1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
--
-- Asymmetric port RAM
-- Port A is 256x8-bit read-and-write (write-first synchronization)
-- Port B is 64x32-bit read-and-write (write-first synchronization)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_2a.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity asymmetric_ram_2a is
generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);
port (
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);
end asymmetric_ram_2a;
architecture behavioral of asymmetric_ram_2a is
function max(L, R: INTEGER) return INTEGER is
begin
if L > R then
return L;
else
return R;
end if;
end;
function min(L, R: INTEGER) return INTEGER is
begin
if L < R then
return L;
else
return R;
end if;
end;
constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;
type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => '0'));
signal readA : std_logic_vector(WIDTHA-1 downto 0):= (others => '0');
signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => '0');
signal regA : std_logic_vector(WIDTHA-1 downto 0):= (others => '0');
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => '0');
begin
process (clkA)
begin
if rising_edge(clkA) then
if enA = '1' then
if weA = '1' then
ram(conv_integer(addrA)) := diA;
end if;
readA <= ram(conv_integer(addrA));
end if;
regA <= readA;
end if;
end process;
process (clkB)
begin
if rising_edge(clkB) then
if enB = '1' then
if weB = '1' then
ram(conv_integer(addrB&conv_std_logic_vector(0,2))) := diB(minWIDTH-1 downto 0);
ram(conv_integer(addrB&conv_std_logic_vector(1,2))) := diB(2*minWIDTH-1 downto minWIDTH);
ram(conv_integer(addrB&conv_std_logic_vector(2,2))) := diB(3*minWIDTH-1 downto 2*minWIDTH);
ram(conv_integer(addrB&conv_std_logic_vector(3,2))) := diB(4*minWIDTH-1 downto 3*minWIDTH);
end if;
readB(minWIDTH-1 downto 0) <= ram(conv_integer(addrB&conv_std_logic_vector(0,2)));
readB(2*minWIDTH-1 downto minWIDTH) <= ram(conv_integer(addrB&conv_std_logic_vector(1,2)));
readB(3*minWIDTH-1 downto 2*minWIDTH) <= ram(conv_integer(addrB&conv_std_logic_vector(2,2)));
readB(4*minWIDTH-1 downto 3*minWIDTH) <= ram(conv_integer(addrB&conv_std_logic_vector(3,2)));
end if;
regB <= readB;
end if;
end process;
doA <= regA;
doB <= regB;
end behavioral;
|