aboutsummaryrefslogtreecommitdiffstats
path: root/testsuite/gna/perf02-long/add_142.vhd
blob: 7898b1191b93bf1b433f73384b5c1049339ee55e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
library ieee;
use ieee.std_logic_1164.all;

library ieee;
use ieee.numeric_std.all;

entity add_142 is
	port (
		output : out std_logic_vector(63 downto 0);
		in_a : in  std_logic_vector(63 downto 0);
		in_b : in  std_logic_vector(63 downto 0)
	);
end add_142;

architecture augh of add_142 is

	signal carry_inA : std_logic_vector(65 downto 0);
	signal carry_inB : std_logic_vector(65 downto 0);
	signal carry_res : std_logic_vector(65 downto 0);

begin

	-- To handle the CI input, the operation is '1' + CI
	-- If CI is not present, the operation is '1' + '0'
	carry_inA <= '0' & in_a & '1';
	carry_inB <= '0' & in_b & '0';
	-- Compute the result
	carry_res <= std_logic_vector(unsigned(carry_inA) + unsigned(carry_inB));

	-- Set the outputs
	output <= carry_res(64 downto 1);

end architecture;
312' href='#n312'>312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
#include <xen/config.h>
#include <xen/init.h>
#include <xen/lib.h>
#include <xen/mm.h>
#include <xen/compat.h>
#include <xen/dmi.h>
#include <xen/pfn.h>
#include <asm/e820.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/mtrr.h>
#include <asm/msr.h>

/*
 * opt_mem: Limit maximum address of physical RAM.
 *          Any RAM beyond this address limit is ignored.
 */
static unsigned long long __initdata opt_mem;
size_param("mem", opt_mem);

/*
 * opt_availmem: Limit maximum usable amount of physical RAM.
 *               Any RAM beyond this limited amount is ignored.
 */
static unsigned long long __initdata opt_availmem;
size_param("availmem", opt_availmem);

/* opt_nomtrr_check: Don't clip ram to highest cacheable MTRR. */
static s8 __initdata e820_mtrr_clip = -1;
boolean_param("e820-mtrr-clip", e820_mtrr_clip);

/* opt_e820_verbose: Be verbose about clipping, the original e820, &c */
static bool_t __initdata e820_verbose;
boolean_param("e820-verbose", e820_verbose);

struct e820map e820;

/*
 * This function checks if the entire range <start,end> is mapped with type.
 *
 * Note: this function only works correct if the e820 table is sorted and
 * not-overlapping, which is the case
 */
int __init e820_all_mapped(u64 start, u64 end, unsigned type)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (type && ei->type != type)
			continue;
		/* is the region (part) in overlap with the current region ?*/
		if (ei->addr >= end || ei->addr + ei->size <= start)
			continue;

		/* if the region is at the beginning of <start,end> we move
		 * start to the end of the region since it's ok until there
		 */
		if (ei->addr <= start)
			start = ei->addr + ei->size;
		/*
		 * if start is now at or beyond end, we're done, full
		 * coverage
		 */
		if (start >= end)
			return 1;
	}
	return 0;
}

static void __init add_memory_region(unsigned long long start,
                                     unsigned long long size, int type)
{
    int x;

    /*if (!efi_enabled)*/ {
        x = e820.nr_map;

        if (x == E820MAX) {
            printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
            return;
        }

        e820.map[x].addr = start;
        e820.map[x].size = size;
        e820.map[x].type = type;
        e820.nr_map++;
    }
} /* add_memory_region */

static void __init print_e820_memory_map(struct e820entry *map, int entries)
{
    int i;

    for (i = 0; i < entries; i++) {
        printk(" %016Lx - %016Lx ",
               (unsigned long long)(map[i].addr),
               (unsigned long long)(map[i].addr + map[i].size));
        switch (map[i].type) {
        case E820_RAM:
            printk("(usable)\n");
            break;
        case E820_RESERVED:
            printk("(reserved)\n");
            break;
        case E820_ACPI:
            printk("(ACPI data)\n");
            break;
        case E820_NVS:
            printk("(ACPI NVS)\n");
            break;
        case E820_UNUSABLE:
            printk("(unusable)\n");
            break;
        default:
            printk("type %u\n", map[i].type);
            break;
        }
    }
}

/*
 * Sanitize the BIOS e820 map.
 *
 * Some e820 responses include overlapping entries.  The following 
 * replaces the original e820 map with a new one, removing overlaps.
 *
 */
struct change_member {
    struct e820entry *pbios; /* pointer to original bios entry */
    unsigned long long addr; /* address for this change point */
};
static struct change_member change_point_list[2*E820MAX] __initdata;
static struct change_member *change_point[2*E820MAX] __initdata;
static struct e820entry *overlap_list[E820MAX] __initdata;
static struct e820entry new_bios[E820MAX] __initdata;

static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map)
{
    struct change_member *change_tmp;
    unsigned long current_type, last_type;
    unsigned long long last_addr;
    int chgidx, still_changing;
    int overlap_entries;
    int new_bios_entry;
    int old_nr, new_nr, chg_nr;
    int i;

    /*
      Visually we're performing the following (1,2,3,4 = memory types)...

      Sample memory map (w/overlaps):
      ____22__________________
      ______________________4_
      ____1111________________
      _44_____________________
      11111111________________
      ____________________33__
      ___________44___________
      __________33333_________
      ______________22________
      ___________________2222_
      _________111111111______
      _____________________11_
      _________________4______

      Sanitized equivalent (no overlap):
      1_______________________
      _44_____________________
      ___1____________________
      ____22__________________
      ______11________________
      _________1______________
      __________3_____________
      ___________44___________
      _____________33_________
      _______________2________
      ________________1_______
      _________________4______
      ___________________2____
      ____________________33__
      ______________________4_
    */

    /* if there's only one memory region, don't bother */
    if (*pnr_map < 2)
        return -1;

    old_nr = *pnr_map;

    /* bail out if we find any unreasonable addresses in bios map */
    for (i=0; i<old_nr; i++)
        if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
            return -1;

    /* create pointers for initial change-point information (for sorting) */
    for (i=0; i < 2*old_nr; i++)
        change_point[i] = &change_point_list[i];

    /* record all known change-points (starting and ending addresses),
       omitting those that are for empty memory regions */
    chgidx = 0;
    for (i=0; i < old_nr; i++)	{
        if (biosmap[i].size != 0) {
            change_point[chgidx]->addr = biosmap[i].addr;
            change_point[chgidx++]->pbios = &biosmap[i];
            change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
            change_point[chgidx++]->pbios = &biosmap[i];
        }
    }
    chg_nr = chgidx;    	/* true number of change-points */

    /* sort change-point list by memory addresses (low -> high) */
    still_changing = 1;
    while (still_changing)	{
        still_changing = 0;
        for (i=1; i < chg_nr; i++)  {
            /* if <current_addr> > <last_addr>, swap */
            /* or, if current=<start_addr> & last=<end_addr>, swap */
            if ((change_point[i]->addr < change_point[i-1]->addr) ||
                ((change_point[i]->addr == change_point[i-1]->addr) &&
                 (change_point[i]->addr == change_point[i]->pbios->addr) &&
                 (change_point[i-1]->addr != change_point[i-1]->pbios->addr))
                )
            {
                change_tmp = change_point[i];
                change_point[i] = change_point[i-1];
                change_point[i-1] = change_tmp;
                still_changing=1;
            }
        }
    }

    /* create a new bios memory map, removing overlaps */
    overlap_entries=0;	 /* number of entries in the overlap table */
    new_bios_entry=0;	 /* index for creating new bios map entries */
    last_type = 0;		 /* start with undefined memory type */
    last_addr = 0;		 /* start with 0 as last starting address */
    /* loop through change-points, determining affect on the new bios map */
    for (chgidx=0; chgidx < chg_nr; chgidx++)
    {
        /* keep track of all overlapping bios entries */
        if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr)
        {
            /* add map entry to overlap list (> 1 entry implies an overlap) */
            overlap_list[overlap_entries++]=change_point[chgidx]->pbios;
        }
        else
        {
            /* remove entry from list (order independent, so swap with last) */
            for (i=0; i<overlap_entries; i++)
            {
                if (overlap_list[i] == change_point[chgidx]->pbios)
                    overlap_list[i] = overlap_list[overlap_entries-1];
            }
            overlap_entries--;
        }
        /* if there are overlapping entries, decide which "type" to use */
        /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
        current_type = 0;
        for (i=0; i<overlap_entries; i++)
            if (overlap_list[i]->type > current_type)
                current_type = overlap_list[i]->type;
        /* continue building up new bios map based on this information */
        if (current_type != last_type)	{
            if (last_type != 0)	 {
                new_bios[new_bios_entry].size =
                    change_point[chgidx]->addr - last_addr;
				/* move forward only if the new size was non-zero */
                if (new_bios[new_bios_entry].size != 0)
                    if (++new_bios_entry >= E820MAX)
                        break; 	/* no more space left for new bios entries */
            }
            if (current_type != 0)	{
                new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
                new_bios[new_bios_entry].type = current_type;
                last_addr=change_point[chgidx]->addr;
            }
            last_type = current_type;
        }
    }
    new_nr = new_bios_entry;   /* retain count for new bios entries */

    /* copy new bios mapping into original location */
    memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry));
    *pnr_map = new_nr;

    return 0;
}

/*
 * Copy the BIOS e820 map into a safe place.
 *
 * Sanity-check it while we're at it..
 *
 * If we're lucky and live on a modern system, the setup code
 * will have given us a memory map that we can use to properly
 * set up memory.  If we aren't, we'll fake a memory map.
 *
 * We check to see that the memory map contains at least 2 elements
 * before we'll use it, because the detection code in setup.S may
 * not be perfect and most every PC known to man has two memory
 * regions: one from 0 to 640k, and one from 1mb up.  (The IBM
 * thinkpad 560x, for example, does not cooperate with the memory
 * detection code.)
 */
static int __init copy_e820_map(struct e820entry * biosmap, int nr_map)
{
    /* Only one memory region (or negative)? Ignore it */
    if (nr_map < 2)
        return -1;

    do {
        unsigned long long start = biosmap->addr;
        unsigned long long size = biosmap->size;
        unsigned long long end = start + size;
        unsigned long type = biosmap->type;

        /* Overflow in 64 bits? Ignore the memory map. */
        if (start > end)
            return -1;

        /*
         * Some BIOSes claim RAM in the 640k - 1M region.
         * Not right. Fix it up.
         */
        if (type == E820_RAM) {
            if (start < 0x100000ULL && end > 0xA0000ULL) {
                if (start < 0xA0000ULL)
                    add_memory_region(start, 0xA0000ULL-start, type);
                if (end <= 0x100000ULL)
                    continue;
                start = 0x100000ULL;
                size = end - start;
            }
        }
        add_memory_region(start, size, type);
    } while (biosmap++,--nr_map);
    return 0;
}


/*
 * Find the highest page frame number we have available
 */
static unsigned long __init find_max_pfn(void)
{
    int i;
    unsigned long max_pfn = 0;

#if 0
    if (efi_enabled) {
        efi_memmap_walk(efi_find_max_pfn, &max_pfn);
        return;
    }
#endif

    for (i = 0; i < e820.nr_map; i++) {
        unsigned long start, end;
        /* RAM? */
        if (e820.map[i].type != E820_RAM)
            continue;
        start = PFN_UP(e820.map[i].addr);
        end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
        if (start >= end)
            continue;
        if (end > max_pfn)
            max_pfn = end;
    }

    return max_pfn;
}

static void __init clip_to_limit(uint64_t limit, char *warnmsg)
{
    int i;
    char _warnmsg[160];
    uint64_t old_limit = 0;

    for ( ; ; )
    {
        /* Find a RAM region needing clipping. */
        for ( i = 0; i < e820.nr_map; i++ )
            if ( (e820.map[i].type == E820_RAM) &&
                 ((e820.map[i].addr + e820.map[i].size) > limit) )
                break;

        /* If none found, we are done. */
        if ( i == e820.nr_map )
            break;        

        old_limit = max_t(
            uint64_t, old_limit, e820.map[i].addr + e820.map[i].size);

        /* We try to convert clipped RAM areas to E820_UNUSABLE. */
        if ( e820_change_range_type(&e820, max(e820.map[i].addr, limit),
                                    e820.map[i].addr + e820.map[i].size,
                                    E820_RAM, E820_UNUSABLE) )
            continue;

        /*
         * If the type change fails (e.g., not space in table) then we clip or 
         * delete the region as appropriate.
         */
        if ( e820.map[i].addr < limit )
        {
            e820.map[i].size = limit - e820.map[i].addr;
        }
        else
        {
            memmove(&e820.map[i], &e820.map[i+1],
                    (e820.nr_map - i - 1) * sizeof(struct e820entry));
            e820.nr_map--;
        }
    }

    if ( old_limit )
    {
        if ( warnmsg )
        {
            snprintf(_warnmsg, sizeof(_warnmsg), warnmsg, (long)(limit>>30));
            printk("WARNING: %s\n", _warnmsg);
        }
        printk("Truncating RAM from %lukB to %lukB\n",
               (unsigned long)(old_limit >> 10), (unsigned long)(limit >> 10));
    }
}

/* Conservative estimate of top-of-RAM by looking for MTRR WB regions. */
#define MSR_MTRRphysBase(reg) (0x200 + 2 * (reg))
#define MSR_MTRRphysMask(reg) (0x200 + 2 * (reg) + 1)
static uint64_t __init mtrr_top_of_ram(void)
{
    uint32_t eax, ebx, ecx, edx;
    uint64_t mtrr_cap, mtrr_def, addr_mask, base, mask, top;
    unsigned int i, phys_bits = 36;

    /* By default we check only Intel systems. */
    if ( e820_mtrr_clip == -1 )
    {
        char vendor[13];
        cpuid(0x00000000, &eax,
              (uint32_t *)&vendor[0],
              (uint32_t *)&vendor[8],
              (uint32_t *)&vendor[4]);
        vendor[12] = '\0';
        e820_mtrr_clip = !strcmp(vendor, "GenuineIntel");
    }

    if ( !e820_mtrr_clip )
        return 0;

    if ( e820_verbose )
        printk("Checking MTRR ranges...\n");

    /* Does the CPU support architectural MTRRs? */
    cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
    if ( !test_bit(X86_FEATURE_MTRR & 31, &edx) )
         return 0;

    /* Find the physical address size for this CPU. */
    cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
    if ( eax >= 0x80000008 )
    {
        cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
        phys_bits = (uint8_t)eax;
    }
    addr_mask = ((1ull << phys_bits) - 1) & ~((1ull << 12) - 1);

    rdmsrl(MSR_MTRRcap, mtrr_cap);
    rdmsrl(MSR_MTRRdefType, mtrr_def);

    if ( e820_verbose )
        printk(" MTRR cap: %"PRIx64" type: %"PRIx64"\n", mtrr_cap, mtrr_def);

    /* MTRRs enabled, and default memory type is not writeback? */
    if ( !test_bit(11, &mtrr_def) || ((uint8_t)mtrr_def == MTRR_TYPE_WRBACK) )
        return 0;

    /*
     * Find end of highest WB-type range. This is a conservative estimate
     * of the highest WB address since overlapping UC/WT ranges dominate.
     */
    top = 0;
    for ( i = 0; i < (uint8_t)mtrr_cap; i++ )
    {
        rdmsrl(MSR_MTRRphysBase(i), base);
        rdmsrl(MSR_MTRRphysMask(i), mask);

        if ( e820_verbose )
            printk(" MTRR[%d]: base %"PRIx64" mask %"PRIx64"\n",
                   i, base, mask);

        if ( !test_bit(11, &mask) || ((uint8_t)base != MTRR_TYPE_WRBACK) )
            continue;
        base &= addr_mask;
        mask &= addr_mask;
        top = max_t(uint64_t, top, ((base | ~mask) & addr_mask) + PAGE_SIZE);
    }

    return top;
}

static void __init reserve_dmi_region(void)
{
    u32 base, len;
    if ( (dmi_get_table(&base, &len) == 0) && ((base + len) > base) &&
         reserve_e820_ram(&e820, base, base + len) )
        printk("WARNING: DMI table located in E820 RAM %08x-%08x. Fixed.\n",
               base, base+len);
}

static void __init machine_specific_memory_setup(
    struct e820entry *raw, int *raw_nr)
{
    uint64_t top_of_ram, size;
    int i;

    char nr = (char)*raw_nr;
    sanitize_e820_map(raw, &nr);
    *raw_nr = nr;
    (void)copy_e820_map(raw, nr);

    if ( opt_mem )
        clip_to_limit(opt_mem, NULL);

    if ( opt_availmem )
    {
        for ( i = size = 0; (i < e820.nr_map) && (size <= opt_availmem); i++ )
            if ( e820.map[i].type == E820_RAM )
                size += e820.map[i].size;
        if ( size > opt_availmem )
            clip_to_limit(
                e820.map[i-1].addr + e820.map[i-1].size - (size-opt_availmem),
                NULL);
    }

#ifdef __i386__
    clip_to_limit((1ULL << 30) * MACHPHYS_MBYTES,
                  "Only the first %lu GB of the physical memory map "
                  "can be accessed by Xen in 32-bit mode.");
#else
    {
        unsigned long mpt_limit, ro_mpt_limit;

        mpt_limit = ((RDWR_MPT_VIRT_END - RDWR_MPT_VIRT_START)
                     / sizeof(unsigned long)) << PAGE_SHIFT;
        ro_mpt_limit = ((RO_MPT_VIRT_END - RO_MPT_VIRT_START)
                        / sizeof(unsigned long)) << PAGE_SHIFT;
        if ( mpt_limit > ro_mpt_limit )
            mpt_limit = ro_mpt_limit;
        clip_to_limit(mpt_limit,
                      "Only the first %lu GB of the physical "
                      "memory map can be accessed by Xen.");
    }
#endif

    reserve_dmi_region();

    top_of_ram = mtrr_top_of_ram();
    if ( top_of_ram )
        clip_to_limit(top_of_ram, "MTRRs do not cover all of memory.");
}

/* This function relies on the passed in e820->map[] being sorted. */
int __init e820_add_range(
    struct e820map *e820, uint64_t s, uint64_t e, uint32_t type)
{
    unsigned int i;

    for ( i = 0; i < e820->nr_map; ++i )
    {
        uint64_t rs = e820->map[i].addr;
        uint64_t re = rs + e820->map[i].size;

        if ( rs == e && e820->map[i].type == type )
        {
            e820->map[i].addr = s;
            return 1;
        }

        if ( re == s && e820->map[i].type == type &&
             (i + 1 == e820->nr_map || e820->map[i + 1].addr >= e) )
        {
            e820->map[i].size += e - s;
            return 1;
        }

        if ( rs >= e )
            break;

        if ( re > s )
            return 0;
    }

    if ( e820->nr_map >= ARRAY_SIZE(e820->map) )
    {
        printk(XENLOG_WARNING "E820: overflow while adding region"
               " %"PRIx64"-%"PRIx64"\n", s, e);
        return 0;
    }

    memmove(e820->map + i + 1, e820->map + i,
            (e820->nr_map - i) * sizeof(*e820->map));

    e820->nr_map++;
    e820->map[i].addr = s;
    e820->map[i].size = e - s;
    e820->map[i].type = type;

    return 1;
}

int __init e820_change_range_type(
    struct e820map *e820, uint64_t s, uint64_t e,
    uint32_t orig_type, uint32_t new_type)
{
    uint64_t rs = 0, re = 0;
    int i;

    for ( i = 0; i < e820->nr_map; i++ )
    {
        /* Have we found the e820 region that includes the specified range? */
        rs = e820->map[i].addr;
        re = rs + e820->map[i].size;
        if ( (s >= rs) && (e <= re) )
            break;
    }

    if ( (i == e820->nr_map) || (e820->map[i].type != orig_type) )
        return 0;

    if ( (s == rs) && (e == re) )
    {
        e820->map[i].type = new_type;
    }
    else if ( (s == rs) || (e == re) )
    {
        if ( (e820->nr_map + 1) > ARRAY_SIZE(e820->map) )
            goto overflow;

        memmove(&e820->map[i+1], &e820->map[i],
                (e820->nr_map-i) * sizeof(e820->map[0]));
        e820->nr_map++;

        if ( s == rs )
        {
            e820->map[i].size = e - s;
            e820->map[i].type = new_type;
            e820->map[i+1].addr = e;
            e820->map[i+1].size = re - e;
        }
        else
        {
            e820->map[i].size = s - rs;
            e820->map[i+1].addr = s;
            e820->map[i+1].size = e - s;
            e820->map[i+1].type = new_type;
        }
    }
    else
    {
        if ( (e820->nr_map + 2) > ARRAY_SIZE(e820->map) )
            goto overflow;

        memmove(&e820->map[i+2], &e820->map[i],
                (e820->nr_map-i) * sizeof(e820->map[0]));
        e820->nr_map += 2;

        e820->map[i].size = s - rs;
        e820->map[i+1].addr = s;
        e820->map[i+1].size = e - s;
        e820->map[i+1].type = new_type;
        e820->map[i+2].addr = e;
        e820->map[i+2].size = re - e;
    }

    /* Finally, look for any opportunities to merge adjacent e820 entries. */
    for ( i = 0; i < (e820->nr_map - 1); i++ )
    {
        if ( (e820->map[i].type != e820->map[i+1].type) ||
             ((e820->map[i].addr + e820->map[i].size) != e820->map[i+1].addr) )
            continue;
        e820->map[i].size += e820->map[i+1].size;
        memmove(&e820->map[i+1], &e820->map[i+2],
                (e820->nr_map-i-2) * sizeof(e820->map[0]));
        e820->nr_map--;
        i--;
    }

    return 1;

 overflow:
    printk("Overflow in e820 while reserving region %"PRIx64"-%"PRIx64"\n",
           s, e);
    return 0;
}

/* Set E820_RAM area (@s,@e) as RESERVED in specified e820 map. */
int __init reserve_e820_ram(struct e820map *e820, uint64_t s, uint64_t e)
{
    return e820_change_range_type(e820, s, e, E820_RAM, E820_RESERVED);
}

unsigned long __init init_e820(
    const char *str, struct e820entry *raw, int *raw_nr)
{
    if ( e820_verbose )
    {
        printk("Initial %s RAM map:\n", str);
        print_e820_memory_map(raw, *raw_nr);
    }

    machine_specific_memory_setup(raw, raw_nr);

    printk("%s RAM map:\n", str);
    print_e820_memory_map(e820.map, e820.nr_map);

    return find_max_pfn();
}