aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/QtPropertyBrowser/src/QtCheckBoxFactory
blob: 75f35adabc6dba82246c4f3c0741637739af4957 (plain)
1
a id='n23' href='#n23'>23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2017 Robert Ou <rqou@robertou.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include <deque>

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct ExtractReducePass : public Pass
{
	enum GateType {
		And,
		Or,
		Xor
	};

	ExtractReducePass() : Pass("extract_reduce", "converts gate chains into $reduce_* cells") { }

	void help() override
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    extract_reduce [options] [selection]\n");
		log("\n");
		log("converts gate chains into $reduce_* cells\n");
		log("\n");
		log("This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them\n");
		log("with their corresponding $reduce_* cells. Because this command only operates on\n");
		log("these cell types, it is recommended to map the design to only these cell types\n");
		log("using the `abc -g` command. Note that, in some cases, it may be more effective\n");
		log("to map the design to only $_AND_ cells, run extract_reduce, map the remaining\n");
		log("parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.\n");
		log("\n");
		log("    -allow-off-chain\n");
		log("        Allows matching of cells that have loads outside the chain. These cells\n");
		log("        will be replicated and folded into the $reduce_* cell, but the original\n");
		log("        cell will remain, driving its original loads.\n");
		log("\n");
	}

	inline bool IsRightType(Cell* cell, GateType gt)
	{
		return (cell->type == ID($_AND_) && gt == GateType::And) ||
				(cell->type == ID($_OR_) && gt == GateType::Or) ||
				(cell->type == ID($_XOR_) && gt == GateType::Xor);
	}

	void execute(std::vector<std::string> args, RTLIL::Design *design) override
	{
		log_header(design, "Executing EXTRACT_REDUCE pass.\n");
		log_push();

		size_t argidx;
		bool allow_off_chain = false;
		for (argidx = 1; argidx < args.size(); argidx++)
		{
			if (args[argidx] == "-allow-off-chain")
			{
				allow_off_chain = true;
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		for (auto module : design->selected_modules())
		{
			SigMap sigmap(module);

			// Index all of the nets in the module
			dict<SigBit, Cell*> sig_to_driver;
			dict<SigBit, pool<Cell*>> sig_to_sink;
			for (auto cell : module->selected_cells())
			{
				for (auto &conn : cell->connections())
				{
					if (cell->output(conn.first))
						for (auto bit : sigmap(conn.second))
							sig_to_driver[bit] = cell;

					if (cell->input(conn.first))
					{
						for (auto bit : sigmap(conn.second))
						{
							if (sig_to_sink.count(bit) == 0)
								sig_to_sink[bit] = pool<Cell*>();
							sig_to_sink[bit].insert(cell);
						}
					}
				}
			}

			// Need to check if any wires connect to module ports
			pool<SigBit> port_sigs;
			for (auto wire : module->selected_wires())
				if (wire->port_input || wire->port_output)
					for (auto bit : sigmap(wire))
						port_sigs.insert(bit);

			// Actual logic starts here
			pool<Cell*> consumed_cells;
			for (auto cell : module->selected_cells())
			{
				if (consumed_cells.count(cell))
					continue;

				GateType gt;

				if (cell->type == ID($_AND_))
					gt = GateType::And;
				else if (cell->type == ID($_OR_))
					gt = GateType::Or;
				else if (cell->type == ID($_XOR_))
					gt = GateType::Xor;
				else
					continue;

				log("Working on cell %s...\n", cell->name.c_str());

				// If looking for a single chain, follow linearly to the sink
				pool<Cell*> sinks;
				if(!allow_off_chain)
				{
					Cell* head_cell = cell;
					Cell* x = cell;
					while (true)
					{
						if(!IsRightType(x, gt))
							break;

						head_cell = x;

						auto y = sigmap(x->getPort(ID::Y));
						log_assert(y.size() == 1);

						// Should only continue if there is one fanout back into a cell (not to a port)
						if (sig_to_sink[y].size() != 1 || port_sigs.count(y))
							break;

						x = *sig_to_sink[y].begin();
					}

					sinks.insert(head_cell);
				}

				//If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is
				else
				{
					//BFS, following all chains until they hit a cell of a different type
					//Pick the longest one
					auto y = sigmap(cell->getPort(ID::Y));
					pool<Cell*> current_loads = sig_to_sink[y];
					pool<Cell*> next_loads;

					while(!current_loads.empty())
					{
						//Find each sink and see what they are
						for(auto x : current_loads)
						{
							//Not one of our gates? Don't follow any further
							//(but add the originating cell to the list of sinks)
							if(!IsRightType(x, gt))
							{
								sinks.insert(cell);
								continue;
							}

							auto xy = sigmap(x->getPort(ID::Y));

							//If this signal drives a port, add it to the sinks
							//(even though it may not be the end of a chain)
							if(port_sigs.count(xy) && !consumed_cells.count(x))
								sinks.insert(x);

							//It's a match, search everything out from it
							auto& next = sig_to_sink[xy];
							for(auto z : next)
								next_loads.insert(z);
						}

						//If we couldn't find any downstream loads, stop.
						//Create a reduction for each of the max-length chains we found
						if(next_loads.empty())
						{
							for(auto s : current_loads)
							{
								//Not one of our gates? Don't follow any further
								if(!IsRightType(s, gt))
									continue;

								sinks.insert(s);
							}
							break;
						}

						//Otherwise, continue down the chain
						current_loads = next_loads;
						next_loads.clear();
					}
				}

				//We have our list, go act on it
				for(auto head_cell : sinks)
				{
					log("  Head cell is %s\n", head_cell->name.c_str());

					//Avoid duplication if we already were covered
					if(consumed_cells.count(head_cell))
						continue;

					dict<SigBit, int> sources;
					int inner_cells = 0;
					std::deque<Cell*> bfs_queue = {head_cell};
					while (bfs_queue.size())
					{
						Cell* x = bfs_queue.front();
						bfs_queue.pop_front();

						for (auto port: {ID::A, ID::B}) {
							auto bit = sigmap(x->getPort(port)[0]);

							bool sink_single = sig_to_sink[bit].size() == 1 && !port_sigs.count(bit);

							Cell* drv = sig_to_driver[bit];
							bool drv_ok = drv && drv->type == head_cell->type;

							if (drv_ok && (allow_off_chain || sink_single)) {
								inner_cells++;
								bfs_queue.push_back(drv);
							} else {
								sources[bit]++;
							}
						}
					}

					if (inner_cells)
					{
						// Worth it to create reduce cell
						log("  Creating $reduce_* cell!\n");

						SigBit output = sigmap(head_cell->getPort(ID::Y)[0]);

						SigSpec input;
						for (auto it : sources) {
							bool cond;
							if (head_cell->type == ID($_XOR_))
								cond = it.second & 1;
							else
								cond = it.second != 0;
							if (cond)
								input.append(it.first);
						}

						if (head_cell->type == ID($_AND_)) {
							module->addReduceAnd(NEW_ID, input, output);
						} else if (head_cell->type == ID($_OR_)) {
							module->addReduceOr(NEW_ID, input, output);
						} else if (head_cell->type == ID($_XOR_)) {
							module->addReduceXor(NEW_ID, input, output);
						} else {
							log_assert(false);
						}

						consumed_cells.insert(head_cell);
					}
				}
			}

			// Remove all of the head cells, since we supplant them.
			// Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones)
			for (auto cell : consumed_cells)
				module->remove(cell);
		}

		log_pop();
	}
} ExtractReducePass;

PRIVATE_NAMESPACE_END