diff options
author | David Shah <dave@ds0.me> | 2020-07-27 13:50:42 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-07-27 13:50:42 +0100 |
commit | b39a2a502065ec1407417ffacdac2154385bf80f (patch) | |
tree | 3349c93ac87f5758009c53b3e2eb5b9a130cd0d6 /3rdparty/pybind11/docs/advanced/pycpp/numpy.rst | |
parent | e6991ad5dc79f6118838f091cc05f10d3377eb4a (diff) | |
parent | fe398ab983aee9283f61c288dc98d94542c30332 (diff) | |
download | nextpnr-b39a2a502065ec1407417ffacdac2154385bf80f.tar.gz nextpnr-b39a2a502065ec1407417ffacdac2154385bf80f.tar.bz2 nextpnr-b39a2a502065ec1407417ffacdac2154385bf80f.zip |
Merge pull request #477 from YosysHQ/pybind11
Move to pybind11
Diffstat (limited to '3rdparty/pybind11/docs/advanced/pycpp/numpy.rst')
-rw-r--r-- | 3rdparty/pybind11/docs/advanced/pycpp/numpy.rst | 386 |
1 files changed, 386 insertions, 0 deletions
diff --git a/3rdparty/pybind11/docs/advanced/pycpp/numpy.rst b/3rdparty/pybind11/docs/advanced/pycpp/numpy.rst new file mode 100644 index 00000000..458f99e9 --- /dev/null +++ b/3rdparty/pybind11/docs/advanced/pycpp/numpy.rst @@ -0,0 +1,386 @@ +.. _numpy: + +NumPy +##### + +Buffer protocol +=============== + +Python supports an extremely general and convenient approach for exchanging +data between plugin libraries. Types can expose a buffer view [#f2]_, which +provides fast direct access to the raw internal data representation. Suppose we +want to bind the following simplistic Matrix class: + +.. code-block:: cpp + + class Matrix { + public: + Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { + m_data = new float[rows*cols]; + } + float *data() { return m_data; } + size_t rows() const { return m_rows; } + size_t cols() const { return m_cols; } + private: + size_t m_rows, m_cols; + float *m_data; + }; + +The following binding code exposes the ``Matrix`` contents as a buffer object, +making it possible to cast Matrices into NumPy arrays. It is even possible to +completely avoid copy operations with Python expressions like +``np.array(matrix_instance, copy = False)``. + +.. code-block:: cpp + + py::class_<Matrix>(m, "Matrix", py::buffer_protocol()) + .def_buffer([](Matrix &m) -> py::buffer_info { + return py::buffer_info( + m.data(), /* Pointer to buffer */ + sizeof(float), /* Size of one scalar */ + py::format_descriptor<float>::format(), /* Python struct-style format descriptor */ + 2, /* Number of dimensions */ + { m.rows(), m.cols() }, /* Buffer dimensions */ + { sizeof(float) * m.cols(), /* Strides (in bytes) for each index */ + sizeof(float) } + ); + }); + +Supporting the buffer protocol in a new type involves specifying the special +``py::buffer_protocol()`` tag in the ``py::class_`` constructor and calling the +``def_buffer()`` method with a lambda function that creates a +``py::buffer_info`` description record on demand describing a given matrix +instance. The contents of ``py::buffer_info`` mirror the Python buffer protocol +specification. + +.. code-block:: cpp + + struct buffer_info { + void *ptr; + ssize_t itemsize; + std::string format; + ssize_t ndim; + std::vector<ssize_t> shape; + std::vector<ssize_t> strides; + }; + +To create a C++ function that can take a Python buffer object as an argument, +simply use the type ``py::buffer`` as one of its arguments. Buffers can exist +in a great variety of configurations, hence some safety checks are usually +necessary in the function body. Below, you can see an basic example on how to +define a custom constructor for the Eigen double precision matrix +(``Eigen::MatrixXd``) type, which supports initialization from compatible +buffer objects (e.g. a NumPy matrix). + +.. code-block:: cpp + + /* Bind MatrixXd (or some other Eigen type) to Python */ + typedef Eigen::MatrixXd Matrix; + + typedef Matrix::Scalar Scalar; + constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; + + py::class_<Matrix>(m, "Matrix", py::buffer_protocol()) + .def("__init__", [](Matrix &m, py::buffer b) { + typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides; + + /* Request a buffer descriptor from Python */ + py::buffer_info info = b.request(); + + /* Some sanity checks ... */ + if (info.format != py::format_descriptor<Scalar>::format()) + throw std::runtime_error("Incompatible format: expected a double array!"); + + if (info.ndim != 2) + throw std::runtime_error("Incompatible buffer dimension!"); + + auto strides = Strides( + info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar), + info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar)); + + auto map = Eigen::Map<Matrix, 0, Strides>( + static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides); + + new (&m) Matrix(map); + }); + +For reference, the ``def_buffer()`` call for this Eigen data type should look +as follows: + +.. code-block:: cpp + + .def_buffer([](Matrix &m) -> py::buffer_info { + return py::buffer_info( + m.data(), /* Pointer to buffer */ + sizeof(Scalar), /* Size of one scalar */ + py::format_descriptor<Scalar>::format(), /* Python struct-style format descriptor */ + 2, /* Number of dimensions */ + { m.rows(), m.cols() }, /* Buffer dimensions */ + { sizeof(Scalar) * (rowMajor ? m.cols() : 1), + sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } + /* Strides (in bytes) for each index */ + ); + }) + +For a much easier approach of binding Eigen types (although with some +limitations), refer to the section on :doc:`/advanced/cast/eigen`. + +.. seealso:: + + The file :file:`tests/test_buffers.cpp` contains a complete example + that demonstrates using the buffer protocol with pybind11 in more detail. + +.. [#f2] http://docs.python.org/3/c-api/buffer.html + +Arrays +====== + +By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can +restrict the function so that it only accepts NumPy arrays (rather than any +type of Python object satisfying the buffer protocol). + +In many situations, we want to define a function which only accepts a NumPy +array of a certain data type. This is possible via the ``py::array_t<T>`` +template. For instance, the following function requires the argument to be a +NumPy array containing double precision values. + +.. code-block:: cpp + + void f(py::array_t<double> array); + +When it is invoked with a different type (e.g. an integer or a list of +integers), the binding code will attempt to cast the input into a NumPy array +of the requested type. Note that this feature requires the +:file:`pybind11/numpy.h` header to be included. + +Data in NumPy arrays is not guaranteed to packed in a dense manner; +furthermore, entries can be separated by arbitrary column and row strides. +Sometimes, it can be useful to require a function to only accept dense arrays +using either the C (row-major) or Fortran (column-major) ordering. This can be +accomplished via a second template argument with values ``py::array::c_style`` +or ``py::array::f_style``. + +.. code-block:: cpp + + void f(py::array_t<double, py::array::c_style | py::array::forcecast> array); + +The ``py::array::forcecast`` argument is the default value of the second +template parameter, and it ensures that non-conforming arguments are converted +into an array satisfying the specified requirements instead of trying the next +function overload. + +Structured types +================ + +In order for ``py::array_t`` to work with structured (record) types, we first +need to register the memory layout of the type. This can be done via +``PYBIND11_NUMPY_DTYPE`` macro, called in the plugin definition code, which +expects the type followed by field names: + +.. code-block:: cpp + + struct A { + int x; + double y; + }; + + struct B { + int z; + A a; + }; + + // ... + PYBIND11_MODULE(test, m) { + // ... + + PYBIND11_NUMPY_DTYPE(A, x, y); + PYBIND11_NUMPY_DTYPE(B, z, a); + /* now both A and B can be used as template arguments to py::array_t */ + } + +The structure should consist of fundamental arithmetic types, ``std::complex``, +previously registered substructures, and arrays of any of the above. Both C++ +arrays and ``std::array`` are supported. While there is a static assertion to +prevent many types of unsupported structures, it is still the user's +responsibility to use only "plain" structures that can be safely manipulated as +raw memory without violating invariants. + +Vectorizing functions +===================== + +Suppose we want to bind a function with the following signature to Python so +that it can process arbitrary NumPy array arguments (vectors, matrices, general +N-D arrays) in addition to its normal arguments: + +.. code-block:: cpp + + double my_func(int x, float y, double z); + +After including the ``pybind11/numpy.h`` header, this is extremely simple: + +.. code-block:: cpp + + m.def("vectorized_func", py::vectorize(my_func)); + +Invoking the function like below causes 4 calls to be made to ``my_func`` with +each of the array elements. The significant advantage of this compared to +solutions like ``numpy.vectorize()`` is that the loop over the elements runs +entirely on the C++ side and can be crunched down into a tight, optimized loop +by the compiler. The result is returned as a NumPy array of type +``numpy.dtype.float64``. + +.. code-block:: pycon + + >>> x = np.array([[1, 3],[5, 7]]) + >>> y = np.array([[2, 4],[6, 8]]) + >>> z = 3 + >>> result = vectorized_func(x, y, z) + +The scalar argument ``z`` is transparently replicated 4 times. The input +arrays ``x`` and ``y`` are automatically converted into the right types (they +are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and +``numpy.dtype.float32``, respectively). + +.. note:: + + Only arithmetic, complex, and POD types passed by value or by ``const &`` + reference are vectorized; all other arguments are passed through as-is. + Functions taking rvalue reference arguments cannot be vectorized. + +In cases where the computation is too complicated to be reduced to +``vectorize``, it will be necessary to create and access the buffer contents +manually. The following snippet contains a complete example that shows how this +works (the code is somewhat contrived, since it could have been done more +simply using ``vectorize``). + +.. code-block:: cpp + + #include <pybind11/pybind11.h> + #include <pybind11/numpy.h> + + namespace py = pybind11; + + py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) { + py::buffer_info buf1 = input1.request(), buf2 = input2.request(); + + if (buf1.ndim != 1 || buf2.ndim != 1) + throw std::runtime_error("Number of dimensions must be one"); + + if (buf1.size != buf2.size) + throw std::runtime_error("Input shapes must match"); + + /* No pointer is passed, so NumPy will allocate the buffer */ + auto result = py::array_t<double>(buf1.size); + + py::buffer_info buf3 = result.request(); + + double *ptr1 = (double *) buf1.ptr, + *ptr2 = (double *) buf2.ptr, + *ptr3 = (double *) buf3.ptr; + + for (size_t idx = 0; idx < buf1.shape[0]; idx++) + ptr3[idx] = ptr1[idx] + ptr2[idx]; + + return result; + } + + PYBIND11_MODULE(test, m) { + m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); + } + +.. seealso:: + + The file :file:`tests/test_numpy_vectorize.cpp` contains a complete + example that demonstrates using :func:`vectorize` in more detail. + +Direct access +============= + +For performance reasons, particularly when dealing with very large arrays, it +is often desirable to directly access array elements without internal checking +of dimensions and bounds on every access when indices are known to be already +valid. To avoid such checks, the ``array`` class and ``array_t<T>`` template +class offer an unchecked proxy object that can be used for this unchecked +access through the ``unchecked<N>`` and ``mutable_unchecked<N>`` methods, +where ``N`` gives the required dimensionality of the array: + +.. code-block:: cpp + + m.def("sum_3d", [](py::array_t<double> x) { + auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable + double sum = 0; + for (ssize_t i = 0; i < r.shape(0); i++) + for (ssize_t j = 0; j < r.shape(1); j++) + for (ssize_t k = 0; k < r.shape(2); k++) + sum += r(i, j, k); + return sum; + }); + m.def("increment_3d", [](py::array_t<double> x) { + auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is false + for (ssize_t i = 0; i < r.shape(0); i++) + for (ssize_t j = 0; j < r.shape(1); j++) + for (ssize_t k = 0; k < r.shape(2); k++) + r(i, j, k) += 1.0; + }, py::arg().noconvert()); + +To obtain the proxy from an ``array`` object, you must specify both the data +type and number of dimensions as template arguments, such as ``auto r = +myarray.mutable_unchecked<float, 2>()``. + +If the number of dimensions is not known at compile time, you can omit the +dimensions template parameter (i.e. calling ``arr_t.unchecked()`` or +``arr.unchecked<T>()``. This will give you a proxy object that works in the +same way, but results in less optimizable code and thus a small efficiency +loss in tight loops. + +Note that the returned proxy object directly references the array's data, and +only reads its shape, strides, and writeable flag when constructed. You must +take care to ensure that the referenced array is not destroyed or reshaped for +the duration of the returned object, typically by limiting the scope of the +returned instance. + +The returned proxy object supports some of the same methods as ``py::array`` so +that it can be used as a drop-in replacement for some existing, index-checked +uses of ``py::array``: + +- ``r.ndim()`` returns the number of dimensions + +- ``r.data(1, 2, ...)`` and ``r.mutable_data(1, 2, ...)``` returns a pointer to + the ``const T`` or ``T`` data, respectively, at the given indices. The + latter is only available to proxies obtained via ``a.mutable_unchecked()``. + +- ``itemsize()`` returns the size of an item in bytes, i.e. ``sizeof(T)``. + +- ``ndim()`` returns the number of dimensions. + +- ``shape(n)`` returns the size of dimension ``n`` + +- ``size()`` returns the total number of elements (i.e. the product of the shapes). + +- ``nbytes()`` returns the number of bytes used by the referenced elements + (i.e. ``itemsize()`` times ``size()``). + +.. seealso:: + + The file :file:`tests/test_numpy_array.cpp` contains additional examples + demonstrating the use of this feature. + +Ellipsis +======== + +Python 3 provides a convenient ``...`` ellipsis notation that is often used to +slice multidimensional arrays. For instance, the following snippet extracts the +middle dimensions of a tensor with the first and last index set to zero. + +.. code-block:: python + + a = # a NumPy array + b = a[0, ..., 0] + +The function ``py::ellipsis()`` function can be used to perform the same +operation on the C++ side: + +.. code-block:: cpp + + py::array a = /* A NumPy array */; + py::array b = a[py::make_tuple(0, py::ellipsis(), 0)]; |