below. For more
information, see :doc:`/compiling`.
.. code-block:: cmake
cmake_minimum_required(VERSION 3.0)
project(example)
find_package(pybind11 REQUIRED) # or `add_subdirectory(pybind11)`
add_executable(example main.cpp)
target_link_libraries(example PRIVATE pybind11::embed)
The essential structure of the ``main.cpp`` file looks like this:
.. code-block:: cpp
#include <pybind11/embed.h> // everything needed for embedding
namespace py = pybind11;
int main() {
py::scoped_interpreter guard{}; // start the interpreter and keep it alive
py::print("Hello, World!"); // use the Python API
}
The interpreter must be initialized before using any Python API, which includes
all the functions and classes in pybind11. The RAII guard class `scoped_interpreter`
takes care of the interpreter lifetime. After the guard is destroyed, the interpreter
shuts down and clears its memory. No Python functions can be called after this.
Executing Python code
=====================
There are a few different ways to run Python code. One option is to use `eval`,
`exec` or `eval_file`, as explained in :ref:`eval`. Here is a quick example in
the context of an executable with an embedded interpreter:
.. code-block:: cpp
#include <pybind11/embed.h>
namespace py = pybind11;
int main() {
py::scoped_interpreter guard{};
py::exec(R"(
kwargs = dict(name="World", number=42)
message = "Hello, {name}! The answer is {number}".format(**kwargs)
print(message)
)");
}
Alternatively, similar results can be achieved using pybind11's API (see
:doc:`/advanced/pycpp/index` for more details).
.. code-block:: cpp
#include <pybind11/embed.h>
namespace py = pybind11;
using namespace py::literals;
int main() {
py::scoped_interpreter guard{};
auto kwargs = py::dict("name"_a="World", "number"_a=42);
auto message = "Hello, {name}! The answer is {number}"_s.format(**kwargs);
py::print(message);
}
The two approaches can also be combined:
.. code-block:: cpp
#include <pybind11/embed.h>
#include <iostream>
namespace py = pybind11;
using namespace py::literals;
int main() {
py::scoped_interpreter guard{};
auto locals = py::dict("name"_a="World", "number"_a=42);
py::exec(R"(
message = "Hello, {name}! The answer is {number}".format(**locals())
)", py::globals(), locals);
auto message = locals["message"].cast<std::string>();
std::cout << message;
}
Importing modules
=================
Python modules can be imported using `module::import()`:
.. code-block:: cpp
py::module sys = py::module::import("sys");
py::print(sys.attr("path"));
For convenience, the current working directory is included in ``sys.path`` when
embedding the interpreter. This makes it easy to import local Python files:
.. code-block:: python
"""calc.py located in the working directory"""
def add(i, j):
return i + j
.. code-block:: cpp
py::module calc = py::module::import("calc");
py::object result = calc.attr("add")(1, 2);
int n = result.cast<int>();
assert(n == 3);
Modules can be reloaded using `module::reload()` if the source is modified e.g.
by an external process. This can be useful in scenarios where the application
imports a user defined data processing script which needs to be updated after
changes by the user. Note that this function does not reload modules recursively.
.. _embedding_modules:
Adding embedded modules
=======================
Embedded binary modules can be added using the `PYBIND11_EMBEDDED_MODULE` macro.
Note that the definition must be placed at global scope. They can be imported
like any other module.
.. code-block:: cpp
#include <pybind11/embed.h>
namespace py = pybind11;
PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
// `m` is a `py::module` which is used to bind functions and classes
m.def("add", [](int i, int j) {
return i + j;
});
}
int main() {
py::scoped_interpreter guard{};
auto fast_calc = py::module::import("fast_calc");
auto result = fast_calc.attr("add")(1, 2).cast<int>();
assert(result == 3);
}
Unlike extension modules where only a single binary module can be created, on
the embedded side an unlimited number of modules can be added using multiple
`PYBIND11_EMBEDDED_MODULE` definitions (as long as they have unique names).
These modules are added to Python's list of builtins, so they can also be
imported in pure Python files loaded by the interpreter. Everything interacts
naturally:
.. code-block:: python
"""py_module.py located in the working directory"""
import cpp_module
a = cpp_module.a
b = a + 1
.. code-block:: cpp
#include <pybind11/embed.h>
namespace py = pybind11;
PYBIND11_EMBEDDED_MODULE(cpp_module, m) {
m.attr("a") = 1;
}
int main() {
py::scoped_interpreter guard{};
auto py_module = py::module::import("py_module");
auto locals = py::dict("fmt"_a="{} + {} = {}", **py_module.attr("__dict__"));
assert(locals["a"].cast<int>() == 1);
assert(locals["b"].cast<int>() == 2);
py::exec(R"(
c = a + b
message = fmt.format(a, b, c)
)", py::globals(), locals);
assert(locals["c"].cast<int>() == 3);
assert(locals["message"].cast<std::string>() == "1 + 2 = 3");
}
Interpreter lifetime
====================
The Python interpreter shuts down when `scoped_interpreter` is destroyed. After
this, creating a new instance will restart the interpreter. Alternatively, the
`initialize_interpreter` / `finalize_interpreter` pair of functions can be used
to directly set the state at any time.
Modules created with pybind11 can be safely re-initialized after the interpreter
has been restarted. However, this may not apply to third-party extension modules.
The issue is that Python itself cannot completely unload extension modules and
there are several caveats with regard to interpreter restarting. In short, not
all memory may be freed, either due to Python reference cycles or user-created
global data. All the details can be found in the CPython documentation.
.. warning::
Creating two concurrent `scoped_interpreter` guards is a fatal error. So is
calling `initialize_interpreter` for a second time after the interpreter
has already been initialized.
Do not use the raw CPython API functions ``Py_Initialize`` and
``Py_Finalize`` as these do not properly handle the lifetime of
pybind11's internal data.
Sub-interpreter support
=======================
Creating multiple copies of `scoped_interpreter` is not possible because it
represents the main Python interpreter. Sub-interpreters are something different
and they do permit the existence of multiple interpreters. This is an advanced
feature of the CPython API and should be handled with care. pybind11 does not
currently offer a C++ interface for sub-interpreters, so refer to the CPython
documentation for all the details regarding this feature.
We'll just mention a couple of caveats the sub-interpreters support in pybind11:
1. Sub-interpreters will not receive independent copies of embedded modules.
Instead, these are shared and modifications in one interpreter may be
reflected in another.
2. Managing multiple threads, multiple interpreters and the GIL can be
challenging and there are several caveats here, even within the pure
CPython API (please refer to the Python docs for details). As for
pybind11, keep in mind that `gil_scoped_release` and `gil_scoped_acquire`
do not take sub-interpreters into account.
|