1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
--test bench written by Alban Bourge @ TIMA
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use std.textio.all;
library work;
use work.pkg_tb.all;
entity fsm is
port(
clock : in std_logic;
reset : in std_logic;
--prog interface
instr_next : in instruction;
step : out std_logic;
--uut interface
cp_ok : in std_logic;
stdin_rdy : in std_logic;
stdin_ack : in std_logic;
reset_fsm : out std_logic;
start : out std_logic;
cp_en : out std_logic;
cp_rest : out std_logic;
--ram interface
ram_1 : out ram_instruction;
ram_2 : out ram_instruction;
--assert_uut interface
context_uut : out context_t;
en_feed : out std_logic;
en_check : out std_logic;
vecs_found : in std_logic;
vec_read : in std_logic;
--tb interface
stopped : out std_logic
);
end fsm;
architecture rtl of fsm is
-- read output
signal step_sig : std_logic;
-- FSM signals
signal instr_c : instruction := instr_rst;
signal instr_n : instruction := instr_rst;
-- TIMER signal
signal times_en : std_logic := '0';
signal times_z : std_logic := '0';
signal times : unsigned(ARG_WIDTH - 1 downto 0);
signal times_max : unsigned(ARG_WIDTH - 1 downto 0);
signal times_ok : std_logic := '0';
-- COUNTER signal
signal count_en : std_logic := '0';
signal count_z : std_logic := '0';
signal count : unsigned(ARG_WIDTH - 1 downto 0);
signal count_max : unsigned(ARG_WIDTH - 1 downto 0);
signal count_ok : std_logic := '0';
-- runtime counter
signal runtime_en : std_logic := '0';
signal runtime : integer range 0 to 99999999; --100 million cycles
begin
-- FSM
state_reg : process (clock, reset) is
begin
if (reset = '1') then
instr_c <= instr_rst;
elsif rising_edge(clock) then
instr_c <= instr_n;
end if;
end process state_reg;
comb_logic: process(instr_next, instr_c, stdin_rdy, count_ok, times_ok, cp_ok, stdin_ack, vecs_found, vec_read)
begin
--default definition for fsm control signals
instr_n <= instr_rst;
step_sig <= '0';
--top
reset_fsm <= '0';
start <= '0';
cp_en <= '0';
cp_rest <= '0';
--counter & timer
times_en <= '0';
times_max <= (others => '0');
count_en <= '0';
count_max <= (others => '0');
--runtime counter
runtime_en <= '0';
--ram
ram_1 <= ram_instr_z;
ram_2 <= ram_instr_z;
--assert_uut
en_feed <= '0';
en_check <= '0';
--tb interface
stopped <= '0';
case instr_c.state is
when Rst =>
--signals
reset_fsm <= '1';
ram_1.addr_z <= '1';
ram_2.addr_z <= '1';
step_sig <= '1'; --demand for next instruction
--transition
instr_n <= instr_next;
when Sig_start =>
--signals
start <= '1';
step_sig <= '1'; --demand for next instruction
--transition
instr_n <= instr_next;
--if (instr_next.state = Ack_data) then
--en_feed <= '1';
--end if;
when Ack_data =>
times_max <= instr_c.arg - 1;
--signals
en_feed <= '1';
--transition
if (stdin_rdy = '1' and stdin_ack = '1') then
times_en <= '1';
end if;
if (times_ok = '1') then
en_feed <= '0';
step_sig <= '1';
instr_n <= instr_next;
else
instr_n <= instr_c;
end if;
when Running =>
--signals
count_max <= instr_c.arg;
count_en <= '1';
--en_check <= '1';
--runtime counter
if(vecs_found = '0') then
runtime_en <= '1';
end if;
--transition
if (count_ok = '1') then
step_sig <= '1';
instr_n <= instr_next;
else
instr_n <= instr_c;
end if;
when Waitfor =>
--signals
count_max <= instr_c.arg;
en_check <= '1';
if(vec_read = '1') then
count_en <= '1';
end if;
--runtime counter
if(vecs_found = '0') then
runtime_en <= '1';
end if;
--transition
if (count_ok = '1') then
step_sig <= '1';
instr_n <= instr_next;
else
instr_n <= instr_c;
end if;
when Cp_search =>
--signals
cp_en <= '1';
--transition
if (cp_ok = '1') then
case instr_c.context_uut is
when "01" =>
ram_1.we <= '1';
ram_1.addr_up <= '1';
ram_1.sel <= '1';
when "10" =>
ram_2.we <= '1';
ram_2.addr_up <= '1';
ram_2.sel <= '1';
when others =>
end case;
instr_n <= (state => Cp_save, context_uut => instr_c.context_uut, arg => (others => '0')); --hard coded
else
instr_n <= instr_c;
end if;
when Cp_save =>
--signals
cp_en <= '1';
case instr_c.context_uut is
when "01" =>
ram_1.we <= '1';
ram_1.addr_up <= '1';
ram_1.sel <= '1';
when "10" =>
ram_2.we <= '1';
ram_2.addr_up <= '1';
ram_2.sel <= '1';
when others =>
end case;
--transition
if (cp_ok = '0') then
case instr_c.context_uut is
when "01" =>
ram_1.we <= '0';
ram_1.addr_up <= '0';
when "10" =>
ram_2.we <= '0';
ram_2.addr_up <= '0';
when others =>
end case;
step_sig <= '1';
instr_n <= instr_next;
else
instr_n <= instr_c;
end if;
when Idle =>
--signals
count_max <= instr_c.arg;
count_en <= '1';
--transition
if (count_ok = '1') then
step_sig <= '1';
instr_n <= instr_next;
else
instr_n <= instr_c;
end if;
when Rst_uut =>
--signals
reset_fsm <= '1';
ram_1.addr_z <= '1';
ram_2.addr_z <= '1';
--transition
step_sig <= '1';
instr_n <= instr_next;
when Rest_ini0 =>
--signals
start <= '1';
cp_en <= '1';
cp_rest <= '1';
--this is for restoration : reading the first word of the right memory
case instr_c.context_uut is
when "01" =>
ram_1.sel <= '1';
when "10" =>
ram_2.sel <= '1';
when others =>
end case;
--transition
instr_n <= (state => Rest_ini1, context_uut => instr_c.context_uut, arg => (others => '0')); --hard coded
when Rest_ini1 =>
--signals
cp_en <= '1';
cp_rest <= '1';
case instr_c.context_uut is
when "01" =>
ram_1.addr_up <= '1';
ram_1.sel <= '1';
when "10" =>
ram_2.addr_up <= '1';
ram_2.sel <= '1';
when others =>
end case;
--transition
instr_n <= (state => Rest, context_uut => instr_c.context_uut, arg => (others => '0')); --hard coded
when Rest =>
--signals
cp_en <= '1';
cp_rest <= '1';
case instr_c.context_uut is
when "01" =>
ram_1.addr_up <= '1';
ram_1.sel <= '1';
when "10" =>
ram_2.addr_up <= '1';
ram_2.sel <= '1';
when others =>
end case;
--transition
if (cp_ok = '0') then
step_sig <= '1';
instr_n <= instr_next;
else
instr_n <= instr_c;
end if;
when Stop =>
--signals
stopped <= '1';
reset_fsm <= '1';
report "RUNTIME:" & integer'image(runtime);
assert (vecs_found = '0')
report "END_OF_SIM ---> Stop state reached, some output vectors were read." severity note;
--transition
instr_n <= (state => Stop, context_uut => "00", arg => (others => '0')); --hard coded
when others =>
end case;
end process comb_logic;
--*ER reset combo logic
--if a step_sig signal is sent, it means a instr_next will be consumed
reseter : process(step_sig)
begin
if (step_sig = '0') then
times_z <= '0';
count_z <= '0';
else
times_z <= '1';
count_z <= '1';
end if;
end process reseter;
--TIMER
timer : process(clock, reset)
begin
if (reset = '1') then
times <= (others => '0');
times_ok <= '0';
elsif rising_edge(clock) then
if (times_z = '1') then
times <= (others => '0');
times_ok <= '0';
else
if (times_en = '1') then
times <= times + 1;
if (times = times_max) then
times_ok <= '1';
else
times_ok <= '0';
end if;
end if;
end if;
end if;
end process timer;
--COUNTER
counter : process(clock, reset)
begin
if (reset = '1') then
count <= (others => '0');
count_ok <= '0';
elsif rising_edge(clock) then
--count_ok driving if
if (count_z = '1') then
count_ok <= '0';
count <= (others => '0');
else
if (count = count_max) then
count_ok <= '1';
else
count_ok <= '0';
if (count_en = '1') then
count <= count + 1;
end if;
end if;
end if;
end if;
end process counter;
--Runtime counter
runtime_counter : process(clock, reset)
begin
if (reset = '1') then
runtime <= 0;
elsif rising_edge(clock) then
if (runtime_en = '1') then
runtime <= runtime + 1;
if ((runtime mod 1000) = 0) then
report "Running since:" & integer'image(runtime) severity note;
end if;
end if;
end if;
end process runtime_counter;
-- process only used for reporting current instruction
reporter : process(instr_c)
begin
--report "Instruction: " & state_t'image(instr_c.state) severity note;
report "Instruction: " & state_t'image(instr_c.state) & " (context " & integer'image(to_integer(unsigned(instr_c.context_uut))) & ")" severity note;
end process reporter;
--Combinational
step <= step_sig;
context_uut <= instr_c.context_uut;
end rtl;
|