diff options
Diffstat (limited to 'common/timing.cc')
-rw-r--r-- | common/timing.cc | 544 |
1 files changed, 411 insertions, 133 deletions
diff --git a/common/timing.cc b/common/timing.cc index c5a99f54..40e4d344 100644 --- a/common/timing.cc +++ b/common/timing.cc @@ -22,6 +22,7 @@ #include <algorithm> #include <boost/range/adaptor/reversed.hpp> #include <deque> +#include <map> #include <unordered_map> #include <utility> #include "log.h" @@ -29,17 +30,72 @@ NEXTPNR_NAMESPACE_BEGIN +namespace { +struct ClockEvent +{ + IdString clock; + ClockEdge edge; + + bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; } +}; + +struct ClockPair +{ + ClockEvent start, end; + + bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; } +}; +} // namespace + +NEXTPNR_NAMESPACE_END +namespace std { + +template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent> +{ + std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockEvent &obj) const noexcept + { + std::size_t seed = 0; + boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(obj.clock)); + boost::hash_combine(seed, hash<int>()(int(obj.edge))); + return seed; + } +}; + +template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockPair> +{ + std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockPair &obj) const noexcept + { + std::size_t seed = 0; + boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start)); + boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start)); + return seed; + } +}; + +} // namespace std +NEXTPNR_NAMESPACE_BEGIN + typedef std::vector<const PortRef *> PortRefVector; typedef std::map<int, unsigned> DelayFrequency; +struct CriticalPath +{ + PortRefVector ports; + delay_t path_delay; + delay_t path_period; +}; + +typedef std::unordered_map<ClockPair, CriticalPath> CriticalPathMap; + struct Timing { Context *ctx; bool net_delays; bool update; delay_t min_slack; - PortRefVector *crit_path; + CriticalPathMap *crit_path; DelayFrequency *slack_histogram; + IdString async_clock; struct TimingData { @@ -49,23 +105,24 @@ struct Timing unsigned max_path_length = 0; delay_t min_remaining_budget; bool false_startpoint = false; + std::unordered_map<ClockEvent, delay_t> arrival_time; }; - Timing(Context *ctx, bool net_delays, bool update, PortRefVector *crit_path = nullptr, + Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr, DelayFrequency *slack_histogram = nullptr) : ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq), - crit_path(crit_path), slack_histogram(slack_histogram) + crit_path(crit_path), slack_histogram(slack_histogram), async_clock(ctx->id("$async$")) { } delay_t walk_paths() { - const auto clk_period = delay_t(1.0e12 / ctx->target_freq); + const auto clk_period = ctx->getDelayFromNS(1.0e9 / ctx->target_freq).maxDelay(); // First, compute the topographical order of nets to walk through the circuit, assuming it is a _acyclic_ graph // TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops std::vector<NetInfo *> topographical_order; - std::unordered_map<const NetInfo *, TimingData> net_data; + std::unordered_map<const NetInfo *, std::unordered_map<ClockEvent, TimingData>> net_data; // In lieu of deleting edges from the graph, simply count the number of fanins to each output port std::unordered_map<const PortInfo *, unsigned> port_fanin; @@ -84,22 +141,34 @@ struct Timing } for (auto o : output_ports) { - IdString clockPort; - TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clockPort); + int clocks = 0; + TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clocks); // If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing // start-point if (portClass == TMG_REGISTER_OUTPUT) { - DelayInfo clkToQ; - ctx->getCellDelay(cell.second.get(), clockPort, o->name, clkToQ); topographical_order.emplace_back(o->net); - net_data.emplace(o->net, TimingData{clkToQ.maxDelay()}); + for (int i = 0; i < clocks; i++) { + TimingClockingInfo clkInfo = ctx->getPortClockingInfo(cell.second.get(), o->name, i); + const NetInfo *clknet = get_net_or_empty(cell.second.get(), clkInfo.clock_port); + IdString clksig = clknet ? clknet->name : async_clock; + net_data[o->net][ClockEvent{clksig, clknet ? clkInfo.edge : RISING_EDGE}] = + TimingData{clkInfo.clockToQ.maxDelay()}; + } + } else { if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) { topographical_order.emplace_back(o->net); TimingData td; td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE); - net_data.emplace(o->net, std::move(td)); + td.max_arrival = 0; + net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td; } + + // Don't analyse paths from a clock input to other pins - they will be considered by the + // special-case handling register input/output class ports + if (portClass == TMG_CLOCK_INPUT) + continue; + // Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and // the current output port, increment fanin counter for (auto i : input_ports) { @@ -120,14 +189,15 @@ struct Timing queue.pop_front(); for (auto &usr : net->users) { - IdString clockPort; - TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort); + int user_clocks; + TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, user_clocks); if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT) continue; for (auto &port : usr.cell->ports) { if (port.second.type != PORT_OUT || !port.second.net) continue; - TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, clockPort); + int port_clocks; + TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, port_clocks); // Skip if this is a clocked output (but allow non-clocked ones) if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE || @@ -174,137 +244,213 @@ struct Timing // Go forwards topographically to find the maximum arrival time and max path length for each net for (auto net : topographical_order) { - auto &nd = net_data.at(net); - const auto net_arrival = nd.max_arrival; - const auto net_length_plus_one = nd.max_path_length + 1; - nd.min_remaining_budget = clk_period; - for (auto &usr : net->users) { - IdString clockPort; - TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort); - if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE) { - } else { + if (!net_data.count(net)) + continue; + auto &nd_map = net_data.at(net); + for (auto &startdomain : nd_map) { + ClockEvent start_clk = startdomain.first; + auto &nd = startdomain.second; + if (nd.false_startpoint) + continue; + const auto net_arrival = nd.max_arrival; + const auto net_length_plus_one = nd.max_path_length + 1; + nd.min_remaining_budget = clk_period; + for (auto &usr : net->users) { + int port_clocks; + TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks); auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t(); - auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); auto usr_arrival = net_arrival + net_delay; - // Iterate over all output ports on the same cell as the sink - for (auto port : usr.cell->ports) { - if (port.second.type != PORT_OUT || !port.second.net) - continue; - DelayInfo comb_delay; - // Look up delay through this path - bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); - if (!is_path) - continue; - auto &data = net_data[port.second.net]; - auto &arrival = data.max_arrival; - arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay()); - if (!budget_override) { // Do not increment path length if budget overriden since it doesn't - // require a share of the slack - auto &path_length = data.max_path_length; - path_length = std::max(path_length, net_length_plus_one); + + if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE || + portClass == TMG_CLOCK_INPUT) { + // Skip + } else { + auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); + // Iterate over all output ports on the same cell as the sink + for (auto port : usr.cell->ports) { + if (port.second.type != PORT_OUT || !port.second.net) + continue; + DelayInfo comb_delay; + // Look up delay through this path + bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); + if (!is_path) + continue; + auto &data = net_data[port.second.net][start_clk]; + auto &arrival = data.max_arrival; + arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay()); + if (!budget_override) { // Do not increment path length if budget overriden since it doesn't + // require a share of the slack + auto &path_length = data.max_path_length; + path_length = std::max(path_length, net_length_plus_one); + } } } } } } - const NetInfo *crit_net = nullptr; + std::unordered_map<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets; // Now go backwards topographically to determine the minimum path slack, and to distribute all path slack evenly // between all nets on the path for (auto net : boost::adaptors::reverse(topographical_order)) { - auto &nd = net_data.at(net); - // Ignore false startpoints - if (nd.false_startpoint) continue; - const delay_t net_length_plus_one = nd.max_path_length + 1; - auto &net_min_remaining_budget = nd.min_remaining_budget; - for (auto &usr : net->users) { - auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t(); - auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); - IdString associatedClock; - TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, associatedClock); - if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) { - const auto net_arrival = nd.max_arrival; - auto path_budget = clk_period - (net_arrival + net_delay); - if (update) { - auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; - usr.budget = std::min(usr.budget, net_delay + budget_share); - net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share); - } + if (!net_data.count(net)) + continue; + auto &nd_map = net_data.at(net); + for (auto &startdomain : nd_map) { + auto &nd = startdomain.second; + // Ignore false startpoints + if (nd.false_startpoint) + continue; + const delay_t net_length_plus_one = nd.max_path_length + 1; + auto &net_min_remaining_budget = nd.min_remaining_budget; + for (auto &usr : net->users) { + auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t(); + auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); + int port_clocks; + TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks); + if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) { + auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) { + const auto net_arrival = nd.max_arrival; + const auto endpoint_arrival = net_arrival + net_delay + setup; + delay_t period; + // Set default period + if (edge == startdomain.first.edge) { + period = clk_period; + } else { + period = clk_period / 2; + } + if (clksig != async_clock) { + if (ctx->nets.at(clksig)->clkconstr) { + if (edge == startdomain.first.edge) { + // same edge + period = ctx->nets.at(clksig)->clkconstr->period.minDelay(); + } else if (edge == RISING_EDGE) { + // falling -> rising + period = ctx->nets.at(clksig)->clkconstr->low.minDelay(); + } else if (edge == FALLING_EDGE) { + // rising -> falling + period = ctx->nets.at(clksig)->clkconstr->high.minDelay(); + } + } + } + auto path_budget = period - endpoint_arrival; + + if (update) { + auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; + usr.budget = std::min(usr.budget, net_delay + budget_share); + net_min_remaining_budget = + std::min(net_min_remaining_budget, path_budget - budget_share); + } + + if (path_budget < min_slack) + min_slack = path_budget; + + if (slack_histogram) { + int slack_ps = ctx->getDelayNS(path_budget) * 1000; + (*slack_histogram)[slack_ps]++; + } + ClockEvent dest_ev{clksig, edge}; + ClockPair clockPair{startdomain.first, dest_ev}; + nd.arrival_time[dest_ev] = std::max(nd.arrival_time[dest_ev], endpoint_arrival); + + if (crit_path) { + if (!crit_nets.count(clockPair) || crit_nets.at(clockPair).first < endpoint_arrival) { + crit_nets[clockPair] = std::make_pair(endpoint_arrival, net); + (*crit_path)[clockPair].path_delay = endpoint_arrival; + (*crit_path)[clockPair].path_period = period; + (*crit_path)[clockPair].ports.clear(); + (*crit_path)[clockPair].ports.push_back(&usr); + } + } + }; + if (portClass == TMG_REGISTER_INPUT) { + for (int i = 0; i < port_clocks; i++) { + TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, i); + const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port); + IdString clksig = clknet ? clknet->name : async_clock; + process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, clkInfo.setup.maxDelay()); + } + } else { + process_endpoint(async_clock, RISING_EDGE, 0); + } - if (path_budget < min_slack) { - min_slack = path_budget; - if (crit_path) { - crit_path->clear(); - crit_path->push_back(&usr); - crit_net = net; + } else if (update) { + + // Iterate over all output ports on the same cell as the sink + for (const auto &port : usr.cell->ports) { + if (port.second.type != PORT_OUT || !port.second.net) + continue; + DelayInfo comb_delay; + bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); + if (!is_path) + continue; + if (net_data.count(port.second.net) && + net_data.at(port.second.net).count(startdomain.first)) { + auto path_budget = + net_data.at(port.second.net).at(startdomain.first).min_remaining_budget; + auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; + usr.budget = std::min(usr.budget, net_delay + budget_share); + net_min_remaining_budget = + std::min(net_min_remaining_budget, path_budget - budget_share); + } } } - if (slack_histogram) { - int slack_ps = ctx->getDelayNS(path_budget) * 1000; - (*slack_histogram)[slack_ps]++; - } - } else if (update) { - // Iterate over all output ports on the same cell as the sink - for (const auto &port : usr.cell->ports) { - if (port.second.type != PORT_OUT || !port.second.net) - continue; - DelayInfo comb_delay; - bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); - if (!is_path) - continue; - auto path_budget = net_data.at(port.second.net).min_remaining_budget; - auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; - usr.budget = std::min(usr.budget, net_delay + budget_share); - net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share); - } } } } if (crit_path) { // Walk backwards from the most critical net - while (crit_net) { - const PortInfo *crit_ipin = nullptr; - delay_t max_arrival = std::numeric_limits<delay_t>::min(); - - // Look at all input ports on its driving cell - for (const auto &port : crit_net->driver.cell->ports) { - if (port.second.type != PORT_IN || !port.second.net) - continue; - DelayInfo comb_delay; - bool is_path = - ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay); - if (!is_path) - continue; - // If input port is influenced by a clock, skip - IdString portClock; - TimingPortClass portClass = ctx->getPortTimingClass(crit_net->driver.cell, port.first, portClock); - if (portClass == TMG_REGISTER_INPUT || portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT || - portClass == TMG_IGNORE) - continue; + for (auto crit_pair : crit_nets) { + NetInfo *crit_net = crit_pair.second.second; + auto &cp_ports = (*crit_path)[crit_pair.first].ports; + while (crit_net) { + const PortInfo *crit_ipin = nullptr; + delay_t max_arrival = std::numeric_limits<delay_t>::min(); + + // Look at all input ports on its driving cell + for (const auto &port : crit_net->driver.cell->ports) { + if (port.second.type != PORT_IN || !port.second.net) + continue; + DelayInfo comb_delay; + bool is_path = + ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay); + if (!is_path) + continue; + // If input port is influenced by a clock, skip + int port_clocks; + TimingPortClass portClass = + ctx->getPortTimingClass(crit_net->driver.cell, port.first, port_clocks); + if (portClass == TMG_REGISTER_INPUT || portClass == TMG_CLOCK_INPUT || + portClass == TMG_ENDPOINT || portClass == TMG_IGNORE) + continue; - // And find the fanin net with the latest arrival time - const auto net_arrival = net_data.at(port.second.net).max_arrival; - if (net_arrival > max_arrival) { - max_arrival = net_arrival; - crit_ipin = &port.second; + // And find the fanin net with the latest arrival time + if (net_data.count(port.second.net) && + net_data.at(port.second.net).count(crit_pair.first.start)) { + const auto net_arrival = net_data.at(port.second.net).at(crit_pair.first.start).max_arrival; + if (net_arrival > max_arrival) { + max_arrival = net_arrival; + crit_ipin = &port.second; + } + } } - } - if (!crit_ipin) - break; - - // Now convert PortInfo* into a PortRef* - for (auto &usr : crit_ipin->net->users) { - if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) { - crit_path->push_back(&usr); + if (!crit_ipin) break; + + // Now convert PortInfo* into a PortRef* + for (auto &usr : crit_ipin->net->users) { + if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) { + cp_ports.push_back(&usr); + break; + } } + crit_net = crit_ipin->net; } - crit_net = crit_ipin->net; + std::reverse(cp_ports.begin(), cp_ports.end()); } - std::reverse(crit_path->begin(), crit_path->end()); } return min_slack; } @@ -365,30 +511,106 @@ void assign_budget(Context *ctx, bool quiet) log_info("Checksum: 0x%08x\n", ctx->checksum()); } -void timing_analysis(Context *ctx, bool print_histogram, bool print_path) +void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path) { - PortRefVector crit_path; + auto format_event = [ctx](const ClockEvent &e, int field_width = 0) { + std::string value; + if (e.clock == ctx->id("$async$")) + value = std::string("<async>"); + else + value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx); + if (int(value.length()) < field_width) + value.insert(value.length(), field_width - int(value.length()), ' '); + return value; + }; + + CriticalPathMap crit_paths; DelayFrequency slack_histogram; - Timing timing(ctx, true /* net_delays */, false /* update */, print_path ? &crit_path : nullptr, + Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr, print_histogram ? &slack_histogram : nullptr); - auto min_slack = timing.walk_paths(); + timing.walk_paths(); + std::map<IdString, std::pair<ClockPair, CriticalPath>> clock_reports; + std::map<IdString, double> clock_fmax; + std::vector<ClockPair> xclock_paths; + std::set<IdString> empty_clocks; // set of clocks with no interior paths + if (print_path || print_fmax) { + for (auto path : crit_paths) { + const ClockEvent &a = path.first.start; + const ClockEvent &b = path.first.end; + empty_clocks.insert(a.clock); + empty_clocks.insert(b.clock); + } + for (auto path : crit_paths) { + const ClockEvent &a = path.first.start; + const ClockEvent &b = path.first.end; + if (a.clock != b.clock || a.clock == ctx->id("$async$")) + continue; + double Fmax; + empty_clocks.erase(a.clock); + if (a.edge == b.edge) + Fmax = 1000 / ctx->getDelayNS(path.second.path_delay); + else + Fmax = 500 / ctx->getDelayNS(path.second.path_delay); + if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) { + clock_reports[a.clock] = path; + clock_fmax[a.clock] = Fmax; + } + } + + for (auto &path : crit_paths) { + const ClockEvent &a = path.first.start; + const ClockEvent &b = path.first.end; + if (a.clock == b.clock && a.clock != ctx->id("$async$")) + continue; + xclock_paths.push_back(path.first); + } + + if (clock_reports.empty()) { + log_warning("No clocks found in design"); + } + + std::sort(xclock_paths.begin(), xclock_paths.end(), [ctx](const ClockPair &a, const ClockPair &b) { + if (a.start.clock.str(ctx) < b.start.clock.str(ctx)) + return true; + if (a.start.clock.str(ctx) > b.start.clock.str(ctx)) + return false; + if (a.start.edge < b.start.edge) + return true; + if (a.start.edge > b.start.edge) + return false; + if (a.end.clock.str(ctx) < b.end.clock.str(ctx)) + return true; + if (a.end.clock.str(ctx) > b.end.clock.str(ctx)) + return false; + if (a.end.edge < b.end.edge) + return true; + return false; + }); + } if (print_path) { - if (crit_path.empty()) { - log_info("Design contains no timing paths\n"); - } else { + auto print_path_report = [ctx](ClockPair &clocks, PortRefVector &crit_path) { delay_t total = 0; - log_break(); - log_info("Critical path report:\n"); - log_info("curr total\n"); - auto &front = crit_path.front(); auto &front_port = front->cell->ports.at(front->port); auto &front_driver = front_port.net->driver; - IdString last_port; - ctx->getPortTimingClass(front_driver.cell, front_driver.port, last_port); + int port_clocks; + auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks); + IdString last_port = front_driver.port; + if (portClass == TMG_REGISTER_OUTPUT) { + for (int i = 0; i < port_clocks; i++) { + TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i); + const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port); + if (clknet != nullptr && clknet->name == clocks.start.clock && + clockInfo.edge == clocks.start.edge) { + last_port = clockInfo.clock_port; + } + } + } + + log_info("curr total\n"); for (auto sink : crit_path) { auto sink_cell = sink->cell; auto &port = sink_cell->ports.at(sink->port); @@ -396,7 +618,12 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_path) auto &driver = net->driver; auto driver_cell = driver.cell; DelayInfo comb_delay; - ctx->getCellDelay(sink_cell, last_port, driver.port, comb_delay); + if (last_port == driver.port) { + // Case where we start with a STARTPOINT etc + comb_delay = ctx->getDelayFromNS(0); + } else { + ctx->getCellDelay(sink_cell, last_port, driver.port, comb_delay); + } total += comb_delay.maxDelay(); log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total), driver_cell->name.c_str(ctx), driver.port.c_str(ctx)); @@ -427,12 +654,63 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_path) } last_port = sink->port; } + }; + + for (auto &clock : clock_reports) { log_break(); + std::string start = clock.second.first.start.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge"); + std::string end = clock.second.first.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge"); + log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(), end.c_str()); + auto &crit_path = clock.second.second.ports; + print_path_report(clock.second.first, crit_path); + } + + for (auto &xclock : xclock_paths) { + log_break(); + std::string start = format_event(xclock.start); + std::string end = format_event(xclock.end); + log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str()); + auto &crit_path = crit_paths.at(xclock).ports; + print_path_report(xclock, crit_path); } } + if (print_fmax) { + log_break(); + unsigned max_width = 0; + for (auto &clock : clock_reports) + max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size()); + for (auto &clock : clock_reports) { + const auto &clock_name = clock.first.str(ctx); + const int width = max_width - clock_name.size(); + if (ctx->nets.at(clock.first)->clkconstr) { + float target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay()); + log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "", clock_name.c_str(), + clock_fmax[clock.first], (target < clock_fmax[clock.first]) ? "PASS" : "FAIL", target); + } else { + log_info("Max frequency for clock %*s'%s': %.02f MHz\n", width, "", clock_name.c_str(), clock_fmax[clock.first]); + } + } + for (auto &eclock : empty_clocks) { + if (eclock != ctx->id("$async$")) + log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx)); + } + log_break(); + + int start_field_width = 0, end_field_width = 0; + for (auto &xclock : xclock_paths) { + start_field_width = std::max((int)format_event(xclock.start).length(), start_field_width); + end_field_width = std::max((int)format_event(xclock.end).length(), end_field_width); + } - delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq); - log_info("estimated Fmax = %.2f MHz\n", 1e3 / ctx->getDelayNS(default_slack - min_slack)); + for (auto &xclock : xclock_paths) { + const ClockEvent &a = xclock.start; + const ClockEvent &b = xclock.end; + auto &path = crit_paths.at(xclock); + auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width); + log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path.path_delay)); + } + log_break(); + } if (print_histogram && slack_histogram.size() > 0) { unsigned num_bins = 20; |