aboutsummaryrefslogtreecommitdiffstats
path: root/ice40/tmfuzz.py
diff options
context:
space:
mode:
Diffstat (limited to 'ice40/tmfuzz.py')
-rw-r--r--ice40/tmfuzz.py357
1 files changed, 357 insertions, 0 deletions
diff --git a/ice40/tmfuzz.py b/ice40/tmfuzz.py
new file mode 100644
index 00000000..4ec2a546
--- /dev/null
+++ b/ice40/tmfuzz.py
@@ -0,0 +1,357 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+# ../nextpnr-ice40 --hx8k --tmfuzz > tmfuzz_hx8k.txt
+# ../nextpnr-ice40 --lp8k --tmfuzz > tmfuzz_lp8k.txt
+# ../nextpnr-ice40 --up5k --tmfuzz > tmfuzz_up5k.txt
+
+import numpy as np
+import matplotlib.pyplot as plt
+from collections import defaultdict
+
+device = "hx8k"
+# device = "lp8k"
+# device = "up5k"
+
+sel_src_type = "LUTFF_OUT"
+sel_dst_type = "LUTFF_IN_LUT"
+
+#%% Read fuzz data
+
+src_dst_pairs = defaultdict(lambda: 0)
+
+delay_data = list()
+all_delay_data = list()
+
+delay_map_sum = np.zeros((41, 41))
+delay_map_sum2 = np.zeros((41, 41))
+delay_map_count = np.zeros((41, 41))
+
+same_tile_delays = list()
+neighbour_tile_delays = list()
+
+type_delta_data = dict()
+
+with open("tmfuzz_%s.txt" % device, "r") as f:
+ for line in f:
+ line = line.split()
+
+ if line[0] == "dst":
+ dst_xy = (int(line[1]), int(line[2]))
+ dst_type = line[3]
+ dst_wire = line[4]
+
+ src_xy = (int(line[1]), int(line[2]))
+ src_type = line[3]
+ src_wire = line[4]
+
+ delay = int(line[5])
+ estdelay = int(line[6])
+
+ all_delay_data.append((delay, estdelay))
+
+ src_dst_pairs[src_type, dst_type] += 1
+
+ dx = dst_xy[0] - src_xy[0]
+ dy = dst_xy[1] - src_xy[1]
+
+ if src_type == sel_src_type and dst_type == sel_dst_type:
+ if dx == 0 and dy == 0:
+ same_tile_delays.append(delay)
+
+ elif abs(dx) <= 1 and abs(dy) <= 1:
+ neighbour_tile_delays.append(delay)
+
+ else:
+ delay_data.append((delay, estdelay, dx, dy, 0, 0, 0))
+
+ relx = 20 + dst_xy[0] - src_xy[0]
+ rely = 20 + dst_xy[1] - src_xy[1]
+
+ if (0 <= relx <= 40) and (0 <= rely <= 40):
+ delay_map_sum[relx, rely] += delay
+ delay_map_sum2[relx, rely] += delay*delay
+ delay_map_count[relx, rely] += 1
+
+ if dst_type == sel_dst_type:
+ if src_type not in type_delta_data:
+ type_delta_data[src_type] = list()
+
+ type_delta_data[src_type].append((dx, dy, delay))
+
+delay_data = np.array(delay_data)
+all_delay_data = np.array(all_delay_data)
+max_delay = np.max(delay_data[:, 0:2])
+
+mean_same_tile_delays = np.mean(neighbour_tile_delays)
+mean_neighbour_tile_delays = np.mean(neighbour_tile_delays)
+
+print("Avg same tile delay: %.2f (%.2f std, N=%d)" % \
+ (mean_same_tile_delays, np.std(same_tile_delays), len(same_tile_delays)))
+print("Avg neighbour tile delay: %.2f (%.2f std, N=%d)" % \
+ (mean_neighbour_tile_delays, np.std(neighbour_tile_delays), len(neighbour_tile_delays)))
+
+#%% Apply simple low-weight bluring to fill gaps
+
+for i in range(0):
+ neigh_sum = np.zeros((41, 41))
+ neigh_sum2 = np.zeros((41, 41))
+ neigh_count = np.zeros((41, 41))
+
+ for x in range(41):
+ for y in range(41):
+ for p in range(-1, 2):
+ for q in range(-1, 2):
+ if p == 0 and q == 0:
+ continue
+ if 0 <= (x+p) <= 40:
+ if 0 <= (y+q) <= 40:
+ neigh_sum[x, y] += delay_map_sum[x+p, y+q]
+ neigh_sum2[x, y] += delay_map_sum2[x+p, y+q]
+ neigh_count[x, y] += delay_map_count[x+p, y+q]
+
+ delay_map_sum += 0.1 * neigh_sum
+ delay_map_sum2 += 0.1 * neigh_sum2
+ delay_map_count += 0.1 * neigh_count
+
+delay_map = delay_map_sum / delay_map_count
+delay_map_std = np.sqrt(delay_map_count*delay_map_sum2 - delay_map_sum**2) / delay_map_count
+
+#%% Print src-dst-pair summary
+
+print("Src-Dst-Type pair summary:")
+for cnt, src, dst in sorted([(v, k[0], k[1]) for k, v in src_dst_pairs.items()]):
+ print("%20s %20s %5d%s" % (src, dst, cnt, " *" if src == sel_src_type and dst == sel_dst_type else ""))
+print()
+
+#%% Plot estimate vs actual delay
+
+plt.figure(figsize=(8, 3))
+plt.title("Estimate vs Actual Delay")
+plt.plot(all_delay_data[:, 0], all_delay_data[:, 1], ".")
+plt.plot(delay_data[:, 0], delay_data[:, 1], ".")
+plt.plot([0, max_delay], [0, max_delay], "k")
+plt.ylabel("Estimated Delay")
+plt.xlabel("Actual Delay")
+plt.grid()
+plt.show()
+
+#%% Plot delay heatmap and std dev heatmap
+
+plt.figure(figsize=(9, 3))
+plt.subplot(121)
+plt.title("Actual Delay Map")
+plt.imshow(delay_map)
+plt.colorbar()
+plt.subplot(122)
+plt.title("Standard Deviation")
+plt.imshow(delay_map_std)
+plt.colorbar()
+plt.show()
+
+#%% Generate Model #0
+
+def nonlinearPreprocessor0(dx, dy):
+ dx, dy = abs(dx), abs(dy)
+ values = [1.0]
+ values.append(dx + dy)
+ return np.array(values)
+
+A = np.zeros((41*41, len(nonlinearPreprocessor0(0, 0))))
+b = np.zeros(41*41)
+
+index = 0
+for x in range(41):
+ for y in range(41):
+ if delay_map_count[x, y] > 0:
+ A[index, :] = nonlinearPreprocessor0(x-20, y-20)
+ b[index] = delay_map[x, y]
+ index += 1
+
+model0_params, _, _, _ = np.linalg.lstsq(A, b)
+print("Model #0 parameters:", model0_params)
+
+model0_map = np.zeros((41, 41))
+for x in range(41):
+ for y in range(41):
+ v = np.dot(model0_params, nonlinearPreprocessor0(x-20, y-20))
+ model0_map[x, y] = v
+
+plt.figure(figsize=(9, 3))
+plt.subplot(121)
+plt.title("Model #0 Delay Map")
+plt.imshow(model0_map)
+plt.colorbar()
+plt.subplot(122)
+plt.title("Model #0 Error Map")
+plt.imshow(model0_map - delay_map)
+plt.colorbar()
+plt.show()
+
+for i in range(delay_data.shape[0]):
+ dx = delay_data[i, 2]
+ dy = delay_data[i, 3]
+ delay_data[i, 4] = np.dot(model0_params, nonlinearPreprocessor0(dx, dy))
+
+plt.figure(figsize=(8, 3))
+plt.title("Model #0 vs Actual Delay")
+plt.plot(delay_data[:, 0], delay_data[:, 4], ".")
+plt.plot(delay_map.flat, model0_map.flat, ".")
+plt.plot([0, max_delay], [0, max_delay], "k")
+plt.ylabel("Model #0 Delay")
+plt.xlabel("Actual Delay")
+plt.grid()
+plt.show()
+
+print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model0_map)**2)))
+print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 4])**2)))
+print()
+
+#%% Generate Model #1
+
+def nonlinearPreprocessor1(dx, dy):
+ dx, dy = abs(dx), abs(dy)
+ values = [1.0]
+ values.append(dx + dy) # 1-norm
+ values.append((dx**2 + dy**2)**(1/2)) # 2-norm
+ values.append((dx**3 + dy**3)**(1/3)) # 3-norm
+ return np.array(values)
+
+A = np.zeros((41*41, len(nonlinearPreprocessor1(0, 0))))
+b = np.zeros(41*41)
+
+index = 0
+for x in range(41):
+ for y in range(41):
+ if delay_map_count[x, y] > 0:
+ A[index, :] = nonlinearPreprocessor1(x-20, y-20)
+ b[index] = delay_map[x, y]
+ index += 1
+
+model1_params, _, _, _ = np.linalg.lstsq(A, b)
+print("Model #1 parameters:", model1_params)
+
+model1_map = np.zeros((41, 41))
+for x in range(41):
+ for y in range(41):
+ v = np.dot(model1_params, nonlinearPreprocessor1(x-20, y-20))
+ model1_map[x, y] = v
+
+plt.figure(figsize=(9, 3))
+plt.subplot(121)
+plt.title("Model #1 Delay Map")
+plt.imshow(model1_map)
+plt.colorbar()
+plt.subplot(122)
+plt.title("Model #1 Error Map")
+plt.imshow(model1_map - delay_map)
+plt.colorbar()
+plt.show()
+
+for i in range(delay_data.shape[0]):
+ dx = delay_data[i, 2]
+ dy = delay_data[i, 3]
+ delay_data[i, 5] = np.dot(model1_params, nonlinearPreprocessor1(dx, dy))
+
+plt.figure(figsize=(8, 3))
+plt.title("Model #1 vs Actual Delay")
+plt.plot(delay_data[:, 0], delay_data[:, 5], ".")
+plt.plot(delay_map.flat, model1_map.flat, ".")
+plt.plot([0, max_delay], [0, max_delay], "k")
+plt.ylabel("Model #1 Delay")
+plt.xlabel("Actual Delay")
+plt.grid()
+plt.show()
+
+print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model1_map)**2)))
+print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 5])**2)))
+print()
+
+#%% Generate Model #2
+
+def nonlinearPreprocessor2(v):
+ return np.array([1, v, np.sqrt(v)])
+
+A = np.zeros((41*41, len(nonlinearPreprocessor2(0))))
+b = np.zeros(41*41)
+
+index = 0
+for x in range(41):
+ for y in range(41):
+ if delay_map_count[x, y] > 0:
+ A[index, :] = nonlinearPreprocessor2(model1_map[x, y])
+ b[index] = delay_map[x, y]
+ index += 1
+
+model2_params, _, _, _ = np.linalg.lstsq(A, b)
+print("Model #2 parameters:", model2_params)
+
+model2_map = np.zeros((41, 41))
+for x in range(41):
+ for y in range(41):
+ v = np.dot(model1_params, nonlinearPreprocessor1(x-20, y-20))
+ v = np.dot(model2_params, nonlinearPreprocessor2(v))
+ model2_map[x, y] = v
+
+plt.figure(figsize=(9, 3))
+plt.subplot(121)
+plt.title("Model #2 Delay Map")
+plt.imshow(model2_map)
+plt.colorbar()
+plt.subplot(122)
+plt.title("Model #2 Error Map")
+plt.imshow(model2_map - delay_map)
+plt.colorbar()
+plt.show()
+
+for i in range(delay_data.shape[0]):
+ dx = delay_data[i, 2]
+ dy = delay_data[i, 3]
+ delay_data[i, 6] = np.dot(model2_params, nonlinearPreprocessor2(delay_data[i, 5]))
+
+plt.figure(figsize=(8, 3))
+plt.title("Model #2 vs Actual Delay")
+plt.plot(delay_data[:, 0], delay_data[:, 6], ".")
+plt.plot(delay_map.flat, model2_map.flat, ".")
+plt.plot([0, max_delay], [0, max_delay], "k")
+plt.ylabel("Model #2 Delay")
+plt.xlabel("Actual Delay")
+plt.grid()
+plt.show()
+
+print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model2_map)**2)))
+print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 6])**2)))
+print()
+
+#%% Generate deltas for different source net types
+
+type_deltas = dict()
+
+print("Delay deltas for different src types:")
+for src_type in sorted(type_delta_data.keys()):
+ deltas = list()
+
+ for dx, dy, delay in type_delta_data[src_type]:
+ dx = abs(dx)
+ dy = abs(dy)
+
+ if dx > 1 or dy > 1:
+ est = model0_params[0] + model0_params[1] * (dx + dy)
+ else:
+ est = mean_neighbour_tile_delays
+ deltas.append(delay - est)
+
+ print("%15s: %8.2f (std %6.2f)" % (\
+ src_type, np.mean(deltas), np.std(deltas)))
+
+ type_deltas[src_type] = np.mean(deltas)
+
+#%% Print C defs of model parameters
+
+print("--snip--")
+print("%d, %d, %d," % (mean_neighbour_tile_delays, 128 * model0_params[0], 128 * model0_params[1]))
+print("%d, %d, %d, %d," % (128 * model1_params[0], 128 * model1_params[1], 128 * model1_params[2], 128 * model1_params[3]))
+print("%d, %d, %d," % (128 * model2_params[0], 128 * model2_params[1], 128 * model2_params[2]))
+print("%d, %d, %d, %d" % (type_deltas["LOCAL"], type_deltas["LUTFF_IN"], \
+ (type_deltas["SP4_H"] + type_deltas["SP4_V"]) / 2,
+ (type_deltas["SP12_H"] + type_deltas["SP12_V"]) / 2))
+print("--snap--")