1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
|
-- Expressions synthesis.
-- Copyright (C) 2017 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <gnu.org/licenses>.
with Types_Utils; use Types_Utils;
with Std_Names;
with Mutils; use Mutils;
with Errorout; use Errorout;
with Vhdl.Types;
with Vhdl.Ieee.Std_Logic_1164; use Vhdl.Ieee.Std_Logic_1164;
with Vhdl.Std_Package;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Evaluation; use Vhdl.Evaluation;
with PSL.Nodes;
with PSL.Errors;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Folds; use Netlists.Folds;
with Netlists.Utils; use Netlists.Utils;
with Netlists.Locations;
with Elab.Memtype; use Elab.Memtype;
with Elab.Vhdl_Annotations;
with Elab.Vhdl_Heap; use Elab.Vhdl_Heap;
with Elab.Vhdl_Types; use Elab.Vhdl_Types;
with Elab.Vhdl_Expr;
with Synth.Errors; use Synth.Errors;
with Synth.Vhdl_Environment;
with Synth.Vhdl_Stmts; use Synth.Vhdl_Stmts;
with Synth.Vhdl_Oper; use Synth.Vhdl_Oper;
with Synth.Vhdl_Aggr;
with Synth.Vhdl_Context; use Synth.Vhdl_Context;
package body Synth.Vhdl_Expr is
procedure Set_Location (N : Net; Loc : Node)
renames Synth.Source.Set_Location;
function Get_Value_Memtyp (V : Valtyp) return Memtyp is
begin
case V.Val.Kind is
when Value_Memory =>
return (V.Typ, V.Val.Mem);
when Value_Const =>
return Get_Memtyp (V);
when Value_Wire =>
return Synth.Vhdl_Environment.Env.Get_Static_Wire
(Get_Value_Wire (V.Val));
when Value_Alias =>
declare
Res : Memtyp;
begin
Res := Get_Value_Memtyp ((V.Val.A_Typ, V.Val.A_Obj));
return (V.Typ, Res.Mem + V.Val.A_Off.Mem_Off);
end;
when others =>
raise Internal_Error;
end case;
end Get_Value_Memtyp;
function Get_Static_Discrete (V : Valtyp) return Int64 is
begin
case V.Val.Kind is
when Value_Memory =>
return Read_Discrete (V);
when Value_Wire =>
return Read_Discrete
(Synth.Vhdl_Environment.Env.Get_Static_Wire
(Get_Value_Wire (V.Val)));
when Value_Const
| Value_Alias =>
return Read_Discrete (Get_Memtyp (V));
when others =>
raise Internal_Error;
end case;
end Get_Static_Discrete;
function Is_Positive (V : Valtyp) return Boolean
is
use Synth.Vhdl_Environment.Env;
N : Net;
Inst : Instance;
begin
pragma Assert (V.Typ.Kind = Type_Discrete);
case V.Val.Kind is
when Value_Const
| Value_Memory =>
return Read_Discrete (Get_Memtyp (V)) >= 0;
when Value_Net =>
N := Get_Value_Net (V.Val);
when Value_Wire =>
declare
W : constant Wire_Id := Get_Value_Wire (V.Val);
begin
if Get_Kind (W) = Wire_Variable
and then Is_Static_Wire (W)
then
return Read_Discrete (Get_Static_Wire (W)) >= 0;
else
return False;
end if;
end;
when others =>
raise Internal_Error;
end case;
Inst := Get_Net_Parent (N);
case Get_Id (Inst) is
when Id_Uextend
| Id_Const_UB32 =>
return True;
when others =>
-- Be conservative.
return False;
end case;
end Is_Positive;
procedure From_Std_Logic (Enum : Int64; Val : out Uns32; Zx : out Uns32) is
begin
case Enum is
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_L_Pos =>
Val := 0;
Zx := 0;
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_H_Pos =>
Val := 1;
Zx := 0;
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_U_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_D_Pos =>
Val := 1;
Zx := 1;
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_W_Pos =>
Val := 0;
Zx := 1;
when others =>
-- Only 9 values.
raise Internal_Error;
end case;
end From_Std_Logic;
procedure From_Bit (Enum : Int64; Val : out Uns32) is
begin
if Enum = 0 then
Val := 0;
elsif Enum = 1 then
Val := 1;
else
raise Internal_Error;
end if;
end From_Bit;
procedure To_Logic
(Enum : Int64; Etype : Type_Acc; Val : out Uns32; Zx : out Uns32) is
begin
if Etype = Logic_Type then
pragma Assert (Etype.Kind = Type_Logic);
From_Std_Logic (Enum, Val, Zx);
elsif Etype = Boolean_Type or Etype = Bit_Type then
pragma Assert (Etype.Kind = Type_Bit);
From_Bit (Enum, Val);
Zx := 0;
else
raise Internal_Error;
end if;
end To_Logic;
procedure Uns2logvec (Val : Uns64;
W : Width;
Vec : in out Logvec_Array;
Off : in out Uns32) is
begin
if W = 0 then
return;
end if;
for I in 0 .. W - 1 loop
declare
B : constant Uns32 := Uns32 (Shift_Right (Val, Natural (I)) and 1);
Idx : constant Digit_Index := Digit_Index (Off / 32);
Pos : constant Natural := Natural (Off mod 32);
begin
Vec (Idx).Val := Vec (Idx).Val or Shift_Left (B, Pos);
end;
Off := Off + 1;
end loop;
end Uns2logvec;
-- Insert bit from VAL into VEC at offset OFF.
procedure Bit2logvec (Val : Uns32;
Off : Uns32;
Vec : in out Logvec_Array)
is
pragma Assert (Val <= 1);
Idx : constant Digit_Index := Digit_Index (Off / 32);
Pos : constant Natural := Natural (Off mod 32);
Va : Uns32;
begin
Va := Shift_Left (Val, Pos);
Vec (Idx).Val := Vec (Idx).Val or Va;
Vec (Idx).Zx := 0;
end Bit2logvec;
-- Likewise for std_logic
procedure Logic2logvec (Val : Int64;
Off : Uns32;
Vec : in out Logvec_Array;
Has_Zx : in out Boolean)
is
pragma Assert (Val <= 8);
Idx : constant Digit_Index := Digit_Index (Off / 32);
Pos : constant Natural := Natural (Off mod 32);
Va : Uns32;
Zx : Uns32;
begin
From_Std_Logic (Val, Va, Zx);
Has_Zx := Has_Zx or Zx /= 0;
Va := Shift_Left (Va, Pos);
Zx := Shift_Left (Zx, Pos);
Vec (Idx).Val := Vec (Idx).Val or Va;
Vec (Idx).Zx := Vec (Idx).Zx or Zx;
end Logic2logvec;
-- Read W bits at offset OFF from MEM+TYP and write to VEC at VEC_OFF.
-- Set HAS_ZX if one bit read is Z or X.
-- OFF may be greather than the size of MEM.
-- Update OFF, W, VEC_OFF according to the number of bits
-- read (or skipped).
procedure Value2logvec (Mem : Memory_Ptr;
Typ : Type_Acc;
Off : in out Uns32;
W : in out Width;
Vec : in out Logvec_Array;
Vec_Off : in out Uns32;
Has_Zx : in out Boolean) is
begin
if Off >= Typ.W then
-- Offset not yet reached.
Off := Off - Typ.W;
return;
end if;
if W = 0 then
-- Nothing to read.
return;
end if;
case Typ.Kind is
when Type_Bit =>
-- Scalar bits cannot be cut.
pragma Assert (Typ.W = 1);
pragma Assert (Off = 0 and W >= 1);
Bit2logvec (Uns32 (Read_U8 (Mem)), Vec_Off, Vec);
-- One bit read and written.
Vec_Off := Vec_Off + 1;
W := W - 1;
when Type_Logic =>
-- Scalar bits cannot be cut.
pragma Assert (Typ.W = 1);
pragma Assert (Off = 0 and W >= 1);
Logic2logvec (Int64 (Read_U8 (Mem)), Vec_Off, Vec, Has_Zx);
-- One bit read and written.
Vec_Off := Vec_Off + 1;
W := W - 1;
when Type_Discrete =>
-- Scalar bits cannot be cut.
pragma Assert (Off = 0 and W >= Typ.W);
Uns2logvec (To_Uns64 (Read_Discrete (Memtyp'(Typ, Mem))),
Typ.W, Vec, Vec_Off);
W := W - Typ.W;
when Type_Float =>
-- Fp64 is for sure 64 bits. Assume the endianness of floats is
-- the same as integers endianness.
-- Scalar bits cannot be cut.
pragma Assert (Off = 0 and W >= Typ.W);
Uns2logvec (To_Uns64 (Read_Fp64 (Mem)), 64, Vec, Vec_Off);
W := W - Typ.W;
when Type_Vector =>
declare
Vlen : constant Uns32 := Uns32 (Vec_Length (Typ));
Len : Uns32;
begin
pragma Assert (Off < Vlen);
pragma Assert (Vlen > 0);
if Vlen > Off + W then
-- The vector is longer than the number of bits to read.
-- Read less.
Len := Off + W;
else
-- Read the whole vector.
Len := Vlen;
end if;
-- In memory MEM, bits are stored from left to right, so in
-- big endian (MSB is written at offset 0, LSB at
-- offset VLEN - 1). Need to reverse: LSB is read first.
case Typ.Arr_El.Kind is
when Type_Bit =>
-- TODO: optimize off mod 32 = 0.
for I in Off .. Len - 1 loop
Bit2logvec
(Uns32 (Read_U8 (Mem + Size_Type (Vlen - 1 - I))),
Vec_Off, Vec);
Vec_Off := Vec_Off + 1;
end loop;
when Type_Logic =>
for I in Off .. Len - 1 loop
Logic2logvec
(Int64 (Read_U8 (Mem + Size_Type (Vlen - 1 - I))),
Vec_Off, Vec, Has_Zx);
Vec_Off := Vec_Off + 1;
end loop;
when others =>
raise Internal_Error;
end case;
W := W - (Len - Off);
Off := 0;
end;
when Type_Array =>
declare
Alen : constant Uns32 := Get_Bound_Length (Typ);
El_Typ : constant Type_Acc := Typ.Arr_El;
begin
for I in reverse 1 .. Alen loop
Value2logvec (Mem + Size_Type (I - 1) * El_Typ.Sz, El_Typ,
Off, W, Vec, Vec_Off, Has_Zx);
exit when W = 0;
end loop;
end;
when Type_Record =>
for I in Typ.Rec.E'Range loop
Value2logvec (Mem + Typ.Rec.E (I).Offs.Mem_Off,
Typ.Rec.E (I).Typ, Off, W, Vec, Vec_Off, Has_Zx);
exit when W = 0;
end loop;
when Type_Access =>
-- Accesses cannot be indexed or sliced.
-- Just fill with 'X'.
pragma Assert (Off = 0 and W >= Typ.W);
for I in 0 .. Typ.W - 1 loop
declare
Idx : constant Digit_Index := Digit_Index (Vec_Off / 32);
Pos : constant Natural := Natural (Vec_Off mod 32);
begin
Vec (Idx).Val := Vec (Idx).Val or Shift_Left (1, Pos);
Vec (Idx).Zx := Vec (Idx).Zx or Shift_Left (1, Pos);
end;
Vec_Off := Vec_Off + 1;
end loop;
W := W - Typ.W;
when others =>
raise Internal_Error;
end case;
end Value2logvec;
procedure Value2logvec (Val : Memtyp;
Off : Uns32;
W : Width;
Vec : in out Logvec_Array;
Vec_Off : in out Uns32;
Has_Zx : in out Boolean)
is
Off1 : Uns32;
W1 : Width;
begin
Off1 := Off;
W1 := W;
Value2logvec (Val.Mem, Val.Typ, Off1, W1, Vec, Vec_Off, Has_Zx);
pragma Assert (Off1 = 0);
pragma Assert (W1 = 0);
end Value2logvec;
-- Resize for a discrete value.
function Synth_Resize
(Ctxt : Context_Acc; Val : Valtyp; W : Width; Loc : Node) return Net
is
Wn : constant Width := Val.Typ.W;
N : Net;
Res : Net;
V : Int64;
begin
if Is_Static (Val.Val)
and then Wn /= W
then
-- Optimization: resize directly.
V := Read_Discrete (Val);
if Val.Typ.Drange.Is_Signed then
Res := Build2_Const_Int (Ctxt, V, W);
else
Res := Build2_Const_Uns (Ctxt, To_Uns64 (V), W);
end if;
Set_Location (Res, Loc);
return Res;
end if;
N := Get_Net (Ctxt, Val);
if Wn > W then
return Build2_Trunc (Ctxt, Id_Utrunc, N, W, Get_Location (Loc));
elsif Wn < W then
if Val.Typ.Drange.Is_Signed then
Res := Build_Extend (Ctxt, Id_Sextend, N, W);
else
Res := Build_Extend (Ctxt, Id_Uextend, N, W);
end if;
Set_Location (Res, Loc);
return Res;
else
return N;
end if;
end Synth_Resize;
procedure Concat_Array (Ctxt : Context_Acc; Arr : in out Net_Array)
is
Last : Int32;
Idx, New_Idx : Int32;
begin
Last := Arr'Last;
while Last > Arr'First loop
Idx := Arr'First;
New_Idx := Arr'First - 1;
while Idx <= Last loop
-- Gather at most 4 nets.
New_Idx := New_Idx + 1;
if Idx = Last then
Arr (New_Idx) := Arr (Idx);
Idx := Idx + 1;
elsif Idx + 1 = Last then
Arr (New_Idx) := Build_Concat2
(Ctxt, Arr (Idx), Arr (Idx + 1));
Idx := Idx + 2;
elsif Idx + 2 = Last then
Arr (New_Idx) := Build_Concat3
(Ctxt, Arr (Idx), Arr (Idx + 1), Arr (Idx + 2));
Idx := Idx + 3;
else
Arr (New_Idx) := Build_Concat4
(Ctxt,
Arr (Idx), Arr (Idx + 1), Arr (Idx + 2), Arr (Idx + 3));
Idx := Idx + 4;
end if;
end loop;
Last := New_Idx;
end loop;
end Concat_Array;
procedure Concat_Array
(Ctxt : Context_Acc; Arr : in out Net_Array; N : out Net) is
begin
Concat_Array (Ctxt, Arr);
N := Arr (Arr'First);
end Concat_Array;
function Synth_Array_Bounds (Syn_Inst : Synth_Instance_Acc;
Atype : Node;
Dim : Dim_Type) return Bound_Type
is
use Elab.Vhdl_Annotations;
Info : constant Sim_Info_Acc := Get_Ann (Atype);
begin
if Info = null then
pragma Assert (Get_Type_Declarator (Atype) = Null_Node);
declare
Index_Type : constant Node :=
Get_Index_Type (Atype, Natural (Dim - 1));
begin
return Synth_Bounds_From_Range (Syn_Inst, Index_Type);
end;
else
declare
Bnds : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Atype);
begin
pragma Assert (Dim = 1);
return Get_Array_Bound (Bnds);
end;
end if;
end Synth_Array_Bounds;
-- Change the bounds of VAL.
function Reshape_Value (Val : Valtyp; Ntype : Type_Acc) return Valtyp is
begin
case Val.Val.Kind is
when Value_Wire =>
return Create_Value_Wire
(Get_Value_Wire (Val.Val), Ntype, Current_Pool);
when Value_Net =>
return Create_Value_Net (Get_Value_Net (Val.Val), Ntype);
when Value_Alias =>
return Create_Value_Alias
((Val.Val.A_Typ, Val.Val.A_Obj), Val.Val.A_Off, Ntype,
Current_Pool);
when Value_Const =>
return Reshape_Value ((Val.Typ, Val.Val.C_Val), Ntype);
when Value_Memory =>
return (Ntype, Val.Val);
when others =>
raise Internal_Error;
end case;
end Reshape_Value;
function Convert_Array_Indexes (Syn_Inst : Synth_Instance_Acc;
Utype : Type_Acc;
Stype : Type_Acc;
Loc : Node) return Type_Acc
is
Res_El : Type_Acc;
begin
if not Stype.Alast then
Res_El := Convert_Array_Indexes
(Syn_Inst, Utype.Uarr_El, Stype.Arr_El, Loc);
else
Res_El := Stype.Arr_El;
end if;
-- FIXME: we assume the index types are closely related...
if Stype.Abound.Len = 0
or else
(In_Range (Utype.Uarr_Idx.Drange, Int64 (Stype.Abound.Left))
and then
In_Range (Utype.Uarr_Idx.Drange, Int64 (Stype.Abound.Right)))
then
case Utype.Kind is
when Type_Unbounded_Array =>
return Create_Array_Type
(Stype.Abound, False, Utype.Ulast, Res_El);
when Type_Unbounded_Vector =>
return Create_Vector_Type
(Stype.Abound, False, Res_El);
when others =>
raise Internal_Error;
end case;
else
Error_Msg_Synth (Syn_Inst, Loc, "indexes out of range");
return Stype;
end if;
end Convert_Array_Indexes;
pragma Unreferenced (Convert_Array_Indexes);
-- Convert OBJ to T, assuming matching indexes.
function Convert_Indexes (T : Type_Acc; Obj : Type_Acc) return Type_Acc is
begin
if Obj = T then
return Obj;
end if;
case T.Kind is
when Type_Scalars
| Type_Access
| Type_File
| Type_Protected
| Type_Slice =>
raise Internal_Error;
when Type_Unbounded_Vector =>
return Obj;
when Type_Vector =>
return T;
when Type_Array =>
return T;
when Type_Array_Unbounded =>
-- Element is unbounded.
declare
El : Type_Acc;
begin
El := Convert_Indexes (T.Arr_El, Obj.Arr_El);
return Create_Array_Type (T.Abound, T.Is_Bnd_Static,
T.Alast, El);
end;
when Type_Unbounded_Array =>
declare
El : Type_Acc;
begin
El := Convert_Indexes (T.Uarr_El, Obj.Arr_El);
return Create_Array_Type (Obj.Abound, Obj.Is_Bnd_Static,
T.Ulast, El);
end;
when Type_Record =>
return T;
when Type_Unbounded_Record =>
declare
Els : Rec_El_Array_Acc;
begin
Els := Create_Rec_El_Array (T.Rec.Len);
for I in Els.E'Range loop
Els.E (I).Typ := Convert_Indexes
(T.Rec.E (I).Typ, Obj.Rec.E (I).Typ);
-- Offsets don't change, only bounds do.
Els.E (I).Offs := Obj.Rec.E (I).Offs;
end loop;
return Create_Record_Type (T.Rec_Base, Els);
end;
end case;
end Convert_Indexes;
-- Return True iff bounds of T and OBJ matches.
-- Return False and emit an error message if not.
function Check_Matching_Bounds (Syn_Inst : Synth_Instance_Acc;
T : Type_Acc;
Obj : Type_Acc;
Loc : Node) return Boolean
is
begin
if T = Obj then
return True;
end if;
case T.Kind is
when Type_Scalars
| Type_Access
| Type_File
| Type_Protected =>
return True;
when Type_Unbounded_Vector =>
pragma Assert (Obj.Kind = Type_Vector
or else Obj.Kind = Type_Slice);
return True;
when Type_Vector =>
pragma Assert (Obj.Kind = Type_Vector
or Obj.Kind = Type_Slice);
if T.W /= Obj.W then
Error_Msg_Synth (Syn_Inst, Loc,
"mismatching vector length; got %v, expect %v",
(+Obj.W, +T.W));
return False;
end if;
when Type_Array
| Type_Array_Unbounded =>
pragma Assert (Obj.Kind = Type_Array);
-- Check bounds.
declare
Src_Typ, Dst_Typ : Type_Acc;
begin
Src_Typ := T;
Dst_Typ := Obj;
loop
pragma Assert (Src_Typ.Alast = Dst_Typ.Alast);
if Src_Typ.Abound.Len /= Dst_Typ.Abound.Len then
Error_Msg_Synth
(Syn_Inst, Loc, "mismatching array bounds");
return False;
end if;
exit when Src_Typ.Alast;
Src_Typ := Src_Typ.Arr_El;
Dst_Typ := Dst_Typ.Arr_El;
end loop;
return Check_Matching_Bounds
(Syn_Inst, Src_Typ.Arr_El, Dst_Typ.Arr_El, Loc);
end;
when Type_Unbounded_Array =>
pragma Assert (Obj.Kind = Type_Array);
declare
T1, O1 : Type_Acc;
begin
T1 := T;
O1 := Obj;
loop
pragma Assert (T1.Ulast = O1.Alast);
exit when T1.Ulast;
T1 := T1.Uarr_El;
O1 := O1.Arr_El;
end loop;
return Check_Matching_Bounds
(Syn_Inst, T1.Uarr_El, O1.Arr_El, Loc);
end;
when Type_Record
| Type_Unbounded_Record =>
pragma Assert (Obj.Kind = Type_Record);
for I in T.Rec.E'Range loop
if not Check_Matching_Bounds
(Syn_Inst, T.Rec.E (I).Typ, Obj.Rec.E (I).Typ, Loc)
then
return False;
end if;
end loop;
when Type_Slice =>
raise Internal_Error;
end case;
return True;
end Check_Matching_Bounds;
function Synth_Subtype_Conversion (Syn_Inst : Synth_Instance_Acc;
Vt : Valtyp;
Dtype : Type_Acc;
Bounds : Boolean;
Loc : Source.Syn_Src) return Valtyp
is
Vtype : constant Type_Acc := Vt.Typ;
begin
if Vt = No_Valtyp then
-- Propagate error.
return No_Valtyp;
end if;
if Dtype = Vtype then
return Vt;
end if;
case Dtype.Kind is
when Type_Bit =>
pragma Assert (Vtype.Kind = Type_Bit);
return Vt;
when Type_Logic =>
pragma Assert (Vtype.Kind = Type_Logic);
return Vt;
when Type_Discrete =>
pragma Assert (Vtype.Kind in Type_All_Discrete);
case Vt.Val.Kind is
when Value_Net
| Value_Wire
| Value_Alias =>
if Vtype.W /= Dtype.W then
-- Truncate.
-- TODO: check overflow.
declare
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
N : Net;
begin
if Is_Static_Val (Vt.Val) then
return Create_Value_Discrete
(Get_Static_Discrete (Vt), Dtype);
end if;
N := Get_Net (Ctxt, Vt);
if Vtype.Drange.Is_Signed then
N := Build2_Sresize
(Ctxt, N, Dtype.W, Get_Location (Loc));
else
N := Build2_Uresize
(Ctxt, N, Dtype.W, Get_Location (Loc));
end if;
return Create_Value_Net (N, Dtype);
end;
else
return Vt;
end if;
when Value_Const =>
return Synth_Subtype_Conversion
(Syn_Inst, (Vt.Typ, Vt.Val.C_Val), Dtype, Bounds, Loc);
when Value_Memory =>
-- Check for overflow.
declare
Val : constant Int64 := Read_Discrete (Vt);
begin
if not In_Range (Dtype.Drange, Val) then
Error_Msg_Synth (Syn_Inst, Loc, "value out of range");
return No_Valtyp;
end if;
return Create_Value_Discrete (Val, Dtype);
end;
when others =>
raise Internal_Error;
end case;
when Type_Float =>
pragma Assert (Vtype.Kind = Type_Float);
if Vt.Val.Kind = Value_Memory then
declare
Val : constant Fp64 := Read_Fp64 (Vt);
begin
if not In_Float_Range (Dtype.Frange, Val) then
Error_Msg_Synth (Syn_Inst, Loc, "value out of range");
return No_Valtyp;
end if;
return Create_Value_Float (Val, Dtype);
end;
else
-- Is it possible ? Only const ?
return Vt;
end if;
when Type_Vector
| Type_Unbounded_Vector =>
pragma Assert (Vtype.Kind = Type_Vector
or Vtype.Kind = Type_Slice);
if not Check_Matching_Bounds(Syn_Inst, Dtype, Vtype, Loc) then
return No_Valtyp;
end if;
if Bounds then
return Reshape_Value (Vt, Convert_Indexes (Dtype, Vtype));
else
return Vt;
end if;
when Type_Slice =>
-- TODO: check width
return Vt;
when Type_Array
| Type_Array_Unbounded
| Type_Unbounded_Array =>
pragma Assert (Vtype.Kind = Type_Array);
if not Check_Matching_Bounds(Syn_Inst, Dtype, Vtype, Loc) then
return No_Valtyp;
end if;
if Bounds then
return Reshape_Value (Vt, Convert_Indexes (Dtype, Vtype));
else
return Vt;
end if;
when Type_Record
| Type_Unbounded_Record =>
pragma Assert (Vtype.Kind = Type_Record);
if not Check_Matching_Bounds(Syn_Inst, Dtype, Vtype, Loc) then
return No_Valtyp;
end if;
if Bounds then
return Reshape_Value (Vt, Convert_Indexes (Dtype, Vtype));
else
return Vt;
end if;
when Type_Access =>
return Vt;
when Type_File
| Type_Protected =>
-- No conversion expected.
-- As the subtype is identical, it is already handled by the
-- above check.
raise Internal_Error;
end case;
end Synth_Subtype_Conversion;
function Synth_Name (Syn_Inst : Synth_Instance_Acc; Name : Node)
return Valtyp is
begin
case Get_Kind (Name) is
when Iir_Kind_Simple_Name
| Iir_Kind_Selected_Name
| Iir_Kind_Attribute_Name =>
return Synth_Name (Syn_Inst, Get_Named_Entity (Name));
when Iir_Kind_Interface_Signal_Declaration
| Iir_Kind_Variable_Declaration
| Iir_Kind_Interface_Variable_Declaration
| Iir_Kind_Signal_Declaration
| Iir_Kinds_Signal_Attribute
| Iir_Kind_Guard_Signal_Declaration
| Iir_Kind_Interface_Constant_Declaration
| Iir_Kind_Constant_Declaration
| Iir_Kind_Iterator_Declaration
| Iir_Kind_Free_Quantity_Declaration
| Iir_Kinds_Branch_Quantity_Declaration
| Iir_Kind_Object_Alias_Declaration
| Iir_Kind_Non_Object_Alias_Declaration
| Iir_Kind_File_Declaration
| Iir_Kind_Interface_File_Declaration =>
return Get_Value (Syn_Inst, Name);
when Iir_Kind_Attribute_Value =>
-- It's a little bit complex for attribute of an entity or
-- of an architecture as there might be no instances for them.
-- Simply recompute it in that case; the expression is locally
-- static.
case Get_Kind (Get_Designated_Entity (Name)) is
when Iir_Kind_Entity_Declaration
| Iir_Kind_Architecture_Body =>
declare
Spec : constant Node :=
Get_Attribute_Specification (Name);
begin
return Synth_Expression (Syn_Inst, Get_Expression (Spec));
end;
when others =>
return Get_Value (Syn_Inst, Name);
end case;
when Iir_Kind_Enumeration_Literal =>
declare
Typ : constant Type_Acc :=
Get_Subtype_Object (Syn_Inst, Get_Type (Name));
Res : Valtyp;
begin
Res := Create_Value_Memory (Typ, Current_Pool);
Write_Discrete (Res, Int64 (Get_Enum_Pos (Name)));
return Res;
end;
when Iir_Kind_Unit_Declaration =>
declare
Typ : constant Type_Acc :=
Get_Subtype_Object (Syn_Inst, Get_Type (Name));
begin
return Create_Value_Discrete
(Vhdl.Evaluation.Get_Physical_Value (Name), Typ);
end;
when Iir_Kind_Implicit_Dereference
| Iir_Kind_Dereference =>
declare
Val : Valtyp;
Acc : Heap_Ptr;
Obj : Memtyp;
begin
Val := Synth_Expression (Syn_Inst, Get_Prefix (Name));
Acc := Read_Access (Val);
if Acc = Null_Heap_Ptr then
Error_Msg_Synth (Syn_Inst, Name, "NULL access dereferenced");
return No_Valtyp;
end if;
Obj := Elab.Vhdl_Heap.Synth_Dereference (Acc);
return Create_Value_Memtyp (Obj);
end;
when Iir_Kind_Psl_Endpoint_Declaration =>
return Synth_Expression (Syn_Inst, Name);
when others =>
Error_Kind ("synth_name", Name);
end case;
end Synth_Name;
procedure Bound_Error (Syn_Inst : Synth_Instance_Acc;
Loc : Node;
Bnd : Bound_Type;
Val : Int32) is
begin
case Bnd.Dir is
when Dir_To =>
Error_Msg_Synth (Syn_Inst, Loc,
"index (%v) out of bounds (%v to %v)",
(+Val, +Bnd.Left, +Bnd.Right));
when Dir_Downto =>
Error_Msg_Synth (Syn_Inst, Loc,
"index (%v) out of bounds (%v downto %v)",
(+Val, +Bnd.Left, +Bnd.Right));
end case;
end Bound_Error;
-- Convert index IDX in PFX to an offset.
-- SYN_INST and LOC are used in case of error.
function Index_To_Offset (Syn_Inst : Synth_Instance_Acc;
Bnd : Bound_Type;
Order : Wkind_Type;
Idx : Int64;
Loc : Node) return Value_Offsets
is
Res : Value_Offsets;
begin
if not In_Bounds (Bnd, Int32 (Idx)) then
Bound_Error (Syn_Inst, Loc, Bnd, Int32 (Idx));
return (0, 0);
end if;
-- The offset is from the LSB (bit 0). Bit 0 is the rightmost one.
case Bnd.Dir is
when Dir_To =>
case Order is
when Wkind_Undef
| Wkind_Net =>
Res.Net_Off := Uns32 (Bnd.Right - Int32 (Idx));
when Wkind_Sim =>
Res.Net_Off := Uns32 (Int32 (Idx) - Bnd.Left);
end case;
Res.Mem_Off := Size_Type (Int32 (Idx) - Bnd.Left);
when Dir_Downto =>
case Order is
when Wkind_Undef
| Wkind_Net =>
Res.Net_Off := Uns32 (Int32 (Idx) - Bnd.Right);
when Wkind_Sim =>
Res.Net_Off := Uns32 (Bnd.Left - Int32 (Idx));
end case;
Res.Mem_Off := Size_Type (Bnd.Left - Int32 (Idx));
end case;
return Res;
end Index_To_Offset;
function Dyn_Index_To_Offset
(Ctxt : Context_Acc; Bnd : Bound_Type; Idx_Val : Valtyp; Loc : Node)
return Net
is
Idx2 : Net;
Off : Net;
Right : Net;
Wbounds : Width;
begin
Wbounds := Clog2 (Bnd.Len);
Idx2 := Synth_Resize (Ctxt, Idx_Val, Wbounds, Loc);
if Bnd.Right = 0 and then Bnd.Dir = Dir_Downto then
-- Simple case without adjustments.
return Idx2;
end if;
Right := Build_Const_UB32 (Ctxt, To_Uns32 (Bnd.Right), Wbounds);
Set_Location (Right, Loc);
case Bnd.Dir is
when Dir_To =>
-- L <= I <= R --> off = R - I
Off := Build_Dyadic (Ctxt, Id_Sub, Right, Idx2);
when Dir_Downto =>
-- L >= I >= R --> off = I - R
Off := Build_Dyadic (Ctxt, Id_Sub, Idx2, Right);
end case;
Set_Location (Off, Loc);
return Off;
end Dyn_Index_To_Offset;
procedure Synth_Indexes (Syn_Inst : Synth_Instance_Acc;
Indexes : Iir_Flist;
Dim : Natural;
Arr_Typ : Type_Acc;
El_Typ : out Type_Acc;
Voff : out Net;
Off : out Value_Offsets;
Stride : out Uns32;
Error : out Boolean)
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
Idx_Expr : Node;
Idx_Val : Valtyp;
Idx : Int64;
Bnd : Bound_Type;
Ivoff : Net;
Idx_Off : Value_Offsets;
begin
if Dim > Flist_Last (Indexes) then
Voff := No_Net;
Off := (0, 0);
Error := False;
Stride := 1;
El_Typ := Arr_Typ;
return;
else
Synth_Indexes
(Syn_Inst, Indexes, Dim + 1, Get_Array_Element (Arr_Typ),
El_Typ, Voff, Off, Stride, Error);
end if;
Idx_Expr := Get_Nth_Element (Indexes, Dim);
-- Use the base type as the subtype of the index is not synth-ed.
Idx_Val := Synth_Expression_With_Basetype (Syn_Inst, Idx_Expr);
if Idx_Val = No_Valtyp then
-- Propagate error.
Error := True;
return;
end if;
Strip_Const (Idx_Val);
Bnd := Get_Array_Bound (Arr_Typ);
if Is_Static_Val (Idx_Val.Val) then
Idx := Get_Static_Discrete (Idx_Val);
if not In_Bounds (Bnd, Int32 (Idx)) then
Bound_Error (Syn_Inst, Idx_Expr, Bnd, Int32 (Idx));
Error := True;
else
Idx_Off := Index_To_Offset (Syn_Inst, Bnd, Arr_Typ.Wkind,
Idx, Idx_Expr);
Off.Net_Off := Off.Net_Off
+ Idx_Off.Net_Off * Stride * El_Typ.W;
Off.Mem_Off := Off.Mem_Off
+ Idx_Off.Mem_Off * Size_Type (Stride) * El_Typ.Sz;
end if;
else
Ivoff := Dyn_Index_To_Offset (Ctxt, Bnd, Idx_Val, Idx_Expr);
Ivoff := Build_Memidx
(Get_Build (Syn_Inst), Ivoff, El_Typ.W * Stride,
Bnd.Len - 1,
Width (Clog2 (Uns64 (El_Typ.W * Stride * Bnd.Len))));
Set_Location (Ivoff, Idx_Expr);
if Voff = No_Net then
Voff := Ivoff;
else
Voff := Build_Addidx (Get_Build (Syn_Inst), Ivoff, Voff);
Set_Location (Voff, Idx_Expr);
end if;
end if;
Stride := Stride * Bnd.Len;
end Synth_Indexes;
procedure Synth_Indexed_Name (Syn_Inst : Synth_Instance_Acc;
Name : Node;
Pfx_Type : Type_Acc;
El_Typ : out Type_Acc;
Voff : out Net;
Off : out Value_Offsets;
Error : out Boolean)
is
Indexes : constant Iir_Flist := Get_Index_List (Name);
Stride : Uns32;
begin
Synth_Indexes (Syn_Inst, Indexes, Flist_First, Pfx_Type,
El_Typ, Voff, Off, Stride, Error);
end Synth_Indexed_Name;
function Is_Static (N : Net) return Boolean is
begin
case Get_Id (Get_Module (Get_Net_Parent (N))) is
when Id_Const_UB32 =>
return True;
when others =>
return False;
end case;
end Is_Static;
function Get_Const (N : Net) return Int32
is
Inst : constant Instance := Get_Net_Parent (N);
begin
case Get_Id (Get_Module (Inst)) is
when Id_Const_UB32 =>
return To_Int32 (Get_Param_Uns32 (Inst, 0));
when others =>
raise Internal_Error;
end case;
end Get_Const;
-- Decompose VAL as FACTOR * INP + ADDEND (where only INP is non-static).
procedure Decompose_Mul_Add (Val : Net;
Inp : out Net;
Factor : out Int32;
Addend : out Int32)
is
Inst : Instance;
Val_I0, Val_I1 : Net;
begin
Factor := 1;
Addend := 0;
Inp := Val;
loop
Inst := Get_Net_Parent (Inp);
case Get_Id (Get_Module (Inst)) is
when Id_Add =>
Val_I0 := Get_Input_Net (Inst, 0);
Val_I1 := Get_Input_Net (Inst, 1);
if Is_Static (Val_I0) then
Addend := Addend + Get_Const (Val_I0) * Factor;
Inp := Val_I1;
elsif Is_Static (Val_I1) then
Addend := Addend + Get_Const (Val_I1) * Factor;
Inp := Val_I0;
else
-- It's an addition, but without any constant value.
return;
end if;
when Id_Sub =>
Val_I0 := Get_Input_Net (Inst, 0);
Val_I1 := Get_Input_Net (Inst, 1);
if Is_Static (Val_I1) then
Addend := Addend - Get_Const (Val_I1) * Factor;
Inp := Val_I0;
elsif Is_Static (Val_I0) then
Addend := Addend + Get_Const (Val_I0) * Factor;
Factor := -Factor;
Inp := Val_I1;
else
-- It's a substraction, but without any constant value.
return;
end if;
when Id_Smul =>
Val_I0 := Get_Input_Net (Inst, 0);
Val_I1 := Get_Input_Net (Inst, 1);
if Is_Static (Val_I0) then
Factor := Factor * Get_Const (Val_I0);
Inp := Val_I1;
elsif Is_Static (Val_I1) then
Factor := Factor * Get_Const (Val_I1);
Inp := Val_I0;
else
-- A mul but without any constant value.
return;
end if;
when Id_Utrunc
| Id_Uextend =>
Inp := Get_Input_Net (Inst, 0);
when others =>
-- Cannot decompose it.
return;
end case;
end loop;
end Decompose_Mul_Add;
-- Identify LEFT to/downto RIGHT as:
-- INP * STEP + WIDTH - 1 + OFF to/downto INP * STEP + OFF
procedure Synth_Extract_Dyn_Suffix (Syn_Inst : Synth_Instance_Acc;
Ctxt : Context_Acc;
Loc : Node;
Pfx_Bnd : Bound_Type;
Left : Net;
Right : Net;
Inp : out Net;
Step : out Uns32;
Off : out Uns32;
Width : out Uns32)
is
L_Inp, R_Inp : Net;
L_Fac, R_Fac : Int32;
L_Add, R_Add : Int32;
Sstep : Int32;
Soff : Int32;
Bias : Int32;
Bias_Net : Net;
begin
Inp := No_Net;
Step := 0;
Off := 0;
Width := 0;
if Left = Right then
L_Inp := Left;
R_Inp := Right;
L_Fac := 1;
R_Fac := 1;
L_Add := 0;
R_Add := 0;
else
Decompose_Mul_Add (Left, L_Inp, L_Fac, L_Add);
Decompose_Mul_Add (Right, R_Inp, R_Fac, R_Add);
end if;
if not Same_Net (L_Inp, R_Inp) then
Error_Msg_Synth
(Syn_Inst, Loc,
"cannot extract same variable part for dynamic slice");
return;
end if;
Inp := L_Inp;
if L_Fac /= R_Fac then
Error_Msg_Synth
(Syn_Inst, Loc,
"cannot extract same constant factor for dynamic slice");
return;
end if;
-- Compute step and width.
Sstep := abs L_Fac;
Step := Uns32 (Sstep);
case Pfx_Bnd.Dir is
when Dir_To =>
if R_Add < L_Add then
Width := 0;
else
Width := Uns32 (R_Add - L_Add + 1);
end if;
when Dir_Downto =>
if L_Add < R_Add then
Width := 0;
else
Width := Uns32 (L_Add - R_Add + 1);
end if;
end case;
if Width = 0 then
Inp := No_Net;
Off := 0;
return;
end if;
-- TODO: degenerated dynamic slice.
pragma Assert (L_Fac /= 0);
case Pfx_Bnd.Dir is
when Dir_To =>
-- Transformations:
--
-- Bounds: l to r
-- Slice: L+fac*i to L+(W-1)+fac*i
--
-- Bounds: 0 to len-1
-- Slice: (L-l)+fac*i to (L-l)+(W-1)+fac*i
--
-- Bounds: len-1 downto 0
-- Slice: xxx downto (len-1)-(L-l)-(W-1)-fac*i
-- xxx downto (r-l-L+l-W+1)-fac*i
-- downto (r-L-W+1)-fac*i
Soff := Pfx_Bnd.Right - L_Add - Int32 (Width) + 1;
when Dir_Downto =>
-- Transformations:
--
-- Bounds: l downto r
-- Slice: R+(W-1)+fac*i downto R+fac*i
--
-- Bounds: len-1 downto 0
-- Slice: R-r+(W-1)+fac*i downto R-r+fac*i
Soff := R_Add - Pfx_Bnd.Right;
end case;
-- So IDX = SOFF + INP * FAC
-- = SOFF +/- INP * STEP
-- We need to adjust for memidx:
-- IDX = OFF + STEP * (B +/- INP)
-- with OFF > 0, STEP > 0
-- Ensure Off is between 0 and Step - 1
if Soff >= 0 then
Bias := Soff / Sstep;
Off := Uns32 (Soff - Bias * Sstep); -- mod
else
Bias := -((-Soff) / Sstep);
-- Note: SOFF < 0, BIAS < 0.
Soff := Soff - Bias * Sstep;
if Soff < 0 then
Soff := Soff + Sstep;
Bias := Bias - 1;
end if;
Off := Uns32 (Soff);
end if;
pragma Assert (Off < Step);
-- Assume input width large enough to cover all the values of the
-- bounds.
if (Pfx_Bnd.Dir = Dir_Downto and then L_Fac > 0)
or else (Pfx_Bnd.Dir = Dir_To and then L_Fac < 0)
then
-- Same direction.
if Bias /= 0 then
Bias_Net := Build2_Const_Int (Ctxt, Int64 (Bias), Get_Width (Inp));
Inp := Build_Dyadic (Ctxt, Id_Add, Inp, Bias_Net);
Set_Location (Inp, Loc);
end if;
else
if Bias /= 0 then
Bias_Net := Build2_Const_Int (Ctxt, Int64 (Bias), Get_Width (Inp));
Inp := Build_Dyadic (Ctxt, Id_Sub, Bias_Net, Inp);
else
Inp := Build_Monadic (Ctxt, Id_Neg, Inp);
end if;
Set_Location (Inp, Loc);
end if;
end Synth_Extract_Dyn_Suffix;
procedure Synth_Slice_Const_Suffix (Syn_Inst: Synth_Instance_Acc;
Expr : Node;
Name : Node;
Pfx_Bnd : Bound_Type;
Order : Wkind_Type;
L, R : Int64;
Dir : Direction_Type;
El_Typ : Type_Acc;
Res_Bnd : out Bound_Type;
Off : out Value_Offsets;
Error : out Boolean)
is
Is_Null : Boolean;
Len : Uns32;
begin
if Pfx_Bnd.Dir /= Dir then
Error_Msg_Synth (Syn_Inst, Name,
"slice direction doesn't match index direction");
Off := (0, 0);
if Dir = Dir_To then
Res_Bnd := (Dir => Dir_To, Left => 1, Right => 0, Len => 0);
else
Res_Bnd := (Dir => Dir_Downto, Left => 0, Right => 1, Len => 0);
end if;
Error := True;
return;
end if;
-- Might be a null slice.
case Pfx_Bnd.Dir is
when Dir_To =>
Is_Null := L > R;
when Dir_Downto =>
Is_Null := L < R;
end case;
if Is_Null then
Len := 0;
Off := (0, 0);
else
if not In_Bounds (Pfx_Bnd, Int32 (L)) then
Bound_Error (Syn_Inst, Expr, Pfx_Bnd, Int32 (L));
Off := (0, 0);
Error := True;
return;
end if;
if not In_Bounds (Pfx_Bnd, Int32 (R)) then
Bound_Error (Syn_Inst, Expr, Pfx_Bnd, Int32 (R));
Off := (0, 0);
Error := True;
return;
end if;
case Pfx_Bnd.Dir is
when Dir_To =>
Len := Uns32 (R - L + 1);
case Order is
when Wkind_Undef
| Wkind_Net =>
Off.Net_Off :=
Uns32 (Pfx_Bnd.Right - Int32 (R)) * El_Typ.W;
when Wkind_Sim =>
Off.Net_Off :=
Uns32 (Int32 (L) - Pfx_Bnd.Left) * El_Typ.W;
end case;
Off.Mem_Off := Size_Type (Int32 (L) - Pfx_Bnd.Left) * El_Typ.Sz;
when Dir_Downto =>
Len := Uns32 (L - R + 1);
case Order is
when Wkind_Undef
| Wkind_Net =>
Off.Net_Off :=
Uns32 (Int32 (R) - Pfx_Bnd.Right) * El_Typ.W;
when Wkind_Sim =>
Off.Net_Off :=
Uns32 (Pfx_Bnd.Left - Int32 (L)) * El_Typ.W;
end case;
Off.Mem_Off := Size_Type (Pfx_Bnd.Left - Int32 (L)) * El_Typ.Sz;
end case;
end if;
Res_Bnd := (Dir => Pfx_Bnd.Dir,
Len => Len,
Left => Int32 (L),
Right => Int32 (R));
Error := False;
end Synth_Slice_Const_Suffix;
procedure Synth_Slice_Suffix (Syn_Inst : Synth_Instance_Acc;
Name : Node;
Pfx_Bnd : Bound_Type;
Order : Wkind_Type;
El_Typ : Type_Acc;
Res_Bnd : out Bound_Type;
Inp : out Net;
Off : out Value_Offsets;
Error : out Boolean)
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
Expr : constant Node := Get_Suffix (Name);
Left, Right : Valtyp;
Dir : Direction_Type;
Step : Uns32;
Max : Uns32;
Inp_W : Width;
begin
Off := (0, 0);
Inp := No_Net;
if Get_Kind (Expr) = Iir_Kind_Range_Expression then
-- As the range may be dynamic, cannot use synth_discrete_range.
Left := Synth_Expression_With_Basetype
(Syn_Inst, Get_Left_Limit (Expr));
Right := Synth_Expression_With_Basetype
(Syn_Inst, Get_Right_Limit (Expr));
Dir := Get_Direction (Expr);
else
declare
Rng : Discrete_Range_Type;
begin
Synth_Discrete_Range (Syn_Inst, Expr, Rng);
Synth_Slice_Const_Suffix (Syn_Inst, Expr,
Name, Pfx_Bnd, Order,
Rng.Left, Rng.Right, Rng.Dir,
El_Typ, Res_Bnd, Off, Error);
return;
end;
end if;
if Is_Static_Val (Left.Val) and then Is_Static_Val (Right.Val) then
Synth_Slice_Const_Suffix (Syn_Inst, Expr,
Name, Pfx_Bnd, Order,
Get_Static_Discrete (Left),
Get_Static_Discrete (Right),
Dir,
El_Typ, Res_Bnd, Off, Error);
else
if Pfx_Bnd.Dir /= Dir then
Error_Msg_Synth (Syn_Inst, Name, "direction mismatch in slice");
if Dir = Dir_To then
Res_Bnd := (Dir => Dir_To, Left => 1, Right => 0, Len => 0);
else
Res_Bnd := (Dir => Dir_Downto, Left => 0, Right => 1, Len => 0);
end if;
Error := True;
return;
end if;
if Is_Static (Left.Val) or else Is_Static (Right.Val) then
Error_Msg_Synth
(Syn_Inst, Name, "left and right bounds of a slice must be "
& "either constant or dynamic");
Error := True;
return;
end if;
Synth_Extract_Dyn_Suffix (Syn_Inst, Ctxt, Name, Pfx_Bnd,
Get_Net (Ctxt, Left), Get_Net (Ctxt, Right),
Inp, Step, Off.Net_Off, Res_Bnd.Len);
if Inp = No_Net then
Error := True;
return;
end if;
Inp_W := Get_Width (Inp);
-- FIXME: convert range to offset.
-- Extract max from the range.
-- example: len=128 wd=8 step=8 => max=16
-- len=8 wd=4 step=1 => max=4
-- max so that max*step+wd <= len - off
-- max <= (len - off - wd) / step
Max := (Pfx_Bnd.Len - Off.Net_Off - Res_Bnd.Len) / Step;
if Max > 2**Natural (Inp_W) - 1 then
-- The width of Inp limits the max.
Max := 2**Natural (Inp_W) - 1;
end if;
Inp := Build_Memidx
(Ctxt, Inp, Step * El_Typ.W, Max,
Inp_W + Width (Clog2 (Uns64 (Step * El_Typ.W))));
Set_Location (Inp, Name);
Error := False;
end if;
end Synth_Slice_Suffix;
-- Match: clk_signal_name'event
-- and return clk_signal_name.
function Extract_Event_Expr_Prefix (Expr : Node) return Node is
begin
if Get_Kind (Expr) = Iir_Kind_Event_Attribute then
return Get_Prefix (Expr);
else
return Null_Node;
end if;
end Extract_Event_Expr_Prefix;
function Is_Same_Clock (Syn_Inst : Synth_Instance_Acc;
Left, Right : Node;
Clk_Left : Net) return Boolean
is
N : Net;
begin
-- Handle directly the common case (when clock is a simple name).
if Get_Kind (Left) = Iir_Kind_Simple_Name
and then Get_Kind (Right) = Iir_Kind_Simple_Name
then
return Get_Named_Entity (Left) = Get_Named_Entity (Right);
end if;
N := Get_Net (Get_Build (Syn_Inst), Synth_Expression (Syn_Inst, Right));
return Same_Net (Clk_Left, N);
end Is_Same_Clock;
-- Match: clk_signal_name = '1' | clk_signal_name = '0'
function Extract_Clock_Level
(Syn_Inst : Synth_Instance_Acc; Expr : Node; Prefix : Node) return Net
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
Clk : Net;
Imp : Node;
Left, Right : Node;
Lit : Valtyp;
Lit_Type : Node;
Posedge : Boolean;
Res : Net;
begin
Clk := Get_Net (Ctxt, Synth_Expression (Syn_Inst, Prefix));
if Get_Kind (Expr) /= Iir_Kind_Equality_Operator then
Error_Msg_Synth
(Syn_Inst, Expr, "ill-formed clock-level, '=' expected");
Res := Build_Posedge (Ctxt, Clk);
Set_Location (Res, Expr);
return Res;
end if;
Imp := Get_Implementation (Expr);
if Get_Implicit_Definition (Imp) /= Iir_Predefined_Enum_Equality then
Error_Msg_Synth
(Syn_Inst, Expr, "ill-formed clock-level, '=' expected");
Res := Build_Posedge (Ctxt, Clk);
Set_Location (Res, Expr);
return Res;
end if;
Left := Get_Left (Expr);
if not Is_Same_Clock (Syn_Inst, Prefix, Left, Clk) then
Error_Msg_Synth (Syn_Inst, Left, "clock signal name doesn't match");
end if;
Right := Get_Right (Expr);
Lit_Type := Get_Base_Type (Get_Type (Right));
Lit := Synth_Expression (Syn_Inst, Right);
if Lit.Val.Kind /= Value_Memory then
Error_Msg_Synth (Syn_Inst, Right, "clock-level is not a constant");
Posedge := True;
else
if Lit_Type = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_Type then
case Read_U8 (Lit.Val.Mem) is
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos =>
Posedge := False;
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos =>
Posedge := True;
when others =>
Error_Msg_Synth
(Syn_Inst, Right, "clock-level must be either '0' or '1'");
Posedge := True;
end case;
else
pragma Assert (Lit_Type = Vhdl.Std_Package.Bit_Type_Definition);
case Read_U8 (Lit.Val.Mem) is
when 0 =>
Posedge := False;
when 1 =>
Posedge := True;
when others =>
raise Internal_Error;
end case;
end if;
end if;
if Posedge then
Res := Build_Posedge (Ctxt, Clk);
else
Res := Build_Negedge (Ctxt, Clk);
end if;
Set_Location (Res, Expr);
return Res;
end Extract_Clock_Level;
-- Try to match: clk'event and clk = X
-- or: clk = X and clk'event
-- where X is '0' or '1'.
function Synth_Clock_Edge
(Syn_Inst : Synth_Instance_Acc; Left, Right : Node) return Net
is
Prefix : Node;
begin
-- Try with left.
Prefix := Extract_Event_Expr_Prefix (Left);
if Is_Valid (Prefix) then
return Extract_Clock_Level (Syn_Inst, Right, Prefix);
end if;
-- Try with right.
Prefix := Extract_Event_Expr_Prefix (Right);
if Is_Valid (Prefix) then
return Extract_Clock_Level (Syn_Inst, Left, Prefix);
end if;
return No_Net;
end Synth_Clock_Edge;
function Synth_Type_Conversion (Syn_Inst : Synth_Instance_Acc;
Val : Valtyp;
Conv_Typ : Type_Acc;
Loc : Node) return Valtyp
is
Res : Valtyp;
begin
case Conv_Typ.Kind is
when Type_Discrete =>
if Val.Typ.Kind = Type_Discrete then
-- Int to int.
Res := Synth_Subtype_Conversion
(Syn_Inst, Val, Conv_Typ, False, Loc);
return Res;
elsif Val.Typ.Kind = Type_Float then
pragma Assert (Is_Static (Val.Val));
declare
V : constant Fp64 := Read_Fp64 (Val);
Err : Boolean;
begin
case Conv_Typ.Drange.Dir is
when Dir_To =>
Err := V < Fp64 (Conv_Typ.Drange.Left)
or V > Fp64 (Conv_Typ.Drange.Right);
when Dir_Downto =>
Err := V < Fp64 (Conv_Typ.Drange.Right)
or V > Fp64 (Conv_Typ.Drange.Left);
end case;
if Err then
Error_Msg_Synth (Syn_Inst, Loc, "value out of range");
return No_Valtyp;
end if;
return Create_Value_Discrete (Int64 (V), Conv_Typ);
end;
else
Error_Msg_Synth (Syn_Inst, Loc,
"unhandled type conversion (to int)");
return No_Valtyp;
end if;
when Type_Float =>
if Is_Static (Val.Val) then
declare
R : Fp64;
begin
case Val.Typ.Kind is
when Type_Discrete =>
R := Fp64 (Read_Discrete (Val));
when Type_Float =>
R := Read_Fp64 (Val);
when others =>
raise Internal_Error;
end case;
Res := Create_Value_Float (R, Conv_Typ);
return Res;
end;
else
Error_Msg_Synth (Syn_Inst, Loc,
"unhandled type conversion (to float)");
return No_Valtyp;
end if;
when Type_Vector
| Type_Array =>
-- Check length, replace bounds.
declare
Src_Typ, Dst_Typ : Type_Acc;
begin
Src_Typ := Val.Typ;
Dst_Typ := Conv_Typ;
loop
if Src_Typ.Abound.Len /= Dst_Typ.Abound.Len then
Error_Msg_Synth (Syn_Inst, Loc, "array length mismatch");
return No_Valtyp;
end if;
exit when Src_Typ.Alast;
Src_Typ := Src_Typ.Arr_El;
Dst_Typ := Dst_Typ.Arr_El;
end loop;
return (Typ => Conv_Typ, Val => Val.Val);
end;
when Type_Unbounded_Vector
| Type_Unbounded_Array =>
-- Check bounds fit in target
declare
Src_Typ, Dst_Typ : Type_Acc;
begin
Src_Typ := Val.Typ;
Dst_Typ := Conv_Typ;
loop
Elab.Vhdl_Types.Check_Bound_Compatibility
(Syn_Inst, Loc, Src_Typ.Abound, Dst_Typ.Uarr_Idx);
exit when Src_Typ.Alast;
Src_Typ := Src_Typ.Arr_El;
Dst_Typ := Dst_Typ.Arr_El;
end loop;
return Val;
end;
when Type_Bit
| Type_Logic =>
return Val;
when Type_Record
| Type_Unbounded_Record =>
return Val;
when others =>
Error_Msg_Synth (Syn_Inst, Loc, "unhandled type conversion");
return No_Valtyp;
end case;
end Synth_Type_Conversion;
function Synth_Type_Conversion
(Syn_Inst : Synth_Instance_Acc; Conv : Node) return Valtyp
is
Expr : constant Node := Get_Expression (Conv);
Conv_Type : constant Node := Get_Type (Conv);
Conv_Typ : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Conv_Type);
Val : Valtyp;
begin
Val := Synth_Expression_With_Basetype (Syn_Inst, Expr);
if Val = No_Valtyp then
return No_Valtyp;
end if;
Strip_Const (Val);
return Synth_Type_Conversion (Syn_Inst, Val, Conv_Typ, Conv);
end Synth_Type_Conversion;
function Error_Ieee_Operator
(Syn_Inst : Synth_Instance_Acc; Imp : Node; Loc : Node) return Boolean
is
use Std_Names;
Parent : constant Iir := Get_Parent (Imp);
begin
if Get_Kind (Parent) = Iir_Kind_Package_Declaration
and then (Get_Identifier
(Get_Library (Get_Design_File (Get_Design_Unit (Parent))))
= Name_Ieee)
then
case Get_Identifier (Parent) is
when Name_Std_Logic_1164
| Name_Std_Logic_Arith
| Name_Std_Logic_Signed
| Name_Std_Logic_Unsigned
| Name_Std_Logic_Misc
| Name_Numeric_Std
| Name_Numeric_Bit
| Name_Math_Real =>
Error_Msg_Synth (Syn_Inst, Loc,
"unhandled predefined IEEE operator %i", +Imp);
Error_Msg_Synth (Syn_Inst, Imp,
" declared here");
return True;
when others =>
-- ieee 2008 packages are handled like regular packages.
null;
end case;
end if;
return False;
end Error_Ieee_Operator;
-- Return the left bound if the direction of the range is LEFT_DIR.
function Synth_Low_High_Type_Attribute
(Syn_Inst : Synth_Instance_Acc; Expr : Node; Left_Dir : Direction_Type)
return Valtyp
is
Typ : Type_Acc;
R : Int64;
begin
Typ := Get_Subtype_Object (Syn_Inst, Get_Type (Get_Prefix (Expr)));
pragma Assert (Typ.Kind = Type_Discrete);
if Typ.Drange.Dir = Left_Dir then
R := Typ.Drange.Left;
else
R := Typ.Drange.Right;
end if;
return Create_Value_Discrete (R, Typ);
end Synth_Low_High_Type_Attribute;
-- For 'Succ, 'Pred, 'Leftof or 'Rightof
function Synth_Inc_Dec_Attribute (Syn_Inst : Synth_Instance_Acc;
Expr : Node;
Dtype : Type_Acc;
Is_Inc : Boolean) return Valtyp
is
Param : constant Node := Get_Parameter (Expr);
Val : Valtyp;
Res : Valtyp;
begin
Val := Synth_Expression_With_Type (Syn_Inst, Param, Dtype);
if Is_Static (Val.Val) then
declare
T : Int64;
Err : Boolean;
begin
T := Read_Discrete (Val);
case Dtype.Drange.Dir is
when Dir_To =>
if Is_Inc then
Err := T >= Dtype.Drange.Right;
else
Err := T <= Dtype.Drange.Left;
end if;
when Dir_Downto =>
if Is_Inc then
Err := T >= Dtype.Drange.Left;
else
Err := T <= Dtype.Drange.Right;
end if;
end case;
if Err then
Error_Msg_Synth (Syn_Inst, Expr, "value out of range");
return No_Valtyp;
end if;
Res := Create_Value_Memory (Dtype, Expr_Pool'Access);
if Is_Inc then
T := T + 1;
else
T := T - 1;
end if;
Write_Discrete (Res, T);
end;
else
declare
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
N, One : Net;
Op : Module_Id;
begin
N := Get_Net (Ctxt, Val);
One := Build_Const_UB32 (Ctxt, 1, Dtype.W);
if Is_Inc then
Op := Id_Add;
else
Op := Id_Sub;
end if;
N := Build_Dyadic (Ctxt, Op, N, One);
Set_Location (N, Expr);
Res := Create_Value_Net (N, Dtype);
end;
end if;
return Res;
end Synth_Inc_Dec_Attribute;
function Synth_PSL_Expression
(Syn_Inst : Synth_Instance_Acc; Expr : PSL.Types.PSL_Node) return Net
is
use PSL.Types;
use PSL.Nodes;
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
Loc : constant Location_Type := Get_Location (Expr);
Res : Net;
begin
case Get_Kind (Expr) is
when N_HDL_Bool =>
declare
E : constant Vhdl.Types.Vhdl_Node := Get_HDL_Node (Expr);
Val : Valtyp;
begin
Val := Synth_Expression (Syn_Inst, E);
if Val = No_Valtyp then
return No_Net;
end if;
return Get_Net (Ctxt, Val);
end;
when N_Not_Bool =>
declare
V : Net;
begin
pragma Assert (Loc /= No_Location);
V := Synth_PSL_Expression (Syn_Inst, Get_Boolean (Expr));
if V = No_Net then
return No_Net;
end if;
Res := Build_Monadic (Ctxt, Id_Not, V);
end;
when N_And_Bool =>
pragma Assert (Loc /= No_Location);
declare
L : constant PSL_Node := Get_Left (Expr);
R : constant PSL_Node := Get_Right (Expr);
Lv, Rv : Net;
Edge : Net;
begin
-- Handle edge (as it can be in default clock).
if Get_Kind (L) in N_HDLs and then Get_Kind (R) in N_HDLs then
Edge := Synth_Clock_Edge
(Syn_Inst, Get_HDL_Node (L), Get_HDL_Node (R));
if Edge /= No_Net then
return Edge;
end if;
end if;
if Get_Kind (R) = N_EOS then
-- It is never EOS!
Res := Build_Const_UB32 (Ctxt, 0, 1);
else
Lv := Synth_PSL_Expression (Syn_Inst, L);
Rv := Synth_PSL_Expression (Syn_Inst, R);
if Lv = No_Net or Rv = No_Net then
return No_Net;
end if;
Res := Build_Dyadic (Ctxt, Id_And, Lv, Rv);
end if;
end;
when N_Or_Bool =>
declare
Lv, Rv : Net;
begin
pragma Assert (Loc /= No_Location);
Lv := Synth_PSL_Expression (Syn_Inst, Get_Left (Expr));
Rv := Synth_PSL_Expression (Syn_Inst, Get_Right (Expr));
if Lv = No_Net or Rv = No_Net then
return No_Net;
end if;
Res := Build_Dyadic (Ctxt, Id_Or, Lv, Rv);
end;
when N_True =>
Res := Build_Const_UB32 (Ctxt, 1, 1);
when N_False
| N_EOS =>
Res := Build_Const_UB32 (Ctxt, 0, 1);
when others =>
PSL.Errors.Error_Kind ("synth_psl_expr", Expr);
return No_Net;
end case;
Netlists.Locations.Set_Location (Get_Net_Parent (Res), Loc);
return Res;
end Synth_PSL_Expression;
function Synth_Psl_Function_Clock
(Syn_Inst : Synth_Instance_Acc; Call : Node; Ctxt : Context_Acc)
return Net
is
Clock : Node;
Clk : Valtyp;
Clk_Net : Net;
begin
Clock := Get_Clock_Expression (Call);
if Clock /= Null_Node then
Clk := Synth_Expression (Syn_Inst, Clock);
Clk_Net := Get_Net (Ctxt, Clk);
else
Clock := Get_Default_Clock (Call);
pragma Assert (Clock /= Null_Node);
Clk_Net := Synth_PSL_Expression (Syn_Inst, Get_Psl_Boolean (Clock));
end if;
return Clk_Net;
end Synth_Psl_Function_Clock;
function Synth_Psl_Prev (Syn_Inst : Synth_Instance_Acc; Call : Node)
return Valtyp
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
Count : constant Node := Get_Count_Expression (Call);
Count_Val : Valtyp;
Dff : Net;
Expr : Valtyp;
Clk_Net : Net;
Num : Int64;
begin
Expr := Synth_Expression_With_Basetype (Syn_Inst, Get_Expression (Call));
Clk_Net := Synth_Psl_Function_Clock (Syn_Inst, Call, Ctxt);
if Count /= Null_Node then
Count_Val := Synth_Expression (Syn_Inst, Count);
Num := Read_Discrete (Count_Val);
pragma Assert (Num >= 1);
else
Num := 1;
end if;
Dff := Get_Net (Ctxt, Expr);
for I in 1 .. Num loop
Dff := Build_Dff (Ctxt, Clk_Net, Dff);
Set_Location (Dff, Call);
end loop;
return Create_Value_Net (Dff, Expr.Typ);
end Synth_Psl_Prev;
function Synth_Psl_Stable (Syn_Inst : Synth_Instance_Acc; Call : Node)
return Valtyp
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
DffCurr : Net;
Dff : Net;
Expr : Valtyp;
Clk_Net : Net;
Res : Net;
begin
Expr := Synth_Expression_With_Basetype (Syn_Inst, Get_Expression (Call));
Clk_Net := Synth_Psl_Function_Clock (Syn_Inst, Call, Ctxt);
DffCurr := Get_Net (Ctxt, Expr);
Set_Location (DffCurr, Call);
Dff := Build_Dff (Ctxt, Clk_Net, DffCurr);
Set_Location (Dff, Call);
Res := Build_Compare(Ctxt, Id_Eq, DffCurr, Dff);
Set_Location (Res, Call);
return Create_Value_Net (Res, Boolean_Type);
end Synth_Psl_Stable;
function Synth_Psl_Rose (Syn_Inst : Synth_Instance_Acc; Call : Node)
return Valtyp
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
DffCurr : Net;
Dff : Net;
NotDff : Net;
Clk_Net : Net;
Expr : Valtyp;
Res : Net;
begin
Expr := Synth_Expression (Syn_Inst, Get_Expression (Call));
Clk_Net := Synth_Psl_Function_Clock (Syn_Inst, Call, Ctxt);
DffCurr := Get_Net (Ctxt, Expr);
Set_Location (DffCurr, Call);
Dff := Build_Dff (Ctxt, Clk_Net, DffCurr);
Set_Location (Dff, Call);
NotDff := Build_Monadic (Ctxt, Id_Not, Dff);
Set_Location (NotDff, Call);
Res := Build_Dyadic (Ctxt, Id_And,
NotDff, DffCurr);
Set_Location (Res, Call);
return Create_Value_Net (Res, Boolean_Type);
end Synth_Psl_Rose;
function Synth_Psl_Fell (Syn_Inst : Synth_Instance_Acc; Call : Node)
return Valtyp
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
DffCurr : Net;
NotDffCurr : Net;
Dff : Net;
Clk_Net : Net;
Expr : Valtyp;
Res : Net;
begin
Expr := Synth_Expression (Syn_Inst, Get_Expression (Call));
Clk_Net := Synth_Psl_Function_Clock(Syn_Inst, Call, Ctxt);
DffCurr := Get_Net (Ctxt, Expr);
Set_Location (DffCurr, Call);
Dff := Build_Dff (Ctxt, Clk_Net, DffCurr);
Set_Location (Dff, Call);
NotDffCurr := Build_Monadic (Ctxt, Id_Not, DffCurr);
Set_Location (NotDffCurr, Call);
Res := Build_Dyadic (Ctxt, Id_And, Dff, NotDffCurr);
Set_Location (Res, Call);
return Create_Value_Net (Res, Boolean_Type);
end Synth_Psl_Fell;
function Synth_Onehot0 (Ctxt : Context_Acc; DffCurr : Net; Call : Node;
Vlen : Uns32)
return Net
is
DffZero : Net;
DffOne : Net;
DffOneHot0 : Net;
Res : Net;
begin
-- Create a constant vector of 0 for comparing
DffZero := Build2_Const_Uns(Ctxt, 0, Vlen);
-- Create vector of value 1 for subtraction
DffOne := Build2_Const_Uns(Ctxt, 1, Vlen);
-- Subtraction -> v - 1
DffOneHot0 := Build_Dyadic (Ctxt, Id_Sub, DffCurr, DffOne);
Set_Location (DffOneHot0, Call);
-- Binary And -> v & (v - 1)
DffOneHot0 := Build_Dyadic (Ctxt, Id_And, DffCurr, DffOneHot0);
Set_Location (DffOneHot0, Call);
-- Compare with 0 -> (v & (v - 1)) == 0
Res := Build_Compare (Ctxt, Id_Eq, DffOneHot0, DffZero);
Set_Location (Res, Call);
return Res;
end Synth_Onehot0;
function Synth_Psl_Onehot (Syn_Inst : Synth_Instance_Acc; Call : Node)
return Valtyp
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
Expr : Valtyp;
DffCurr : Net;
DffCurrIsNotZero : Net;
DffOneHot0 : Net;
Res : Net;
Vlen : Uns32;
begin
-- Get parameter & its length
Expr := Synth_Expression (Syn_Inst, Get_Expression (Call));
Vlen := Expr.Typ.W;
-- First get net of parameter
DffCurr := Get_Net (Ctxt, Expr);
Set_Location (DffCurr, Call);
-- Compare parameter with 0 -> v != 0
DffCurrIsNotZero := Build_Compare (Ctxt, Id_Ne, DffCurr,
Build2_Const_Uns(Ctxt, 0, Vlen));
Set_Location (DffCurrIsNotZero, Call);
-- Synth onehot0
DffOneHot0 := Synth_Onehot0 (Ctxt, DffCurr, Call, Vlen);
Set_Location (DffOneHot0, Call);
-- Final Binary And -> (v != 0) & ((v & (v - 1)) == 0)
Res := Build_Dyadic (Ctxt, Id_And, DffOneHot0, DffCurrIsNotZero);
Set_Location (Res, Call);
return Create_Value_Net (Res, Boolean_Type);
end Synth_Psl_Onehot;
function Synth_Psl_Onehot0 (Syn_Inst : Synth_Instance_Acc; Call : Node)
return Valtyp
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
Expr : Valtyp;
Vlen : Uns32;
DffCurr : Net;
Res : Net;
begin
-- Get parameter & its length
Expr := Synth_Expression (Syn_Inst, Get_Expression (Call));
Vlen := Expr.Typ.W;
-- First get net of parameter
DffCurr := Get_Net (Ctxt, Expr);
Set_Location (DffCurr, Call);
-- Synth onehot0
Res := Synth_Onehot0 (Ctxt, DffCurr, Call, Vlen);
return Create_Value_Net (Res, Boolean_Type);
end Synth_Psl_Onehot0;
subtype And_Or_Module_Id is Module_Id range Id_And .. Id_Or;
function Synth_Short_Circuit (Syn_Inst : Synth_Instance_Acc;
Id : And_Or_Module_Id;
Left_Expr : Node;
Right_Expr : Node;
Typ : Type_Acc;
Expr : Node) return Valtyp
is
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
Left : Valtyp;
Right : Valtyp;
Val : Int64;
N : Net;
begin
-- The short-circuit value.
case Id is
when Id_And =>
Val := 0;
when Id_Or =>
Val := 1;
end case;
Left := Synth_Expression_With_Type (Syn_Inst, Left_Expr, Typ);
if Left = No_Valtyp then
-- Propagate error.
return No_Valtyp;
end if;
if Is_Static_Val (Left.Val)
and then Get_Static_Discrete (Left) = Val
then
-- Short-circuit when the left operand determines the result.
return Create_Value_Discrete (Val, Typ);
end if;
Strip_Const (Left);
Right := Synth_Expression_With_Type (Syn_Inst, Right_Expr, Typ);
if Right = No_Valtyp then
-- Propagate error.
return No_Valtyp;
end if;
Strip_Const (Right);
if Is_Static_Val (Right.Val)
and then Get_Static_Discrete (Right) = Val
then
-- If the right operand can determine the result, return it.
return Create_Value_Discrete (Val, Typ);
end if;
-- Return a static value if both operands are static.
-- Note: we know the value of left if it is not constant.
if Is_Static_Val (Left.Val) and then Is_Static_Val (Right.Val) then
Val := Get_Static_Discrete (Right);
return Create_Value_Discrete (Val, Typ);
end if;
-- Non-static result.
N := Build_Dyadic (Ctxt, Id,
Get_Net (Ctxt, Left), Get_Net (Ctxt, Right));
Set_Location (N, Expr);
return Create_Value_Net (N, Typ);
end Synth_Short_Circuit;
-- Return the type for 'left/'right/... attributes.
function Synth_Type_Attribute (Syn_Inst : Synth_Instance_Acc; Attr : Node)
return Type_Acc
is
Pfx : constant Node := Get_Prefix (Attr);
begin
if Get_Kind (Pfx) = Iir_Kind_Subtype_Attribute then
-- Prefix is an object.
declare
V : Valtyp;
begin
V := Get_Value (Syn_Inst, Get_Named_Entity (Get_Prefix (Pfx)));
return V.Typ;
end;
else
-- The prefix is a type.
return Get_Subtype_Object
(Syn_Inst, Get_Subtype_Indication (Get_Named_Entity (Pfx)));
end if;
end Synth_Type_Attribute;
function Synth_Expression_With_Type (Syn_Inst : Synth_Instance_Acc;
Expr : Node;
Expr_Type : Type_Acc) return Valtyp is
begin
case Get_Kind (Expr) is
when Iir_Kinds_Dyadic_Operator =>
declare
Imp : constant Node := Get_Implementation (Expr);
Def : constant Iir_Predefined_Functions :=
Get_Implicit_Definition (Imp);
Edge : Net;
begin
-- Match clock-edge (only for synthesis)
if Def = Iir_Predefined_Boolean_And
and then Hook_Signal_Expr = null
then
Edge := Synth_Clock_Edge (Syn_Inst,
Get_Left (Expr), Get_Right (Expr));
if Edge /= No_Net then
return Create_Value_Net (Edge, Boolean_Type);
end if;
end if;
-- Specially handle short-circuit operators.
case Def is
when Iir_Predefined_Boolean_And =>
return Synth_Short_Circuit
(Syn_Inst, Id_And, Get_Left (Expr), Get_Right (Expr),
Boolean_Type, Expr);
when Iir_Predefined_Boolean_Or =>
return Synth_Short_Circuit
(Syn_Inst, Id_Or, Get_Left (Expr), Get_Right (Expr),
Boolean_Type, Expr);
when Iir_Predefined_Bit_And =>
return Synth_Short_Circuit
(Syn_Inst, Id_And, Get_Left (Expr), Get_Right (Expr),
Bit_Type, Expr);
when Iir_Predefined_Bit_Or =>
return Synth_Short_Circuit
(Syn_Inst, Id_Or, Get_Left (Expr), Get_Right (Expr),
Bit_Type, Expr);
when Iir_Predefined_None =>
if Error_Ieee_Operator (Syn_Inst, Imp, Expr) then
return No_Valtyp;
else
return Synth_User_Operator
(Syn_Inst, Get_Left (Expr), Get_Right (Expr), Expr);
end if;
when others =>
return Synth_Dyadic_Operation
(Syn_Inst, Imp,
Get_Left (Expr), Get_Right (Expr), Expr);
end case;
end;
when Iir_Kinds_Monadic_Operator =>
declare
Imp : constant Node := Get_Implementation (Expr);
Def : constant Iir_Predefined_Functions :=
Get_Implicit_Definition (Imp);
begin
if Def = Iir_Predefined_None then
if Error_Ieee_Operator (Syn_Inst, Imp, Expr) then
return No_Valtyp;
else
return Synth_User_Operator
(Syn_Inst, Get_Operand (Expr), Null_Node, Expr);
end if;
else
return Synth_Monadic_Operation
(Syn_Inst, Imp, Get_Operand (Expr), Expr);
end if;
end;
when Iir_Kind_Simple_Name
| Iir_Kind_Selected_Name
| Iir_Kind_Attribute_Name
| Iir_Kind_Interface_Signal_Declaration -- For PSL.
| Iir_Kind_Signal_Declaration -- For PSL.
| Iir_Kind_Guard_Signal_Declaration
| Iir_Kind_Object_Alias_Declaration -- For PSL
| Iir_Kind_Non_Object_Alias_Declaration -- For PSL
| Iir_Kind_Implicit_Dereference
| Iir_Kind_Dereference =>
declare
Res : Valtyp;
begin
Res := Synth_Name (Syn_Inst, Expr);
if Res.Val /= null then
if (Res.Val.Kind = Value_Signal
or else Res.Val.Kind = Value_Sig_Val
or else (Res.Val.Kind = Value_Alias
and then Res.Val.A_Obj.Kind = Value_Signal))
then
if Hook_Signal_Expr /= null then
return Hook_Signal_Expr (Res);
end if;
Error_Msg_Synth
(Syn_Inst, Expr,
"cannot use signal value during elaboration");
return No_Valtyp;
elsif (Res.Val.Kind = Value_Quantity
or else
(Res.Val.Kind = Value_Alias
and then Res.Val.A_Obj.Kind = Value_Quantity))
then
if Hook_Quantity_Expr /= null then
return Hook_Quantity_Expr (Res);
end if;
Error_Msg_Synth
(Syn_Inst, Expr, "cannot use quantity value");
return No_Valtyp;
end if;
end if;
if Res.Typ /= null
and then Res.Typ.W = 0 and then Res.Val.Kind /= Value_Memory
then
-- This is a null object. As nothing can be done about it,
-- returns 0.
return Create_Value_Memtyp (Create_Memory_Zero (Res.Typ));
end if;
return Res;
end;
when Iir_Kinds_Signal_Attribute =>
declare
Res : Valtyp;
begin
if Hook_Signal_Expr = null then
Error_Msg_Synth (Syn_Inst, Expr,
"signal attribute not supported");
Res := No_Valtyp;
else
Res := Synth_Name (Syn_Inst, Expr);
Res := Hook_Signal_Expr (Res);
end if;
return Res;
end;
when Iir_Kind_Reference_Name =>
-- Only used for anonymous signals in internal association.
return Synth_Expression_With_Type
(Syn_Inst, Get_Named_Entity (Expr), Expr_Type);
when Iir_Kind_Indexed_Name
| Iir_Kind_Slice_Name =>
declare
Base : Valtyp;
Typ : Type_Acc;
Off : Value_Offsets;
Res : Valtyp;
Dyn : Dyn_Name;
begin
Synth_Assignment_Prefix (Syn_Inst, Expr, Base, Typ, Off, Dyn);
if Base = No_Valtyp then
-- Propagate error.
return No_Valtyp;
end if;
if Hook_Signal_Expr /= null
and then (Base.Val.Kind = Value_Signal
or else Base.Val.Kind = Value_Sig_Val)
then
Base := Hook_Signal_Expr (Base);
end if;
if Dyn.Voff = No_Net and then Is_Static (Base.Val) then
Res := Create_Value_Memtyp
((Typ, Base.Val.Mem + Off.Mem_Off));
return Res;
end if;
return Synth_Read_Memory
(Syn_Inst, Base, Typ, Off.Net_Off, Dyn, Expr);
end;
when Iir_Kind_Selected_Element =>
declare
Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
Idx : constant Iir_Index32 :=
Get_Element_Position (Get_Named_Entity (Expr));
Pfx : constant Node := Get_Prefix (Expr);
Res_Typ : Type_Acc;
N : Net;
Val : Valtyp;
Res : Valtyp;
begin
Val := Synth_Expression (Syn_Inst, Pfx);
Strip_Const (Val);
Res_Typ := Val.Typ.Rec.E (Idx + 1).Typ;
if Res_Typ.W = 0 and then Val.Val.Kind /= Value_Memory then
-- This is a null object. As nothing can be done about it,
-- returns 0.
return Create_Value_Memtyp (Create_Memory_Zero (Res_Typ));
elsif Is_Static (Val.Val) then
-- TODO: why a copy ?
Res := Create_Value_Memory (Res_Typ, Current_Pool);
Copy_Memory
(Res.Val.Mem,
Get_Memory (Val)
+ Val.Typ.Rec.E (Idx + 1).Offs.Mem_Off,
Res_Typ.Sz);
return Res;
else
N := Build2_Extract (Ctxt, Get_Net (Ctxt, Val),
Val.Typ.Rec.E (Idx + 1).Offs.Net_Off,
Get_Type_Width (Res_Typ));
Set_Location (N, Expr);
return Create_Value_Net (N, Res_Typ);
end if;
end;
when Iir_Kind_Character_Literal =>
return Synth_Expression_With_Type
(Syn_Inst, Get_Named_Entity (Expr), Expr_Type);
when Iir_Kind_Integer_Literal =>
declare
Res : Valtyp;
V : Int64;
begin
Res := Create_Value_Memory (Expr_Type, Current_Pool);
V := Get_Value (Expr);
if Expr_Type.Sz = 4
and then (V < Int64 (Int32'First) or V > Int64 (Int32'Last))
then
-- TODO: should not exist, should be an overflow.
Error_Msg_Synth (Syn_Inst, Expr, "value out of range");
return No_Valtyp;
end if;
Write_Discrete (Res, V);
return Res;
end;
when Iir_Kind_Floating_Point_Literal =>
return Create_Value_Float (Get_Fp_Value (Expr), Expr_Type);
when Iir_Kind_Physical_Int_Literal
| Iir_Kind_Physical_Fp_Literal =>
return Create_Value_Discrete
(Get_Physical_Value (Expr), Expr_Type);
when Iir_Kind_String_Literal8 =>
return Elab.Vhdl_Expr.Exec_String_Literal
(Syn_Inst, Expr, Expr_Type);
when Iir_Kind_Enumeration_Literal =>
return Synth_Name (Syn_Inst, Expr);
when Iir_Kind_Type_Conversion =>
return Synth_Type_Conversion (Syn_Inst, Expr);
when Iir_Kind_Qualified_Expression =>
return Synth_Expression_With_Type
(Syn_Inst, Get_Expression (Expr),
Get_Subtype_Object (Syn_Inst, Get_Type (Get_Type_Mark (Expr))));
when Iir_Kind_Function_Call =>
declare
Imp : constant Node := Get_Implementation (Expr);
begin
case Get_Implicit_Definition (Imp) is
when Iir_Predefined_Operators
| Iir_Predefined_Ieee_Numeric_Std_Binary_Operators
| Iir_Predefined_Ieee_Numeric_Std_Unsigned_Operators =>
return Synth_Operator_Function_Call (Syn_Inst, Expr);
when Iir_Predefined_None =>
return Synth_User_Function_Call (Syn_Inst, Expr);
when others =>
return Synth_Predefined_Function_Call (Syn_Inst, Expr);
end case;
end;
when Iir_Kind_Aggregate =>
return Synth.Vhdl_Aggr.Synth_Aggregate (Syn_Inst, Expr, Expr_Type);
when Iir_Kind_Simple_Aggregate =>
return Elab.Vhdl_Expr.Exec_Simple_Aggregate (Syn_Inst, Expr);
when Iir_Kind_Parenthesis_Expression =>
return Synth_Expression_With_Type
(Syn_Inst, Get_Expression (Expr), Expr_Type);
when Iir_Kind_Left_Type_Attribute =>
declare
T : Type_Acc;
begin
T := Synth_Type_Attribute (Syn_Inst, Expr);
return Create_Value_Discrete (T.Drange.Left, Expr_Type);
end;
when Iir_Kind_Right_Type_Attribute =>
declare
T : Type_Acc;
begin
T := Synth_Type_Attribute (Syn_Inst, Expr);
return Create_Value_Discrete (T.Drange.Right, Expr_Type);
end;
when Iir_Kind_Left_Array_Attribute =>
declare
B : Bound_Type;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
return Create_Value_Discrete (Int64 (B.Left), Expr_Type);
end;
when Iir_Kind_Right_Array_Attribute =>
declare
B : Bound_Type;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
return Create_Value_Discrete (Int64 (B.Right), Expr_Type);
end;
when Iir_Kind_High_Array_Attribute =>
declare
B : Bound_Type;
V : Int32;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
case B.Dir is
when Dir_To =>
V := B.Right;
when Dir_Downto =>
V := B.Left;
end case;
return Create_Value_Discrete (Int64 (V), Expr_Type);
end;
when Iir_Kind_Low_Array_Attribute =>
declare
B : Bound_Type;
V : Int32;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
case B.Dir is
when Dir_To =>
V := B.Left;
when Dir_Downto =>
V := B.Right;
end case;
return Create_Value_Discrete (Int64 (V), Expr_Type);
end;
when Iir_Kind_Length_Array_Attribute =>
declare
B : Bound_Type;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
return Create_Value_Discrete (Int64 (B.Len), Expr_Type);
end;
when Iir_Kind_Ascending_Array_Attribute =>
declare
B : Bound_Type;
V : Int64;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
case B.Dir is
when Dir_To =>
V := 1;
when Dir_Downto =>
V := 0;
end case;
return Create_Value_Discrete (V, Expr_Type);
end;
when Iir_Kind_Pos_Attribute
| Iir_Kind_Val_Attribute =>
declare
Param : constant Node := Get_Parameter (Expr);
V : Valtyp;
Vi : Int64;
Dtype : Type_Acc;
begin
Dtype := Get_Subtype_Object (Syn_Inst, Get_Type (Expr));
V := Synth_Expression_With_Type (Syn_Inst, Param, Dtype);
-- FIXME: to be generalized. Not always as simple as a
-- subtype conversion.
if Is_Static (V.Val) then
Vi := Read_Discrete (V);
if not In_Range (Dtype.Drange, Vi) then
Error_Msg_Synth (Syn_Inst, Expr, "value out of range");
return No_Valtyp;
end if;
return Create_Value_Discrete (Vi, Dtype);
else
return Synth_Subtype_Conversion
(Syn_Inst, V, Dtype, False, Expr);
end if;
end;
when Iir_Kind_Low_Type_Attribute =>
return Synth_Low_High_Type_Attribute (Syn_Inst, Expr, Dir_To);
when Iir_Kind_High_Type_Attribute =>
return Synth_Low_High_Type_Attribute (Syn_Inst, Expr, Dir_Downto);
when Iir_Kind_Succ_Attribute =>
declare
Dtype : Type_Acc;
begin
Dtype := Get_Subtype_Object (Syn_Inst, Get_Type (Expr));
return Synth_Inc_Dec_Attribute (Syn_Inst, Expr, Dtype, True);
end;
when Iir_Kind_Pred_Attribute =>
declare
Dtype : Type_Acc;
begin
Dtype := Get_Subtype_Object (Syn_Inst, Get_Type (Expr));
return Synth_Inc_Dec_Attribute (Syn_Inst, Expr, Dtype, False);
end;
when Iir_Kind_Leftof_Attribute =>
declare
Dtype : Type_Acc;
begin
Dtype := Get_Subtype_Object (Syn_Inst, Get_Type (Expr));
return Synth_Inc_Dec_Attribute
(Syn_Inst, Expr, Dtype, Dtype.Drange.Dir = Dir_Downto);
end;
when Iir_Kind_Rightof_Attribute =>
declare
Dtype : Type_Acc;
begin
Dtype := Get_Subtype_Object (Syn_Inst, Get_Type (Expr));
return Synth_Inc_Dec_Attribute
(Syn_Inst, Expr, Dtype, Dtype.Drange.Dir = Dir_To);
end;
when Iir_Kind_Value_Attribute =>
return Elab.Vhdl_Expr.Exec_Value_Attribute (Syn_Inst, Expr);
when Iir_Kind_Image_Attribute =>
return Elab.Vhdl_Expr.Exec_Image_Attribute (Syn_Inst, Expr);
when Iir_Kind_Path_Name_Attribute
| Iir_Kind_Instance_Name_Attribute =>
declare
Mt : Memtyp;
begin
Mt := Elab.Vhdl_Expr.Exec_Path_Instance_Name_Attribute
(Syn_Inst, Expr);
return Create_Value_Memtyp (Mt);
end;
when Iir_Kind_Null_Literal =>
return Create_Value_Access (Null_Heap_Ptr, Expr_Type);
when Iir_Kind_Allocator_By_Subtype =>
declare
Acc_Typ : constant Type_Acc :=
Get_Subtype_Object (Syn_Inst, Get_Type (Expr));
T : Type_Acc;
Acc : Heap_Ptr;
begin
T := Synth_Subtype_Indication
(Syn_Inst, Get_Subtype_Indication (Expr));
Acc := Allocate_By_Type (Acc_Typ, T);
return Create_Value_Access (Acc, Expr_Type);
end;
when Iir_Kind_Allocator_By_Expression =>
declare
Acc_Typ : constant Type_Acc :=
Get_Subtype_Object (Syn_Inst, Get_Type (Expr));
V : Valtyp;
Acc : Heap_Ptr;
begin
V := Synth_Expression_With_Type
(Syn_Inst, Get_Expression (Expr), Expr_Type.Acc_Acc);
Acc := Allocate_By_Value (Acc_Typ, V);
return Create_Value_Access (Acc, Expr_Type);
end;
when Iir_Kind_Psl_Prev =>
return Synth_Psl_Prev (Syn_Inst, Expr);
when Iir_Kind_Psl_Stable =>
return Synth_Psl_Stable (Syn_Inst, Expr);
when Iir_Kind_Psl_Rose =>
return Synth_Psl_Rose(Syn_Inst, Expr);
when Iir_Kind_Psl_Fell =>
return Synth_Psl_Fell(Syn_Inst, Expr);
when Iir_Kind_Psl_Onehot =>
return Synth_Psl_Onehot(Syn_Inst, Expr);
when Iir_Kind_Psl_Onehot0 =>
return Synth_Psl_Onehot0(Syn_Inst, Expr);
when Iir_Kind_Overflow_Literal =>
Error_Msg_Synth (Syn_Inst, Expr, "out of bound expression");
return No_Valtyp;
when Iir_Kind_Event_Attribute =>
if Hook_Event_Attribute /= null then
return Hook_Event_Attribute (Syn_Inst, Expr);
end if;
Error_Msg_Synth (Syn_Inst, Expr, "event attribute not allowed");
return No_Valtyp;
when Iir_Kind_Active_Attribute =>
if Hook_Active_Attribute /= null then
return Hook_Active_Attribute (Syn_Inst, Expr);
end if;
Error_Msg_Synth (Syn_Inst, Expr, "active attribute not allowed");
return No_Valtyp;
when Iir_Kind_Driving_Attribute =>
if Hook_Driving_Attribute /= null then
return Hook_Driving_Attribute (Syn_Inst, Expr);
end if;
Error_Msg_Synth (Syn_Inst, Expr, "driving attribute not allowed");
return No_Valtyp;
when Iir_Kind_Driving_Value_Attribute =>
if Hook_Driving_Value_Attribute /= null then
return Hook_Driving_Value_Attribute (Syn_Inst, Expr);
end if;
Error_Msg_Synth (Syn_Inst, Expr,
"driving_value attribute not allowed");
return No_Valtyp;
when Iir_Kind_Last_Value_Attribute =>
if Hook_Last_Value_Attribute /= null then
return Hook_Last_Value_Attribute (Syn_Inst, Expr);
end if;
Error_Msg_Synth (Syn_Inst, Expr,
"last_value attribute not allowed");
return No_Valtyp;
when Iir_Kind_Last_Event_Attribute =>
if Hook_Last_Event_Attribute /= null then
return Hook_Last_Event_Attribute (Syn_Inst, Expr);
end if;
Error_Msg_Synth (Syn_Inst, Expr,
"last_event attribute not allowed");
return No_Valtyp;
when Iir_Kind_Last_Active_Attribute =>
if Hook_Last_Active_Attribute /= null then
return Hook_Last_Active_Attribute (Syn_Inst, Expr);
end if;
Error_Msg_Synth (Syn_Inst, Expr,
"last_active attribute not allowed");
return No_Valtyp;
when Iir_Kind_Dot_Attribute =>
if Hook_Dot_Attribute /= null then
return Hook_Dot_Attribute (Syn_Inst, Expr);
end if;
Error_Msg_Synth (Syn_Inst, Expr, "dot attribute not allowed");
return No_Valtyp;
when Iir_Kind_Psl_Endpoint_Declaration =>
if Hook_Endpoint /= null then
return Hook_Endpoint (Syn_Inst, Expr);
end if;
Error_Msg_Synth (Syn_Inst, Expr, "endpoint read not allowed");
return No_Valtyp;
when others =>
Error_Kind ("synth_expression_with_type", Expr);
end case;
end Synth_Expression_With_Type;
function Synth_Expression (Syn_Inst : Synth_Instance_Acc; Expr : Node)
return Valtyp
is
Etype : Node;
begin
Etype := Get_Type (Expr);
case Get_Kind (Expr) is
when Iir_Kind_Simple_Name
| Iir_Kind_Indexed_Name
| Iir_Kind_Selected_Element
| Iir_Kind_Integer_Literal
| Iir_Kind_String_Literal8
| Iir_Kinds_Array_Attribute =>
-- For array attributes: the type is the type of the index, which
-- is not synthesized as a type (only as an index).
--
-- Likewise for indexed names.
--
-- For integer_literal, the type is not really needed, and it
-- may be created by static evaluation of an array attribute.
Etype := Get_Base_Type (Etype);
when others =>
null;
end case;
return Synth_Expression_With_Type
(Syn_Inst, Expr, Get_Subtype_Object (Syn_Inst, Etype));
end Synth_Expression;
function Synth_Expression_With_Basetype
(Syn_Inst : Synth_Instance_Acc; Expr : Node) return Valtyp
is
Basetype : Type_Acc;
begin
Basetype := Get_Subtype_Object
(Syn_Inst, Get_Base_Type (Get_Type (Expr)));
return Synth_Expression_With_Type (Syn_Inst, Expr, Basetype);
end Synth_Expression_With_Basetype;
end Synth.Vhdl_Expr;
|