aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/synth-stmts.adb
blob: 1fd331e853d6a382cb9b0397480443a0b4ac57fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
--  Statements synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Ada.Unchecked_Deallocation;

with Grt.Algos;
with Areapools;
with Std_Names;

with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Types;
with Vhdl.Sem_Expr;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Ieee.Std_Logic_1164;
with Vhdl.Evaluation;

with PSL.Types;
with PSL.Nodes;
with PSL.NFAs;
with PSL.Errors;

with Synth.Errors; use Synth.Errors;
with Synth.Decls; use Synth.Decls;
with Synth.Expr; use Synth.Expr;
with Synth.Insts; use Synth.Insts;
with Synth.Source;

with Netlists.Builders; use Netlists.Builders;
with Netlists.Gates;
with Netlists.Utils; use Netlists.Utils;
with Netlists.Locations; use Netlists.Locations;

package body Synth.Stmts is
   procedure Synth_Sequential_Statements
     (C : in out Seq_Context; Stmts : Node);

   function Synth_Waveform (Syn_Inst : Synth_Instance_Acc;
                            Wf : Node;
                            Targ_Type : Type_Acc) return Value_Acc is
   begin
      if Get_Kind (Wf) = Iir_Kind_Unaffected_Waveform then
         --  TODO
         raise Internal_Error;
      end if;
      if Get_Chain (Wf) /= Null_Node then
         --  Warning.
         null;
      end if;
      if Get_Time (Wf) /= Null_Node then
         --  Warning
         null;
      end if;
      if Targ_Type = null then
         return Synth_Expression (Syn_Inst, Get_We_Value (Wf));
      else
         return Synth_Expression_With_Type
           (Syn_Inst, Get_We_Value (Wf), Targ_Type);
      end if;
   end Synth_Waveform;

   procedure Synth_Assign (Wid : Wire_Id;
                           Typ : Type_Acc;
                           Val : Value_Acc;
                           Offset : Uns32;
                           Loc : Source.Syn_Src) is
   begin
      Phi_Assign (Build_Context, Wid,
                  Get_Net (Synth_Subtype_Conversion (Val, Typ, False, Loc)),
                  Offset);
   end Synth_Assign;

   procedure Synth_Assignment_Aggregate (Syn_Inst : Synth_Instance_Acc;
                                         Target : Node;
                                         Target_Type : Type_Acc;
                                         Val : Value_Acc;
                                         Loc : Node)
   is
      Choice : Node;
      Assoc : Node;
      Pos : Uns32;
   begin
      if Target_Type.Kind = Type_Vector then
         Choice := Get_Association_Choices_Chain (Target);
         Pos := Target_Type.W;
         while Is_Valid (Choice) loop
            Assoc := Get_Associated_Expr (Choice);
            case Get_Kind (Choice) is
               when Iir_Kind_Choice_By_None =>
                  Pos := Pos - 1;
                  Synth_Assignment
                    (Syn_Inst, Assoc, Bit_Extract (Val, Pos, Target), Loc);
               when others =>
                  Error_Kind ("synth_assignment_aggregate", Choice);
            end case;
            Choice := Get_Chain (Choice);
         end loop;
      else
         raise Internal_Error;
      end if;
   end Synth_Assignment_Aggregate;

   procedure Synth_Assignment_Prefix (Syn_Inst : Synth_Instance_Acc;
                                      Pfx : Node;
                                      Dest_Obj : out Value_Acc;
                                      Dest_Off : out Uns32;
                                      Dest_Type : out Type_Acc) is
   begin
      case Get_Kind (Pfx) is
         when Iir_Kind_Simple_Name =>
            Synth_Assignment_Prefix (Syn_Inst, Get_Named_Entity (Pfx),
                                     Dest_Obj, Dest_Off, Dest_Type);
         when Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Anonymous_Signal_Declaration =>
            declare
               Targ : constant Value_Acc := Get_Value (Syn_Inst, Pfx);
            begin
               Dest_Obj := Targ;
               Dest_Off := 0;
               Dest_Type := Targ.Typ;
            end;
         when Iir_Kind_Object_Alias_Declaration =>
            declare
               Targ : constant Value_Acc := Get_Value (Syn_Inst, Pfx);
            begin
               Dest_Obj := Targ.A_Obj;
               Dest_Off := Targ.A_Off;
               Dest_Type := Targ.Typ;
            end;
         when Iir_Kind_Indexed_Name =>
            declare
               Voff : Net;
               Mul : Uns32;
               Off : Uns32;
               W : Width;
            begin
               Synth_Assignment_Prefix (Syn_Inst, Get_Prefix (Pfx),
                                        Dest_Obj, Dest_Off, Dest_Type);
               Synth_Indexed_Name
                 (Syn_Inst, Pfx, Dest_Type, Voff, Mul, Off, W);

               if Voff /= No_Net then
                  Error_Msg_Synth
                    (+Pfx, "dynamic index must be the last suffix");
               else
                  --  FIXME: check index.
                  pragma Assert (Mul = 0);
                  null;
               end if;

               Dest_Off := Dest_Off + Off;
               Dest_Type := Get_Array_Element (Dest_Type);
            end;

         when Iir_Kind_Selected_Element =>
            declare
               Idx : constant Iir_Index32 :=
                 Get_Element_Position (Get_Named_Entity (Pfx));
            begin
               Synth_Assignment_Prefix (Syn_Inst, Get_Prefix (Pfx),
                                        Dest_Obj, Dest_Off, Dest_Type);
               Dest_Off := Dest_Off + Dest_Type.Rec.E (Idx + 1).Off;
               Dest_Type := Dest_Type.Rec.E (Idx + 1).Typ;
            end;

         when Iir_Kind_Slice_Name =>
            declare
               Res_Bnd : Bound_Type;
               Inp : Net;
               Step : Uns32;
               Sl_Off : Int32;
               Wd : Uns32;
            begin
               Synth_Assignment_Prefix (Syn_Inst, Get_Prefix (Pfx),
                                        Dest_Obj, Dest_Off, Dest_Type);
               Synth_Slice_Suffix (Syn_Inst, Pfx, Dest_Type.Vbound,
                                   Res_Bnd, Inp, Step, Sl_Off, Wd);

               if Inp /= No_Net then
                  Error_Msg_Synth
                    (+Pfx, "dynamic index must be the last suffix");
                  return;
               end if;

               Dest_Type := Create_Vector_Type (Res_Bnd, Dest_Type.Vec_El);
               Dest_Off := Dest_Off + Uns32 (Sl_Off);
            end;

         when others =>
            Error_Kind ("synth_assignment_prefix", Pfx);
      end case;
   end Synth_Assignment_Prefix;

   type Target_Kind is
     (Target_Simple, Target_Aggregate, Target_Memory);

   type Target_Info (Kind : Target_Kind := Target_Simple) is record
      --  In all cases, the type of the target is known or computed.
      Targ_Type : Type_Acc;

      case Kind is
         when Target_Simple =>
            --  For a simple target, the destination is known.
            Obj : Value_Acc;
            Off : Uns32;
         when Target_Aggregate =>
            --  For an aggregate: the type is computed and the details will
            --  be handled at the assignment.
            Aggr : Node;
         when Target_Memory =>
            --  For a memory: the destination is known.
            Mem_Wid : Wire_Id;
            Mem_Off : Uns32;
            Mem_Val : Net;
      end case;
   end record;

   function Synth_Target (Syn_Inst : Synth_Instance_Acc;
                          Target : Node) return Target_Info is
   begin
      case Get_Kind (Target) is
         when Iir_Kind_Aggregate =>
            declare
               Targ_Type : constant Node := Get_Type (Target);
               Base_Typ : Type_Acc;
               Bnd : Bound_Type;
            begin
               Base_Typ :=
                 Get_Value_Type (Syn_Inst, Get_Base_Type (Targ_Type));
               case Base_Typ.Kind is
                  when Type_Unbounded_Vector =>
                     Bnd := Expr.Synth_Array_Bounds (Syn_Inst, Targ_Type, 0);
                     return Target_Info' (Kind => Target_Aggregate,
                                          Targ_Type => Create_Vector_Type
                                            (Bnd, Base_Typ.Uvec_El),
                                          Aggr => Target);
                  when others =>
                     raise Internal_Error;
               end case;
            end;
         when Iir_Kind_Simple_Name
           | Iir_Kind_Selected_Element
           | Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Anonymous_Signal_Declaration =>
            declare
               Obj : Value_Acc;
               Off : Uns32;
               Typ : Type_Acc;
            begin
               Synth_Assignment_Prefix (Syn_Inst, Target, Obj, Off, Typ);
               return Target_Info'(Kind => Target_Simple,
                                   Targ_Type => Typ,
                                   Obj => Obj,
                                   Off => Off);
            end;
         when Iir_Kind_Indexed_Name =>
            declare
               Obj : Value_Acc;
               Off : Uns32;
               Typ : Type_Acc;
               El_Typ : Type_Acc;

               Voff : Net;
               Mul : Uns32;
               Idx_Off : Uns32;
               W : Width;

               Targ_Net : Net;
               V : Net;
            begin
               Synth_Assignment_Prefix (Syn_Inst, Get_Prefix (Target),
                                        Obj, Off, Typ);
               Synth_Indexed_Name (Syn_Inst, Target, Typ,
                                   Voff, Mul, Idx_Off, W);
               El_Typ := Get_Array_Element (Typ);

               if Voff = No_Net then
                  --  FIXME: check index.
                  pragma Assert (Mul = 0);
                  return Target_Info'(Kind => Target_Simple,
                                      Targ_Type => El_Typ,
                                      Obj => Obj,
                                      Off => Off + Idx_Off);
               else
                  Targ_Net := Get_Current_Assign_Value
                    (Build_Context, Obj.W, Off, Get_Type_Width (Typ));
                  V := Build_Dyn_Insert
                    (Build_Context, Targ_Net, No_Net,
                     Voff, Mul, Int32 (Idx_Off));
                  Set_Location (V, Target);
                  return Target_Info'(Kind => Target_Memory,
                                      Targ_Type => El_Typ,
                                      Mem_Wid => Obj.W,
                                      Mem_Off => Off,
                                      Mem_Val => V);
               end if;
            end;
         when Iir_Kind_Slice_Name =>
            declare
               Obj : Value_Acc;
               Off : Uns32;
               Typ : Type_Acc;

               Res_Bnd : Bound_Type;
               Inp : Net;
               Step : Uns32;
               Sl_Off : Int32;
               Wd : Uns32;

               Targ_Net : Net;
               Res_Type : Type_Acc;
               V : Net;
            begin
               Synth_Assignment_Prefix (Syn_Inst, Get_Prefix (Target),
                                        Obj, Off, Typ);
               Synth_Slice_Suffix (Syn_Inst, Target, Typ.Vbound,
                                   Res_Bnd, Inp, Step, Sl_Off, Wd);
               Res_Type := Create_Vector_Type (Res_Bnd, Typ.Vec_El);
               if Inp /= No_Net then
                  Targ_Net := Get_Current_Assign_Value
                    (Build_Context, Obj.W, Off, Get_Type_Width (Typ));
                  V := Build_Dyn_Insert
                    (Build_Context, Targ_Net, No_Net,
                     Inp, Step, Sl_Off);
                  Set_Location (V, Target);
                  return Target_Info'(Kind => Target_Memory,
                                      Targ_Type => Res_Type,
                                      Mem_Wid => Obj.W,
                                      Mem_Off => Off,
                                      Mem_Val => V);
               else
                  return Target_Info'(Kind => Target_Simple,
                                      Targ_Type => Res_Type,
                                      Obj => Obj,
                                      Off => Off + Uns32 (Sl_Off));
               end if;
            end;
         when others =>
            Error_Kind ("synth_target", Target);
      end case;
   end Synth_Target;

   procedure Assign_Value (Targ : Value_Acc; Val : Value_Acc; Loc : Node) is
   begin
      case Targ.Kind is
         when Value_Discrete =>
            Targ.Scal := Val.Scal;
         when Value_Array =>
            declare
               Len : constant Iir_Index32 := Val.Arr.Len;
            begin
               for I in 1 .. Len loop
                  Assign_Value (Targ.Arr.V (Targ.Arr.Len - Len + I),
                                Val.Arr.V (I), Loc);
               end loop;
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Assign_Value;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Target_Info;
                               Val : Value_Acc;
                               Loc : Node) is
   begin
      case Target.Kind is
         when Target_Aggregate =>
            Synth_Assignment_Aggregate
              (Syn_Inst, Target.Aggr, Target.Targ_Type, Val, Loc);
         when Target_Simple =>
            if Target.Obj.Kind = Value_Wire then
               Synth_Assign (Target.Obj.W, Target.Targ_Type,
                             Val, Target.Off, Loc);
            else
               pragma Assert (Target.Off = 0);
               Assign_Value (Target.Obj, Val, Loc);
            end if;
         when Target_Memory =>
            declare
               Inst : constant Instance := Get_Net_Parent (Target.Mem_Val);
            begin
               Connect (Get_Input (Inst, 1), Get_Net (Val));
               Synth_Assign
                 (Target.Mem_Wid, Target.Targ_Type,
                  Create_Value_Net (Target.Mem_Val, Target.Targ_Type),
                  Target.Mem_Off, Loc);
            end;
      end case;
   end Synth_Assignment;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Node;
                               Val : Value_Acc;
                               Loc : Node)
   is
      Info : Target_Info;
   begin
      Info := Synth_Target (Syn_Inst, Target);
      Synth_Assignment (Syn_Inst, Info, Val, Loc);
   end Synth_Assignment;

   --  Concurrent or sequential simple signal assignment
   procedure Synth_Simple_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Targ : Target_Info;
      Val : Value_Acc;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Val := Synth_Waveform
        (Syn_Inst, Get_Waveform_Chain (Stmt), Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Simple_Signal_Assignment;

   procedure Synth_Conditional_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Targ : Target_Info;
      Cond : Node;
      Cwf : Node;
      Val, Cond_Val : Value_Acc;
      First, Last : Net;
      V : Net;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Last := No_Net;
      Cwf := Get_Conditional_Waveform_Chain (Stmt);
      while Cwf /= Null_Node loop
         Val := Synth_Waveform
           (Syn_Inst, Get_Waveform_Chain (Cwf), Targ.Targ_Type);
         V := Get_Net (Val);
         Cond := Get_Condition (Cwf);
         if Cond /= Null_Node then
            Cond_Val := Synth_Expression (Syn_Inst, Cond);
            V := Build_Mux2 (Build_Context,
                             Get_Net (Cond_Val),
                             No_Net, V);
            Set_Location (V, Cwf);
         end if;

         if Last /= No_Net then
            Connect (Get_Input (Get_Net_Parent (Last), 1), V);
         else
            First := V;
         end if;
         Last := V;
         Cwf := Get_Chain (Cwf);
      end loop;
      Val := Create_Value_Net (First, Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Conditional_Signal_Assignment;

   procedure Synth_Variable_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Targ : Target_Info;
      Val : Value_Acc;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Val := Synth_Expression_With_Type
        (Syn_Inst, Get_Expression (Stmt), Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Variable_Assignment;

   procedure Synth_Conditional_Variable_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Target : constant Node := Get_Target (Stmt);
      Targ_Type : Type_Acc;
      Cond : Node;
      Ce : Node;
      Val, Cond_Val : Value_Acc;
      V : Net;
      First, Last : Net;
   begin
      Targ_Type := Get_Value_Type (Syn_Inst, Get_Type (Target));
      Last := No_Net;
      Ce := Get_Conditional_Expression_Chain (Stmt);
      while Ce /= Null_Node loop
         Val := Synth_Expression_With_Type
           (Syn_Inst, Get_Expression (Ce), Targ_Type);
         V := Get_Net (Val);
         Cond := Get_Condition (Ce);
         if Cond /= Null_Node then
            Cond_Val := Synth_Expression (Syn_Inst, Cond);
            V := Build_Mux2 (Build_Context, Get_Net (Cond_Val), No_Net, V);
            Set_Location (V, Ce);
         end if;

         if Last /= No_Net then
            Connect (Get_Input (Get_Net_Parent (Last), 1), V);
         else
            First := V;
         end if;
         Last := V;
         Ce := Get_Chain (Ce);
      end loop;
      Val := Create_Value_Net (First, Targ_Type);
      Synth_Assignment (Syn_Inst, Target, Val, Stmt);
   end Synth_Conditional_Variable_Assignment;

   procedure Synth_If_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Cond : constant Node := Get_Condition (Stmt);
      Els : constant Node := Get_Else_Clause (Stmt);
      Cond_Val : Value_Acc;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      Cond_Val := Synth_Expression (C.Inst, Cond);
      if Is_Const (Cond_Val) then
         if Cond_Val.Scal = 1 then
            --  True.
            Synth_Sequential_Statements
              (C, Get_Sequential_Statement_Chain (Stmt));
         else
            pragma Assert (Cond_Val.Scal = 0);
            if Is_Valid (Els) then
               --  Else part
               if Is_Null (Get_Condition (Els)) then
                  --  Final else part.
                  Synth_Sequential_Statements
                    (C, Get_Sequential_Statement_Chain (Els));
               else
                  --  Elsif.  Handled as a nested if.
                  Synth_If_Statement (C, Els);
               end if;
            end if;
         end if;
      else
         Push_Phi;
         Synth_Sequential_Statements
           (C, Get_Sequential_Statement_Chain (Stmt));
         Pop_Phi (Phi_True);

         Push_Phi;
         if Is_Valid (Els) then
            if Is_Null (Get_Condition (Els)) then
               --  Final else part.
               Synth_Sequential_Statements
                 (C, Get_Sequential_Statement_Chain (Els));
            else
               --  Elsif.  Handled as a nested if.
               Synth_If_Statement (C, Els);
            end if;
         end if;
         Pop_Phi (Phi_False);

         Merge_Phis (Build_Context,
                     Get_Net (Cond_Val), Phi_True, Phi_False, Stmt);
      end if;
   end Synth_If_Statement;

   procedure Convert_Bv_To_Uns64 (Expr : Node; Val : out Uns64; Dc : out Uns64)
   is
      El_Type : constant Node :=
        Get_Base_Type (Get_Element_Subtype (Get_Type (Expr)));
   begin
      if El_Type = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_Type then
         declare
            use Vhdl.Evaluation.String_Utils;

            Info : constant Str_Info := Get_Str_Info (Expr);
         begin
            if Info.Len > 64 then
               raise Internal_Error;
            end if;
            Val := 0;
            Dc := 0;
            for I in 0 .. Info.Len - 1 loop
               Val := Shift_Left (Val, 1);
               Dc := Shift_Left (Dc, 1);
               case Get_Pos (Info, I) is
                  when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos =>
                     Val := Val or 0;
                  when Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos =>
                     Val := Val or 1;
                  when Vhdl.Ieee.Std_Logic_1164.Std_Logic_U_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_W_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_D_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_L_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_H_Pos =>
                     Dc := Dc or 1;
                  when others =>
                     raise Internal_Error;
               end case;
            end loop;
         end;
      else
         raise Internal_Error;
      end if;
   end Convert_Bv_To_Uns64;

   --  EXPR is a choice, so a locally static literal.
   procedure Convert_To_Uns64 (Expr : Node; Val : out Uns64; Dc : out Uns64)
   is
      Expr_Type : constant Node := Get_Type (Expr);
   begin
      case Get_Kind (Expr_Type) is
         when Iir_Kind_Array_Type_Definition
           | Iir_Kind_Array_Subtype_Definition =>
            Convert_Bv_To_Uns64 (Expr, Val, Dc);
         when Iir_Kind_Enumeration_Type_Definition =>
            Dc := 0;
            Val := Uns64 (Get_Enum_Pos (Strip_Denoting_Name (Expr)));
         when Iir_Kind_Integer_Type_Definition =>
            --  TODO: signed values.
            Dc := 0;
            Val := Uns64 (Get_Value (Expr));
         when others =>
            Error_Kind ("convert_to_uns64", Expr_Type);
      end case;
   end Convert_To_Uns64;

   type Alternative_Index is new Int32;

   type Choice_Data_Type is record
      --  Value of the choice
      Val : Uns64;

      --  Corresponding alternative
      Alt : Alternative_Index;
   end record;

   type Choice_Data_Array is array (Natural range <>) of Choice_Data_Type;
   type Choice_Data_Array_Acc is access Choice_Data_Array;
   procedure Free_Choice_Data_Array is new Ada.Unchecked_Deallocation
     (Choice_Data_Array, Choice_Data_Array_Acc);

   type Alternative_Data_Type is record
      Asgns : Seq_Assign;
      Val : Net;
   end record;
   type Alternative_Data_Array is
     array (Alternative_Index range <>) of Alternative_Data_Type;
   type Alternative_Data_Acc is access Alternative_Data_Array;
   procedure Free_Alternative_Data_Array is new Ada.Unchecked_Deallocation
     (Alternative_Data_Array, Alternative_Data_Acc);

   type Wire_Id_Array is array (Natural range <>) of Wire_Id;
   type Wire_Id_Array_Acc is access Wire_Id_Array;
   procedure Free_Wire_Id_Array is new Ada.Unchecked_Deallocation
     (Wire_Id_Array, Wire_Id_Array_Acc);

   procedure Sort_Wire_Id_Array (Arr : in out Wire_Id_Array)
   is
      function Lt (Op1, Op2 : Natural) return Boolean is
      begin
         return Is_Lt (Arr (Op1), Arr (Op2));
      end Lt;

      procedure Swap (From : Natural; To : Natural)
      is
         T : Wire_Id;
      begin
         T := Arr (From);
         Arr (From) := Arr (To);
         Arr (To) := T;
      end Swap;

      procedure Wid_Heap_Sort is
         new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
   begin
      Wid_Heap_Sort (Arr'Length);
   end Sort_Wire_Id_Array;

   function Count_Wires_In_Alternatives (Alts : Alternative_Data_Array)
                                        return Natural
   is
      Res : Natural;
      Asgn : Seq_Assign;
      W : Wire_Id;
   begin
      Res := 0;
      for I in Alts'Range loop
         Asgn := Alts (I).Asgns;
         while Asgn /= No_Seq_Assign loop
            W := Get_Wire_Id (Asgn);
            if not Get_Wire_Mark (W) then
               Res := Res + 1;
               Set_Wire_Mark (W, True);
            end if;
            Asgn := Get_Assign_Chain (Asgn);
         end loop;
      end loop;
      return Res;
   end Count_Wires_In_Alternatives;

   procedure Fill_Wire_Id_Array (Arr : out Wire_Id_Array;
                                 Alts : Alternative_Data_Array)
   is
      Idx : Natural;
      Asgn : Seq_Assign;
      W : Wire_Id;
   begin
      Idx := Arr'First;
      for I in Alts'Range loop
         Asgn := Alts (I).Asgns;
         while Asgn /= No_Seq_Assign loop
            W := Get_Wire_Id (Asgn);
            if Get_Wire_Mark (W) then
               Arr (Idx) := W;
               Idx := Idx + 1;
               Set_Wire_Mark (W, False);
            end if;
            Asgn := Get_Assign_Chain (Asgn);
         end loop;
      end loop;
      pragma Assert (Idx = Arr'Last + 1);
   end Fill_Wire_Id_Array;

   type Case_Element is record
      Sel : Uns64;
      Val : Net;
   end record;

   type Case_Element_Array is array (Natural range <>) of Case_Element;
   type Case_Element_Array_Acc is access Case_Element_Array;
   procedure Free_Case_Element_Array is new Ada.Unchecked_Deallocation
     (Case_Element_Array, Case_Element_Array_Acc);

   --  Generate a netlist for a 'big' mux selected by SEL.  The inputs are
   --  described by ELS: E.Val must be selected when SEL = E.Sel; if there
   --  is no E in Els for a value, DEFAULT is selected.
   --  The result of the netlist is stored in RES.
   --
   --  A tree of MUX4 is built.
   --
   --  ELS must be sorted by SEL values.
   --  ELS is overwritten/modified so after the call it contains garbage.  The
   --  reason is that ELS might be large, so temporary arrays are not allocated
   --  on the stack, and ELS is expected to be built only for this subprogram.
   procedure Synth_Case (Sel : Net;
                         Els : in out Case_Element_Array;
                         Default : Net;
                         Res : out Net)
   is
      Wd : constant Width := Get_Width (Sel);
      Mask : Uns64;
      Sub_Sel : Net;
      Lels : Natural;
      Iels : Natural;
      Oels : Natural;
   begin
      Lels := Els'Last;
      Iels := Els'First;

      if Lels < Iels then
         --  No choices
         Res := Default;
         return;
      end if;

      --  Handle SEL bits by 2, so group case_element by 4.
      for I in 1 .. Natural (Wd / 2) loop
         --  Extract 2 bits from the selector.
         Sub_Sel := Build_Extract (Build_Context,
                                   Sel, Width (2 * (I - 1)), 2);
         Mask := Shift_Left (not 0, Natural (2 * I));
         Iels := Els'First;
         Oels := Els'First;
         while Iels <= Lels loop
            declare
               type Net4 is array (0 .. 3) of Net;
               G : Net4;
               S_Group : constant Uns64 := Els (Iels).Sel and Mask;
               S_El : Uns64;
               El_Idx : Natural;
               Rsel : Net;
            begin
               G := (others => Default);
               for K in 0 .. 3 loop
                  exit when Iels > Lels;
                  S_El := Els (Iels).Sel;
                  exit when (S_El and Mask) /= S_Group;
                  El_Idx := Natural
                    (Shift_Right (S_El, Natural (2 * (I - 1))) and 3);
                  G (El_Idx) := Els (Iels).Val;
                  Iels := Iels + 1;
               end loop;
               if G (3) /= No_Net then
                  Rsel := Build_Mux4 (Build_Context,
                                      Sub_Sel, G (0), G (1), G (2), G (3));
               elsif G (2) /= No_Net then
                  Rsel := Build_Mux2
                    (Build_Context,
                     Build_Extract_Bit (Build_Context,
                                        Sel, Width (2 * (I - 1)) + 1),
                     Build_Mux2 (Build_Context,
                                 Build_Extract_Bit (Build_Context,
                                                    Sel, Width (2 * (I - 1))),
                                 G (0), G (1)),
                     G (2));
               elsif G (1) /= No_Net then
                  Rsel := Build_Mux2
                    (Build_Context,
                     Build_Extract_Bit (Build_Context,
                                        Sel, Width (2 * (I - 1))),
                     G (0), G (1));
               else
                  Rsel := G (0);
               end if;
               Els (Oels) := (Sel => S_Group, Val => Rsel);
               Oels := Oels + 1;
            end;
         end loop;
         Lels := Oels - 1;
      end loop;

      --  If the width is not a multiple of 2, handle the last level.
      if Wd mod 2 = 1 then
         if Wd = 1 then
            Sub_Sel := Sel;
         else
            Sub_Sel := Build_Extract_Bit (Build_Context, Sel, Wd - 1);
         end if;
         Iels := Els'First;
         Oels := Els'First;
         while Iels <= Lels loop
            declare
               type Net2 is array (0 .. 1) of Net;
               G : Net2;
               S_Group : constant Uns64 := Els (Iels).Sel and Mask;
               S_El : Uns64;
               El_Idx : Natural;
            begin
               G := (others => Default);
               for K in 0 .. 1 loop
                  exit when Iels > Lels;
                  S_El := Els (Iels).Sel;
                  El_Idx := Natural
                    (Shift_Right (S_El, Natural (Wd - 1)) and 1);
                  G (El_Idx) := Els (Iels).Val;
                  Iels := Iels + 1;
               end loop;
               Els (Oels) :=
                 (Sel => S_Group,
                  Val => Build_Mux2 (Build_Context, Sub_Sel, G (0), G (1)));
               Oels := Oels + 1;
            end;
         end loop;
         Lels := Oels - 1;
      end if;
      pragma Assert (Lels = Els'First);
      Res := Els (Els'First).Val;
   end Synth_Case;

   type Partial_Assign_Array_Acc is access Partial_Assign_Array;
   procedure Free_Partial_Assign_Array is new Ada.Unchecked_Deallocation
     (Partial_Assign_Array, Partial_Assign_Array_Acc);

   procedure Synth_Case_Statement (C : in out Seq_Context; Stmt : Node)
   is
      use Vhdl.Sem_Expr;

      Expr : constant Node := Get_Expression (Stmt);
      Choices : constant Node := Get_Case_Statement_Alternative_Chain (Stmt);
      Choice : Node;

      Case_Info : Choice_Info_Type;
      Annex_Arr : Annex_Array_Acc;

      --  Array of alternatives
      Alts : Alternative_Data_Acc;
      Alt_Idx : Alternative_Index;
      Others_Alt_Idx : Alternative_Index;

      --  Array of choices.  Contains tuple of (Value, Alternative).
      Choice_Data : Choice_Data_Array_Acc;
      Choice_Idx : Natural;

      Case_El : Case_Element_Array_Acc;
      Pasgns : Partial_Assign_Array_Acc;
      Nets : Net_Array_Acc;

      Nbr_Wires : Natural;
      Wires : Wire_Id_Array_Acc;

      Sel : Value_Acc;
      Sel_Net : Net;
   begin
      --  Strategies to synthesize a case statement.  Assume the selector is
      --  a net of W bits
      --  - a large mux, with 2**W inputs
      --    - if the number of choices is dense
      --    - if W is small
      --  - a onehot mux.  Each choice is converted to an single bit condition
      --    by adding a comparison operator (equal for single choice,
      --    inequalities for ranges, or for multiple choices). Only one of
      --    these conditions is true (plus 'others').
      --    - if the number of choices is sparse
      --    - large range choices
      --  - a tree of mux/mux2
      --    - large number of choices, densily grouped but sparsed compared
      --       to 2**W (eg: a partially filled memory)
      --    - divide and conquier

      --  Create a net for the expression.
      Sel := Synth_Expression_With_Basetype (C.Inst, Expr);

      --  Count choices and alternatives.
      Count_Choices (Case_Info, Choices);
      Fill_Choices_Array (Case_Info, Choices);

      --  Allocate structures.
      --  Because there is no 1-1 link between choices and alternatives,
      --  create an array for the choices and an array for the alternatives.
      Alts := new Alternative_Data_Array
        (1 .. Alternative_Index (Case_Info.Nbr_Alternatives));
      Choice_Data := new Choice_Data_Array (1 .. Case_Info.Nbr_Choices);
      Annex_Arr := new Annex_Array (1 .. Case_Info.Nbr_Choices);
      Case_Info.Annex_Arr := Annex_Arr;

      --  Synth statements, extract choice value.
      Alt_Idx := 0;
      Others_Alt_Idx := 0;
      Choice_Idx := 0;
      Choice := Choices;
      while Is_Valid (Choice) loop
         if not Get_Same_Alternative_Flag (Choice) then
            Alt_Idx := Alt_Idx + 1;

            declare
               Phi : Phi_Type;
            begin
               Push_Phi;
               Synth_Sequential_Statements (C, Get_Associated_Chain (Choice));
               Pop_Phi (Phi);
               Alts (Alt_Idx).Asgns := Sort_Phi (Phi);
            end;
         end if;

         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_Expression =>
               Choice_Idx := Choice_Idx + 1;
               Annex_Arr (Choice_Idx) := Int32 (Choice_Idx);
               declare
                  Choice_Expr : constant Node :=
                    Get_Choice_Expression (Choice);
                  Val, Dc : Uns64;
               begin
                  Convert_To_Uns64 (Choice_Expr, Val, Dc);
                  if Dc = 0 then
                     Choice_Data (Choice_Idx) := (Val => Val,
                                                  Alt => Alt_Idx);
                  else
                     Error_Msg_Synth (+Choice_Expr, "meta-values never match");
                     Choice_Data (Choice_Idx) := (Val => 0,
                                                  Alt => 0);
                  end if;
               end;
            when Iir_Kind_Choice_By_Others =>
               Others_Alt_Idx := Alt_Idx;
            when others =>
               raise Internal_Error;
         end case;
         Choice := Get_Chain (Choice);
      end loop;
      pragma Assert (Choice_Idx = Choice_Data'Last);

      --  Sort by order.
      if Get_Kind (Get_Type (Expr)) in Iir_Kinds_Discrete_Type_Definition then
         Sort_Discrete_Choices (Case_Info);
      else
         Sort_String_Choices (Case_Info);
      end if;

      --  Create list of wire_id, sort it.
      Nbr_Wires := Count_Wires_In_Alternatives (Alts.all);
      Wires := new Wire_Id_Array (1 .. Nbr_Wires);
      Fill_Wire_Id_Array (Wires.all, Alts.all);
      Sort_Wire_Id_Array (Wires.all);

      --  Associate each choice with the assign node
      --  For each wire_id:
      --    Build mux2/mux4 tree (group by 4)
      Case_El := new Case_Element_Array (1 .. Case_Info.Nbr_Choices);

      Pasgns := new Partial_Assign_Array (1 .. Int32 (Alts'Last));
      Nets := new Net_Array (1 .. Int32 (Alts'Last));

      Sel_Net := Get_Net (Sel);

      --  For each wire, compute the result.
      for I in Wires'Range loop
         declare
            Wi : constant Wire_Id := Wires (I);
            Last_Val : Net;
            Res : Net;
            Default : Net;
            C : Natural;
            Min_Off, Off : Uns32;
            Wd : Width;
            List : Partial_Assign_List;
         begin
            --  Extract the value for each alternative.
            for I in Alts'Range loop
               --  If there is an assignment to Wi in Alt, it will define the
               --  value.  Otherwise, use Last_Val, ie the last assignment
               --  before the case.
               if Get_Wire_Id (Alts (I).Asgns) = Wi then
                  Pasgns (Int32 (I)) := Get_Assign_Partial (Alts (I).Asgns);
                  Alts (I).Asgns := Get_Assign_Chain (Alts (I).Asgns);
               else
                  Pasgns (Int32 (I)) := No_Partial_Assign;
               end if;
            end loop;

            Partial_Assign_Init (List);
            Min_Off := 0;
            loop
               Off := Min_Off;
               Extract_Merge_Partial_Assigns
                 (Build_Context, Pasgns.all, Nets.all, Off, Wd);
               exit when Off = Uns32'Last and Wd = Width'Last;

               Last_Val := No_Net;
               for I in Nets'Range loop
                  if Nets (I) = No_Net then
                     if Last_Val = No_Net then
                        Last_Val := Get_Current_Assign_Value
                          (Build_Context, Wi, Off, Wd);
                     end if;
                     Nets (I) := Last_Val;
                  end if;
               end loop;

               --  Build the map between choices and values.
               for J in Annex_Arr'Range loop
                  C := Natural (Annex_Arr (J));
                  Case_El (J) := (Sel => Choice_Data (C).Val,
                                  Val => Nets (Int32 (Choice_Data (C).Alt)));
               end loop;

               --  Extract default value (for missing alternative).
               if Others_Alt_Idx /= 0 then
                  Default := Nets (Int32 (Others_Alt_Idx));
               else
                  Default := No_Net;
               end if;

               --  Generate the muxes tree.
               Synth_Case (Sel_Net, Case_El.all, Default, Res);

               Partial_Assign_Append (List, New_Partial_Assign (Res, Off));
               Min_Off := Off + Wd;
            end loop;

            Merge_Partial_Assigns (Build_Context, Wi, List);
         end;
      end loop;

      --  free.
      Free_Case_Element_Array (Case_El);
      Free_Wire_Id_Array (Wires);
      Free_Choice_Data_Array (Choice_Data);
      Free_Annex_Array (Annex_Arr);
      Free_Alternative_Data_Array (Alts);
      Free_Partial_Assign_Array (Pasgns);
      Free_Net_Array (Nets);
   end Synth_Case_Statement;

   procedure Synth_Selected_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      use Vhdl.Sem_Expr;

      Targ : constant Node := Get_Target (Stmt);

      Expr : constant Node := Get_Expression (Stmt);
      Choices : constant Node := Get_Selected_Waveform_Chain (Stmt);
      Choice : Node;

      Targ_Type : Type_Acc;

      Case_Info : Choice_Info_Type;
      Annex_Arr : Annex_Array_Acc;

      --  Array of alternatives
      Alts : Alternative_Data_Acc;
      Alt_Idx : Alternative_Index;
      Others_Alt_Idx : Alternative_Index;

      --  Array of choices.  Contains tuple of (Value, Alternative).
      Choice_Data : Choice_Data_Array_Acc;
      Choice_Idx : Natural;

      Case_El : Case_Element_Array_Acc;

      Sel : Value_Acc;
      Sel_Net : Net;
   begin
      Targ_Type := Get_Value_Type (Syn_Inst, Get_Type (Targ));
      --  Create a net for the expression.
      Sel := Synth_Expression (Syn_Inst, Expr);

      --  Count choices and alternatives.
      Count_Choices (Case_Info, Choices);
      Fill_Choices_Array (Case_Info, Choices);

      --  Allocate structures.
      --  Because there is no 1-1 link between choices and alternatives,
      --  create an array for the choices and an array for the alternatives.
      Alts := new Alternative_Data_Array
        (1 .. Alternative_Index (Case_Info.Nbr_Alternatives));
      Choice_Data := new Choice_Data_Array (1 .. Case_Info.Nbr_Choices);
      Annex_Arr := new Annex_Array (1 .. Case_Info.Nbr_Choices);
      Case_Info.Annex_Arr := Annex_Arr;

      --  Synth statements, extract choice value.
      Alt_Idx := 0;
      Others_Alt_Idx := 0;
      Choice_Idx := 0;
      Choice := Choices;
      while Is_Valid (Choice) loop
         if not Get_Same_Alternative_Flag (Choice) then
            Alt_Idx := Alt_Idx + 1;

            Alts (Alt_Idx).Val := Get_Net
              (Synth_Waveform
                 (Syn_Inst, Get_Associated_Chain (Choice), Targ_Type));
         end if;

         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_Expression =>
               Choice_Idx := Choice_Idx + 1;
               Annex_Arr (Choice_Idx) := Int32 (Choice_Idx);
               declare
                  Choice_Expr : constant Node :=
                    Get_Choice_Expression (Choice);
                  Val, Dc : Uns64;
               begin
                  Convert_To_Uns64 (Choice_Expr, Val, Dc);
                  if Dc = 0 then
                     Choice_Data (Choice_Idx) := (Val => Val,
                                                  Alt => Alt_Idx);
                  else
                     Error_Msg_Synth (+Choice_Expr, "meta-values never match");
                     Choice_Data (Choice_Idx) := (Val => 0,
                                                  Alt => 0);
                  end if;
               end;
            when Iir_Kind_Choice_By_Others =>
               Others_Alt_Idx := Alt_Idx;
            when others =>
               raise Internal_Error;
         end case;
         Choice := Get_Chain (Choice);
      end loop;
      pragma Assert (Choice_Idx = Choice_Data'Last);

      --  Sort by order.
      if Get_Kind (Get_Type (Expr)) in Iir_Kinds_Discrete_Type_Definition then
         Sort_Discrete_Choices (Case_Info);
      else
         Sort_String_Choices (Case_Info);
      end if;

      --  Associate each choice with the assign node
      --  For each wire_id:
      --    Build mux2/mux4 tree (group by 4)
      Case_El := new Case_Element_Array (1 .. Case_Info.Nbr_Choices);

      Sel_Net := Get_Net (Sel);

      declare
         Res : Net;
         Default : Net;
         C : Natural;
      begin
         --  Build the map between choices and values.
         for J in Annex_Arr'Range loop
            C := Natural (Annex_Arr (J));
            Case_El (J) := (Sel => Choice_Data (C).Val,
                            Val => Alts (Choice_Data (C).Alt).Val);
         end loop;

         --  Extract default value (for missing alternative).
         if Others_Alt_Idx /= 0 then
            Default := Alts (Others_Alt_Idx).Val;
         else
            Default := No_Net;
         end if;

         --  Generate the muxes tree.
         Synth_Case (Sel_Net, Case_El.all, Default, Res);
         Synth_Assignment (Syn_Inst, Get_Target (Stmt),
                           Create_Value_Net (Res, Targ_Type),
                           Stmt);
      end;

      --  free.
      Free_Case_Element_Array (Case_El);
      Free_Choice_Data_Array (Choice_Data);
      Free_Annex_Array (Annex_Arr);
      Free_Alternative_Data_Array (Alts);
   end Synth_Selected_Signal_Assignment;

   procedure Synth_Subprogram_Association (Subprg_Inst : Synth_Instance_Acc;
                                           Caller_Inst : Synth_Instance_Acc;
                                           Inter_Chain : Node;
                                           Assoc_Chain : Node)
   is
      Inter : Node;
      Inter_Type : Type_Acc;
      Assoc : Node;
      Assoc_Inter : Node;
      Actual : Node;
      Val : Value_Acc;
   begin
      Set_Instance_Const (Subprg_Inst, True);

      Assoc := Assoc_Chain;
      Assoc_Inter := Inter_Chain;
      while Is_Valid (Assoc) loop
         Inter := Get_Association_Interface (Assoc, Assoc_Inter);
         Inter_Type := Get_Value_Type (Subprg_Inst, Get_Type (Inter));

         case Iir_Parameter_Modes (Get_Mode (Inter)) is
            when Iir_In_Mode =>
               case Get_Kind (Assoc) is
                  when Iir_Kind_Association_Element_Open =>
                     Actual := Get_Default_Value (Inter);
                     Val := Synth_Expression_With_Type
                       (Subprg_Inst, Actual, Inter_Type);
                  when Iir_Kind_Association_Element_By_Expression =>
                     Actual := Get_Actual (Assoc);
                     Val := Synth_Expression_With_Type
                       (Caller_Inst, Actual, Inter_Type);
                  when others =>
                     raise Internal_Error;
               end case;
            when Iir_Out_Mode | Iir_Inout_Mode =>
               --  FIXME: todo
               raise Internal_Error;
         end case;

         Val := Synth_Subtype_Conversion (Val, Inter_Type, True, Assoc);

         if Get_Instance_Const (Subprg_Inst) and then not Is_Const (Val) then
            Set_Instance_Const (Subprg_Inst, False);
         end if;

         case Iir_Kinds_Interface_Object_Declaration (Get_Kind (Inter)) is
            when Iir_Kind_Interface_Constant_Declaration
              | Iir_Kind_Interface_Variable_Declaration =>
               --  FIXME: Arguments are passed by copy.
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_Signal_Declaration =>
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_File_Declaration =>
               raise Internal_Error;
         end case;

         Next_Association_Interface (Assoc, Assoc_Inter);
      end loop;
   end Synth_Subprogram_Association;

   procedure Synth_Subprogram_Back_Association
     (Subprg_Inst : Synth_Instance_Acc;
      Caller_Inst : Synth_Instance_Acc;
      Inter_Chain : Node;
      Assoc_Chain : Node)
   is
      Inter : Node;
      Assoc : Node;
      Assoc_Inter : Node;
      Val : Value_Acc;
   begin
      Assoc := Assoc_Chain;
      Assoc_Inter := Inter_Chain;
      while Is_Valid (Assoc) loop
         Inter := Get_Association_Interface (Assoc, Assoc_Inter);

         if Get_Mode (Inter) = Iir_Out_Mode then
            Val := Synth_Expression (Subprg_Inst, Inter);
            Synth_Assignment (Caller_Inst, Get_Actual (Assoc), Val, Assoc);

         end if;

         Next_Association_Interface (Assoc, Assoc_Inter);
      end loop;
   end Synth_Subprogram_Back_Association;

   function Synth_Label (Stmt : Node) return Sname
   is
      Label : constant Name_Id := Get_Label (Stmt);
   begin
      if Label = Null_Identifier then
         return No_Sname;
      else
         return New_Sname_User (Label);
      end if;
   end Synth_Label;

   procedure Synth_Procedure_Call (C : in out Seq_Context; Stmt : Node)
   is
      Call : constant Node := Get_Procedure_Call (Stmt);
      Imp  : constant Node := Get_Implementation (Call);
      Assoc_Chain : constant Node := Get_Parameter_Association_Chain (Call);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Subprg_Body : constant Node := Get_Subprogram_Body (Imp);
      Decls_Chain : constant Node := Get_Declaration_Chain (Subprg_Body);
      Sub_C : Seq_Context;
      Sub_Sname : Sname;
      M : Areapools.Mark_Type;
   begin
      if Get_Implicit_Definition (Imp) in Iir_Predefined_Implicit then
         Error_Msg_Synth (+Stmt, "call to implicit %n is not supported", +Imp);
         return;
      elsif Get_Foreign_Flag (Imp) then
         Error_Msg_Synth (+Stmt, "call to foreign %n is not supported", +Imp);
         return;
      end if;

      Areapools.Mark (M, Instance_Pool.all);
      Sub_Sname := New_Sname (Get_Sname (C.Inst), Get_Identifier (Imp));
      Sub_C.Inst := Make_Instance (C.Inst, Imp, Sub_Sname);

      Synth_Subprogram_Association
        (Sub_C.Inst, C.Inst, Inter_Chain, Assoc_Chain);

      Synth_Declarations (Sub_C.Inst, Decls_Chain);

      if Is_Valid (Decls_Chain) then
         Synth_Declarations (Sub_C.Inst, Decls_Chain);
      end if;

      Synth_Sequential_Statements
        (Sub_C, Get_Sequential_Statement_Chain (Subprg_Body));

      Synth_Subprogram_Back_Association
        (Sub_C.Inst, C.Inst, Inter_Chain, Assoc_Chain);

      Free_Instance (Sub_C.Inst);
      Areapools.Release (M, Instance_Pool.all);
   end Synth_Procedure_Call;

   function In_Range (Rng : Discrete_Range_Type; V : Int64) return Boolean is
   begin
      case Rng.Dir is
         when Iir_To =>
            return V >= Rng.Left and then V <= Rng.Right;
         when Iir_Downto =>
            return V <= Rng.Left and then V >= Rng.Right;
      end case;
   end In_Range;

   procedure Update_Index (Rng : Discrete_Range_Type; Idx : in out Int64) is
   begin
      case Rng.Dir is
         when Iir_To =>
            Idx := Idx + 1;
         when Iir_Downto =>
            Idx := Idx - 1;
      end case;
   end Update_Index;

   procedure Loop_Control_Init (C : Seq_Context; Stmt : Node)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;

   begin
      Mark (C.Cur_Loop.Wire_Mark);

      if (Lc.Prev_Loop /= null and then Lc.Prev_Loop.Need_Quit) then
         Lc.W_Quit := Alloc_Wire (Wire_Variable, Lc.Loop_Stmt);
         Set_Wire_Gate
           (Lc.W_Quit, Build_Signal (Get_Build (C.Inst),
                                     New_Internal_Name (Build_Context), 1));
         Phi_Assign (Get_Build (C.Inst), Lc.W_Quit, Get_Inst_Bit1 (C.Inst), 0);
      end if;

      if Get_Exit_Flag (Stmt) or else Get_Next_Flag (Stmt) then
         Lc.Saved_En := Get_Current_Value (null, C.W_En);
         Lc.Need_Quit := True;
      end if;

      if Get_Exit_Flag (Stmt) then
         --  Exit statement for this loop.
         Lc.W_Exit := Alloc_Wire (Wire_Variable, Lc.Loop_Stmt);
         Set_Wire_Gate
           (Lc.W_Exit, Build_Signal (Get_Build (C.Inst),
                                     New_Internal_Name (Build_Context), 1));
         Phi_Assign (Get_Build (C.Inst), Lc.W_Exit, Get_Inst_Bit1 (C.Inst), 0);
      end if;
   end Loop_Control_Init;

   function Loop_Control_And (C : Seq_Context; L, R : Net) return Net
   is
      B1 : constant Net := Get_Inst_Bit1 (C.Inst);
   begin
      --  Optimize common cases.
      if L = B1 then
         return R;
      elsif R = B1 then
         return L;
      else
         return Build_Dyadic (Get_Build (C.Inst), Netlists.Gates.Id_And, L, R);
      end if;
   end Loop_Control_And;

   procedure Loop_Control_Update (C : Seq_Context)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
      Res : Net;
   begin
      --  Execution continue iff:
      --  1. Loop was enabled (Lc.Saved_En)
      Res := Lc.Saved_En;
      if Res = No_Net then
         --  No loop control.
         return;
      end if;

      --  2. No return (C.W_Ret)
      if C.W_Ret /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, C.W_Ret));
      end if;

      --  3. No exit.
      if Lc.W_Exit /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, Lc.W_Exit));
      end if;

      --  4. No quit.
      if Lc.W_Quit /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, Lc.W_Quit));
      end if;

      Phi_Assign (Get_Build (C.Inst), C.W_En, Res, 0);
   end Loop_Control_Update;

   procedure Loop_Control_Finish (C : Seq_Context)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
      Res : Net;
   begin
      --  Execute continue iff:
      --  1. Loop was enabled (Lc.Saved_En)
      Res := Lc.Saved_En;
      if Res = No_Net then
         --  No loop control.
         return;
      end if;

      --  2. No return (C.W_Ret)
      if C.W_Ret /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, C.W_Ret));
      end if;

      --  3. No quit (C.W_Quit)
      if Lc.W_Quit /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, Lc.W_Quit));
      end if;

      Phi_Discard_Wires (Lc.W_Quit, Lc.W_Exit);

      if Lc.W_Quit /= No_Wire_Id then
         Free_Wire (Lc.W_Quit);
      end if;

      if Lc.W_Exit /= No_Wire_Id then
         Free_Wire (Lc.W_Exit);
      end if;

      Release (C.Cur_Loop.Wire_Mark);

      Phi_Assign (Get_Build (C.Inst), C.W_En, Res, 0);
   end Loop_Control_Finish;

   procedure Synth_Exit_Next_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Cond : constant Node := Get_Condition (Stmt);
      Is_Exit : constant Boolean := Get_Kind (Stmt) = Iir_Kind_Exit_Statement;
      Loop_Label : Node;
      Lc : Loop_Context_Acc;
      Cond_Val : Value_Acc;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin

      if Cond /= Null_Node then
         Cond_Val := Synth_Expression (C.Inst, Cond);
         Push_Phi;
      end if;

      --  Execution is suspended.
      Phi_Assign (Get_Build (C.Inst), C.W_En, Get_Inst_Bit0 (C.Inst), 0);

      Lc := C.Cur_Loop;

      Loop_Label := Get_Loop_Label (Stmt);
      if Loop_Label = Null_Node then
         Loop_Label := Lc.Loop_Stmt;
      else
         Loop_Label := Get_Named_Entity (Loop_Label);
      end if;

      loop
         if Lc.Loop_Stmt = Loop_Label then
            if Is_Exit then
               Phi_Assign (Get_Build (C.Inst), Lc.W_Exit,
                           Get_Inst_Bit0 (C.Inst), 0);
            end if;
            exit;
         else
            Phi_Assign (Get_Build (C.Inst), Lc.W_Quit,
                        Get_Inst_Bit0 (C.Inst), 0);
         end if;
         Lc := Lc.Prev_Loop;
      end loop;

      if Cond /= Null_Node then
         Pop_Phi (Phi_True);
         Push_Phi;
         Pop_Phi (Phi_False);
         Merge_Phis (Build_Context,
                     Get_Net (Cond_Val), Phi_True, Phi_False, Stmt);
      end if;
   end Synth_Exit_Next_Statement;

   procedure Synth_For_Loop_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      It_Type : constant Node := Get_Declaration_Type (Iterator);
      It_Rng : Type_Acc;
      Val : Value_Acc;
      Lc : aliased Loop_Context;
   begin
      Lc := (Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             Need_Quit => False,
             Saved_En => No_Net,
             W_Exit => No_Wire_Id,
             W_Quit => No_Wire_Id,
             Wire_Mark => No_Wire_Id);
      C.Cur_Loop := Lc'Unrestricted_Access;

      Loop_Control_Init (C, Stmt);

      if It_Type /= Null_Node then
         Synth_Subtype_Indication (C.Inst, It_Type);
      end if;

      --  Initial value.
      It_Rng := Get_Value_Type (C.Inst, Get_Type (Iterator));
      Val := Create_Value_Discrete (It_Rng.Drange.Left, It_Rng);
      Create_Object (C.Inst, Iterator, Val);

      while In_Range (It_Rng.Drange, Val.Scal) loop
         Synth_Sequential_Statements (C, Stmts);
         Update_Index (It_Rng.Drange, Val.Scal);
         Loop_Control_Update (C);
      end loop;
      Loop_Control_Finish (C);

      Destroy_Object (C.Inst, Iterator);
      if It_Type /= Null_Node then
         Destroy_Object (C.Inst, It_Type);
      end if;

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_For_Loop_Statement;

   procedure Synth_Return_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Val : Value_Acc;
      Expr : constant Node := Get_Expression (Stmt);
   begin
      if Expr /= Null_Node then
         --  Return in function.
         Val := Synth_Expression_With_Type (C.Inst, Expr, C.Ret_Typ);
         Val := Synth_Subtype_Conversion (Val, C.Ret_Typ, False, Stmt);

         if C.Nbr_Ret = 0 then
            C.Ret_Value := Val;
            if not Is_Bounded_Type (C.Ret_Typ) then
               --  The function was declared with an unconstrained return type.
               --  Now that a value has been returned, we know the subtype of
               --  the returned values.  So adjust it.
               --  All the returned values must have the same length.
               C.Ret_Typ := Val.Typ;
               Set_Width (Get_Wire_Gate (C.W_Val), C.Ret_Typ.W);
               Set_Width (C.Ret_Init, C.Ret_Typ.W);
            end if;
         end if;
         Phi_Assign (Get_Build (C.Inst), C.W_Val, Get_Net (Val), 0);
      end if;

      --  The subprogram has returned.  Do not execute further statements.
      Phi_Assign (Get_Build (C.Inst), C.W_En, Get_Inst_Bit0 (C.Inst), 0);

      if C.W_Ret /= No_Wire_Id then
         Phi_Assign (Get_Build (C.Inst), C.W_Ret, Get_Inst_Bit0 (C.Inst), 0);
      end if;

      C.Nbr_Ret := C.Nbr_Ret + 1;
   end Synth_Return_Statement;

   procedure Synth_Sequential_Statements
     (C : in out Seq_Context; Stmts : Node)
   is
      Stmt : Node;
      Phi_T, Phi_F : Phi_Type;
      Has_Phi : Boolean;
      En : Net;
   begin
      Stmt := Stmts;
      while Is_Valid (Stmt) loop
         En := Get_Current_Value (null, C.W_En);
         pragma Assert (En /= Get_Inst_Bit0 (C.Inst));
         Has_Phi := En /= Get_Inst_Bit1 (C.Inst);
         if Has_Phi then
            Push_Phi;
         end if;
         case Get_Kind (Stmt) is
            when Iir_Kind_If_Statement =>
               Synth_If_Statement (C, Stmt);
            when Iir_Kind_Simple_Signal_Assignment_Statement =>
               Synth_Simple_Signal_Assignment (C.Inst, Stmt);
            when Iir_Kind_Conditional_Signal_Assignment_Statement =>
               Synth_Conditional_Signal_Assignment (C.Inst, Stmt);
            when Iir_Kind_Variable_Assignment_Statement =>
               Synth_Variable_Assignment (C.Inst, Stmt);
            when Iir_Kind_Conditional_Variable_Assignment_Statement =>
               Synth_Conditional_Variable_Assignment (C.Inst, Stmt);
            when Iir_Kind_Case_Statement =>
               Synth_Case_Statement (C, Stmt);
            when Iir_Kind_For_Loop_Statement =>
               Synth_For_Loop_Statement (C, Stmt);
            when Iir_Kind_Null_Statement =>
               --  Easy
               null;
            when Iir_Kind_Return_Statement =>
               Synth_Return_Statement (C, Stmt);
            when Iir_Kind_Procedure_Call_Statement =>
               Synth_Procedure_Call (C, Stmt);
            when Iir_Kind_Report_Statement
              | Iir_Kind_Assertion_Statement =>
               --  TODO ?
               null;
            when Iir_Kind_Exit_Statement
              | Iir_Kind_Next_Statement =>
               Synth_Exit_Next_Statement (C, Stmt);
            when others =>
               Error_Kind ("synth_sequential_statements", Stmt);
         end case;
         if Has_Phi then
            Pop_Phi (Phi_T);
            Push_Phi;
            Pop_Phi (Phi_F);
            Merge_Phis (Build_Context,
                        Get_Current_Value (Build_Context, C.W_En),
                        Phi_T, Phi_F, Stmt);
         end if;
         if Get_Current_Value (null, C.W_En) = Get_Inst_Bit0 (C.Inst) then
            return;
         end if;
         Stmt := Get_Chain (Stmt);
      end loop;
   end Synth_Sequential_Statements;

   Proc_Pool : aliased Areapools.Areapool;

   --  Synthesis of statements of a non-sensitized process.
   procedure Synth_Process_Sequential_Statements
     (C : in out Seq_Context; Proc : Node)
   is
      Stmt : Node;
      Cond : Node;
      Cond_Val : Value_Acc;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      Stmt := Get_Sequential_Statement_Chain (Proc);

      --  The first statement must be a wait statement.
      if Get_Kind (Stmt) /= Iir_Kind_Wait_Statement then
         Error_Msg_Synth (+Stmt, "expect wait as the first statement");
         return;
      end if;

      --  Handle the condition as an if.
      Cond := Get_Condition_Clause (Stmt);
      Cond_Val := Synth_Expression (C.Inst, Cond);

      Push_Phi;
      Synth_Sequential_Statements (C, Get_Chain (Stmt));
      Pop_Phi (Phi_True);
      Push_Phi;
      Pop_Phi (Phi_False);

      Merge_Phis (Build_Context, Get_Net (Cond_Val),
                  Phi_True, Phi_False, Stmt);
   end Synth_Process_Sequential_Statements;

   procedure Synth_Process_Statement
     (Syn_Inst : Synth_Instance_Acc; Proc : Node)
   is
      use Areapools;
      Label : constant Name_Id := Get_Identifier (Proc);
      Decls_Chain : constant Node := Get_Declaration_Chain (Proc);
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      M : Areapools.Mark_Type;
      C_Sname : Sname;
      C : Seq_Context;
   begin
      if Label = Null_Identifier then
         C_Sname := New_Internal_Name (Build_Context, Get_Sname (Syn_Inst));
      else
         C_Sname := New_Sname (Get_Sname (Syn_Inst), Label);
      end if;
      C := (Inst => Make_Instance (Syn_Inst, Proc, C_Sname),
            Cur_Loop => null,
            W_En => Alloc_Wire (Wire_Variable, Proc),
            W_Ret => No_Wire_Id,
            W_Val => No_Wire_Id,
            Ret_Init => No_Net,
            Ret_Value => null,
            Ret_Typ => null,
            Nbr_Ret => 0);


      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      if Is_Valid (Decls_Chain) then
         Synth_Declarations (C.Inst, Decls_Chain);
      end if;

      Set_Wire_Gate (C.W_En, Build_Signal (Build_Context,
                                           New_Internal_Name (Build_Context),
                                           1));
      Phi_Assign (Build_Context, C.W_En, Get_Inst_Bit1 (Syn_Inst), 0);

      case Iir_Kinds_Process_Statement (Get_Kind (Proc)) is
         when Iir_Kind_Sensitized_Process_Statement =>
            Synth_Sequential_Statements
              (C, Get_Sequential_Statement_Chain (Proc));
            --  FIXME: check sensitivity list.
         when Iir_Kind_Process_Statement =>
            Synth_Process_Sequential_Statements (C, Proc);
      end case;

      --  FIXME: free W_En ?

      Free_Instance (C.Inst);
      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Process_Statement;

   function Synth_User_Function_Call
     (Syn_Inst : Synth_Instance_Acc; Expr : Node) return Value_Acc
   is
      Imp  : constant Node := Get_Implementation (Expr);
      Assoc_Chain : constant Node := Get_Parameter_Association_Chain (Expr);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Bod : constant Node := Get_Subprogram_Body (Imp);
      Area_Mark : Areapools.Mark_Type;
      Res : Value_Acc;
      C : Seq_Context;
      Wire_Mark : Wire_Id;
      Subprg_Phi : Phi_Type;
   begin
      --  Is it a call to an ieee function ?
      declare
         Pkg : constant Node := Get_Parent (Imp);
         Unit : Node;
         Lib : Node;
      begin
         if Get_Kind (Pkg) = Iir_Kind_Package_Declaration then
            Unit := Get_Parent (Pkg);
            if Get_Kind (Unit) = Iir_Kind_Design_Unit then
               Lib := Get_Library (Get_Design_File (Unit));
               if Get_Identifier (Lib) = Std_Names.Name_Ieee then
                  Error_Msg_Synth
                    (+Expr, "unhandled call to an ieee function");
                  raise Internal_Error;
               end if;
            end if;
         end if;
      end;

      Mark (Wire_Mark);
      Areapools.Mark (Area_Mark, Instance_Pool.all);
      C := (Inst => Make_Instance (Syn_Inst, Bod,
                                   New_Internal_Name (Build_Context)),
            Cur_Loop => null,
            W_En => Alloc_Wire (Wire_Variable, Imp),
            W_Ret => Alloc_Wire (Wire_Variable, Imp),
            W_Val => Alloc_Wire (Wire_Variable, Imp),
            Ret_Init => No_Net,
            Ret_Value => null,
            Ret_Typ => null,
            Nbr_Ret => 0);

      Synth_Subprogram_Association
        (C.Inst, Syn_Inst, Inter_Chain, Assoc_Chain);

      Push_Phi;

      --  Set a default value for the return.
      C.Ret_Typ := Get_Value_Type (Syn_Inst, Get_Return_Type (Imp));
      Set_Wire_Gate (C.W_Val, Build_Signal (Build_Context,
                                            New_Internal_Name (Build_Context),
                                            C.Ret_Typ.W));
      C.Ret_Init := Build_Const_X (Build_Context, C.Ret_Typ.W);
      Phi_Assign (Build_Context, C.W_Val, C.Ret_Init, 0);

      Set_Wire_Gate
        (C.W_En,
         Build_Signal (Build_Context, New_Internal_Name (Build_Context), 1));
      Phi_Assign (Build_Context, C.W_En, Get_Inst_Bit1 (Syn_Inst), 0);

      Set_Wire_Gate
        (C.W_Ret,
         Build_Signal (Build_Context, New_Internal_Name (Build_Context), 1));
      Phi_Assign (Build_Context, C.W_Ret, Get_Inst_Bit1 (Syn_Inst), 0);

      Decls.Synth_Declarations (C.Inst, Get_Declaration_Chain (Bod), True);

      Synth_Sequential_Statements (C, Get_Sequential_Statement_Chain (Bod));


      if C.Nbr_Ret = 0 then
         raise Internal_Error;
      elsif C.Nbr_Ret = 1 and then Is_Const (C.Ret_Value) then
         Res := C.Ret_Value;
      else
         Res := Create_Value_Net (Get_Current_Value (Build_Context, C.W_Val),
                                  C.Ret_Value.Typ);
      end if;

      Pop_Phi (Subprg_Phi);

      Decls.Finalize_Declarations (C.Inst, Get_Declaration_Chain (Bod), True);

      --  Free wires.
      Free_Wire (C.W_En);
      Free_Wire (C.W_Ret);
      Free_Wire (C.W_Val);

      Free_Instance (C.Inst);
      Areapools.Release (Area_Mark, Instance_Pool.all);

      Release (Wire_Mark);

      return Res;
   end Synth_User_Function_Call;

   procedure Synth_Concurrent_Assertion_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Cond : constant Node := Get_Assertion_Condition (Stmt);
      Val : Value_Acc;
      Inst : Instance;
   begin
      Val := Synth_Expression (Syn_Inst, Cond);
      if Is_Const (Val) then
         if Val.Scal /= 1 then
            raise Internal_Error;
         end if;
         return;
      end if;
      Inst := Build_Assert (Build_Context, Synth_Label (Stmt), Get_Net (Val));
      Set_Location (Inst, Get_Location (Stmt));
   end Synth_Concurrent_Assertion_Statement;

   function Synth_PSL_Expression
     (Syn_Inst : Synth_Instance_Acc; Expr : PSL.Types.PSL_Node) return Net
   is
      use PSL.Types;
      use PSL.Nodes;
   begin
      case Get_Kind (Expr) is
         when N_HDL_Expr =>
            declare
               E : constant Vhdl.Types.Vhdl_Node := Get_HDL_Node (Expr);
            begin
               return Get_Net (Synth_Expression (Syn_Inst, E));
            end;
         when N_Not_Bool =>
            return Build_Monadic
              (Build_Context, Netlists.Gates.Id_Not,
               Synth_PSL_Expression (Syn_Inst, Get_Boolean (Expr)));
         when N_And_Bool =>
            declare
               L : constant PSL_Node := Get_Left (Expr);
               R : constant PSL_Node := Get_Right (Expr);
               Edge : Net;
            begin
               --  Handle edge (as it can be in default clock).
               if Get_Kind (L) = N_HDL_Expr and then Get_Kind (R) = N_HDL_Expr
               then
                  Edge := Synth_Clock_Edge
                    (Syn_Inst, Get_HDL_Node (L), Get_HDL_Node (R));
                  if Edge /= No_Net then
                     return Edge;
                  end if;
               end if;
               return Build_Dyadic
                 (Build_Context, Netlists.Gates.Id_And,
                  Synth_PSL_Expression (Syn_Inst, L),
                  Synth_PSL_Expression (Syn_Inst, R));
            end;
         when N_Or_Bool =>
            return Build_Dyadic
              (Build_Context, Netlists.Gates.Id_Or,
               Synth_PSL_Expression (Syn_Inst, Get_Left (Expr)),
               Synth_PSL_Expression (Syn_Inst, Get_Right (Expr)));
         when N_True =>
            return Build_Const_UB32 (Build_Context, 1, 1);
         when N_False =>
            return Build_Const_UB32 (Build_Context, 0, 1);
         when others =>
            PSL.Errors.Error_Kind ("translate_psl_expr", Expr);
      end case;
   end Synth_PSL_Expression;

   function Synth_Psl_NFA (Syn_Inst : Synth_Instance_Acc;
                           NFA : PSL.Types.PSL_NFA;
                           Nbr_States : Int32;
                           States : Net) return Net
   is
      use PSL.NFAs;
      S : NFA_State;
      S_Num : Int32;
      D_Num : Int32;
      I : Net;
      Cond : Net;
      E : NFA_Edge;
      D_Arr : Net_Array_Acc;
      Res : Net;
   begin
      D_Arr := new Net_Array'(0 .. Nbr_States - 1 => No_Net);
      S := Get_First_State (NFA);
      while S /= No_State loop
         S_Num := Get_State_Label (S);
         I := Build_Extract_Bit (Build_Context, States, Uns32 (S_Num));

         E := Get_First_Src_Edge (S);
         while E /= No_Edge loop
            Cond := Build_Dyadic
              (Build_Context, Netlists.Gates.Id_And,
               I, Synth_PSL_Expression (Syn_Inst, Get_Edge_Expr (E)));

            D_Num := Nbr_States - 1 - Get_State_Label (Get_Edge_Dest (E));
            if D_Arr (D_Num) = No_Net then
               D_Arr (D_Num) := Cond;
            else
               D_Arr (D_Num) := Build_Dyadic
                 (Build_Context, Netlists.Gates.Id_Or, D_Arr (D_Num), Cond);
            end if;

            E := Get_Next_Src_Edge (E);
         end loop;

         S := Get_Next_State (S);
      end loop;

      if D_Arr (Nbr_States - 1) = No_Net then
         D_Arr (Nbr_States - 1) := Build_Const_UB32 (Build_Context, 0, 1);
      end if;

      Res := Concat_Array (D_Arr);
      Free_Net_Array (D_Arr);

      return Res;
   end Synth_Psl_NFA;

   function Synth_Psl_Sequence_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node) return Net
   is
      use Netlists.Gates;
      Nbr_States : constant Int32 := Get_PSL_Nbr_States (Stmt);
      Init : Net;
      Clk : Net;
      Clk_Inst : Instance;
      States : Net;
      Next_States : Net;
   begin
      --  create init net, clock net
      pragma Assert (Nbr_States <= 32);
      Init := Build_Const_UB32 (Build_Context, 1, Uns32 (Nbr_States));
      Clk := Synth_PSL_Expression (Syn_Inst, Get_PSL_Clock (Stmt));

      --  Check the clock is an edge and extract it.
      Clk_Inst := Get_Parent (Clk);
      if Get_Id (Clk_Inst) /= Id_Edge then
         Error_Msg_Synth (+Stmt, "clock is not an edge");
         return No_Net;
      end if;

      Clk := Get_Input_Net (Clk_Inst, 0);

      --  build idff
      States := Build_Idff (Build_Context, Clk, No_Net, Init);

      --  create update nets
      --  For each state: if set, evaluate all outgoing edges.
      Next_States :=
        Synth_Psl_NFA (Syn_Inst, Get_PSL_NFA (Stmt), Nbr_States, States);
      Connect (Get_Input (Get_Parent (States), 1), Next_States);

      --  The NFA state is correct as long as there is a 1.
      return Build_Reduce (Build_Context,
                           Netlists.Gates.Id_Red_Or, Next_States);
   end Synth_Psl_Sequence_Directive;

   procedure Synth_Psl_Restrict_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Res : Net;
      Inst : Instance;
   begin
      --  Build assume gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Res := Synth_Psl_Sequence_Directive (Syn_Inst, Stmt);
      if Res /= No_Net then
         Inst := Build_Assume (Build_Context, Synth_Label (Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Restrict_Directive;

   procedure Synth_Psl_Cover_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Res : Net;
      Inst : Instance;
   begin
      --  Build cover gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Res := Synth_Psl_Sequence_Directive (Syn_Inst, Stmt);
      if Res /= No_Net then
         Inst := Build_Cover (Build_Context, Synth_Label (Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Cover_Directive;

   function Synth_Psl_Property_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node) return Net
   is
      use PSL.Types;
      use PSL.NFAs;
      use Netlists.Gates;
      NFA : constant PSL_NFA := Get_PSL_NFA (Stmt);
      Nbr_States : constant Int32 := Get_PSL_Nbr_States (Stmt);
      Init : Net;
      Clk : Net;
      Clk_Inst : Instance;
      States : Net;
      Next_States : Net;
   begin
      --  create init net, clock net
      pragma Assert (Nbr_States <= 32);
      Init := Build_Const_UB32 (Build_Context, 1, Uns32 (Nbr_States));
      Clk := Synth_PSL_Expression (Syn_Inst, Get_PSL_Clock (Stmt));

      --  Check the clock is an edge and extract it.
      Clk_Inst := Get_Parent (Clk);
      if Get_Id (Clk_Inst) /= Id_Edge then
         Error_Msg_Synth (+Stmt, "clock is not an edge");
         return No_Net;
      end if;

      Clk := Get_Input_Net (Clk_Inst, 0);

      --  build idff
      States := Build_Idff (Build_Context, Clk, No_Net, Init);

      --  create update nets
      --  For each state: if set, evaluate all outgoing edges.
      Next_States := Synth_Psl_NFA (Syn_Inst, NFA, Nbr_States, States);
      Connect (Get_Input (Get_Parent (States), 1), Next_States);

      return Build_Monadic
        (Build_Context, Netlists.Gates.Id_Not,
         Build_Extract_Bit
           (Build_Context, Next_States,
            Uns32 (Get_State_Label (Get_Final_State (NFA)))));
   end Synth_Psl_Property_Directive;

   procedure Synth_Psl_Assume_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Res : Net;
      Inst : Instance;
   begin
      --  Build assume gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Res := Synth_Psl_Property_Directive (Syn_Inst, Stmt);
      if Res /= No_Net then
         Inst := Build_Assume (Build_Context, Synth_Label (Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Assume_Directive;

   procedure Synth_Psl_Assert_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Res : Net;
      Inst : Instance;
   begin
      --  Build assert gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assert on States, then the first cycle is ignored).
      Res := Synth_Psl_Property_Directive (Syn_Inst, Stmt);
      if Res /= No_Net then
         Inst := Build_Assert (Build_Context, Synth_Label (Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Assert_Directive;

   procedure Synth_Generate_Statement_Body (Syn_Inst : Synth_Instance_Acc;
                                            Bod : Node;
                                            Iterator : Node := Null_Node;
                                            Iterator_Val : Value_Acc := null)
   is
      use Areapools;
      Decls_Chain : constant Node := Get_Declaration_Chain (Bod);
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      Bod_Inst : Synth_Instance_Acc;
      Bod_Sname : Sname;
      M : Areapools.Mark_Type;
   begin
      Bod_Sname := New_Sname (Get_Sname (Syn_Inst), Get_Identifier (Bod));
      Bod_Inst := Make_Instance (Syn_Inst, Bod, Bod_Sname);
      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      if Iterator /= Null_Node then
         --  Add the iterator (for for-generate).
         Create_Object (Bod_Inst, Iterator, Iterator_Val);
      end if;

      Synth_Declarations (Bod_Inst, Decls_Chain);

      Synth_Concurrent_Statements
        (Bod_Inst, Get_Concurrent_Statement_Chain (Bod));

      Free_Instance (Bod_Inst);
      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Generate_Statement_Body;

   procedure Synth_For_Generate_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      Bod : constant Node := Get_Generate_Statement_Body (Stmt);
      Configs : constant Node := Get_Generate_Block_Configuration (Bod);
      It_Type : constant Node := Get_Declaration_Type (Iterator);
      Config : Node;
      It_Rng : Type_Acc;
      Val : Value_Acc;
   begin
      if It_Type /= Null_Node then
         Synth_Subtype_Indication (Syn_Inst, It_Type);
      end if;

      --  Initial value.
      It_Rng := Get_Value_Type (Syn_Inst, Get_Type (Iterator));
      Val := Create_Value_Discrete (It_Rng.Drange.Left, It_Rng);

      while In_Range (It_Rng.Drange, Val.Scal) loop
         --  Find and apply the config block.
         declare
            Spec : Node;
         begin
            Config := Configs;
            while Config /= Null_Node loop
               Spec := Get_Block_Specification (Config);
               case Get_Kind (Spec) is
                  when Iir_Kind_Simple_Name =>
                     exit;
                  when others =>
                     Error_Kind ("synth_for_generate_statement", Spec);
               end case;
               Config := Get_Prev_Block_Configuration (Config);
            end loop;
            if Config = Null_Node then
               raise Internal_Error;
            end if;
            Apply_Block_Configuration (Config, Bod);
         end;

         Synth_Generate_Statement_Body (Syn_Inst, Bod, Iterator, Val);
         Update_Index (It_Rng.Drange, Val.Scal);
      end loop;
   end Synth_For_Generate_Statement;

   procedure Synth_Concurrent_Statements
     (Syn_Inst : Synth_Instance_Acc; Stmts : Node)
   is
      Stmt : Node;
   begin
      Stmt := Stmts;
      while Is_Valid (Stmt) loop
         case Get_Kind (Stmt) is
            when Iir_Kind_Concurrent_Simple_Signal_Assignment =>
               Push_Phi;
               Synth_Simple_Signal_Assignment (Syn_Inst, Stmt);
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kind_Concurrent_Conditional_Signal_Assignment =>
               Push_Phi;
               Synth_Conditional_Signal_Assignment (Syn_Inst, Stmt);
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kind_Concurrent_Selected_Signal_Assignment =>
               Push_Phi;
               Synth_Selected_Signal_Assignment (Syn_Inst, Stmt);
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kinds_Process_Statement =>
               Push_Phi;
               Synth_Process_Statement (Syn_Inst, Stmt);
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kind_If_Generate_Statement =>
               declare
                  Gen : Node;
                  Bod : Node;
                  Cond : Value_Acc;
               begin
                  Gen := Stmt;
                  loop
                     Cond := Synth_Expression (Syn_Inst, Get_Condition (Gen));
                     pragma Assert (Cond.Kind = Value_Discrete);
                     if Cond.Scal = 1 then
                        Bod := Get_Generate_Statement_Body (Gen);
                        Synth_Generate_Statement_Body (Syn_Inst, Bod);
                        exit;
                     end if;
                     Gen := Get_Generate_Else_Clause (Gen);
                     exit when Gen = Null_Node;
                  end loop;
               end;
            when Iir_Kind_For_Generate_Statement =>
               Synth_For_Generate_Statement (Syn_Inst, Stmt);
            when Iir_Kind_Component_Instantiation_Statement =>
               Push_Phi;
               if Is_Component_Instantiation (Stmt) then
                  declare
                     Comp_Config : constant Node :=
                       Get_Component_Configuration (Stmt);
                  begin
                     if Get_Binding_Indication (Comp_Config) = Null_Node then
                        --  Not bound.
                        Synth_Blackbox_Instantiation_Statement
                          (Syn_Inst, Stmt);
                     else
                        Synth_Component_Instantiation_Statement
                          (Syn_Inst, Stmt);
                     end if;
                  end;
               else
                  Synth_Design_Instantiation_Statement (Syn_Inst, Stmt);
               end if;
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kind_Psl_Default_Clock =>
               null;
            when Iir_Kind_Psl_Restrict_Directive =>
               Synth_Psl_Restrict_Directive (Syn_Inst, Stmt);
            when Iir_Kind_Psl_Assume_Directive =>
               Synth_Psl_Assume_Directive (Syn_Inst, Stmt);
            when Iir_Kind_Psl_Cover_Directive =>
               Synth_Psl_Cover_Directive (Syn_Inst, Stmt);
            when Iir_Kind_Psl_Assert_Directive =>
               Synth_Psl_Assert_Directive (Syn_Inst, Stmt);
            when Iir_Kind_Concurrent_Assertion_Statement =>
               --  Passive statement.
               Synth_Concurrent_Assertion_Statement (Syn_Inst, Stmt);
            when others =>
               Error_Kind ("synth_statements", Stmt);
         end case;
         Stmt := Get_Chain (Stmt);
      end loop;
   end Synth_Concurrent_Statements;

   procedure Synth_Verification_Unit
     (Syn_Inst : Synth_Instance_Acc; Unit : Node)
   is
      Item : Node;
   begin
      Item := Get_Vunit_Item_Chain (Unit);
      while Item /= Null_Node loop
         case Get_Kind (Item) is
            when Iir_Kind_Psl_Default_Clock =>
               null;
            when Iir_Kind_Psl_Assert_Directive =>
               Synth_Psl_Assert_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Assume_Directive =>
               Synth_Psl_Assume_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Cover_Directive =>
               Synth_Psl_Cover_Directive (Syn_Inst, Item);
            when others =>
               Error_Kind ("synth_verification_unit", Item);
         end case;
         Item := Get_Chain (Item);
      end loop;
   end Synth_Verification_Unit;
end Synth.Stmts;