1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
|
-- Operations synthesis.
-- Copyright (C) 2019 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
-- MA 02110-1301, USA.
with Types; use Types;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Ieee.Std_Logic_1164;
with Netlists; use Netlists;
with Netlists.Utils; use Netlists.Utils;
with Synth.Errors; use Synth.Errors;
with Synth.Source; use Synth.Source;
with Synth.Environment;
with Synth.Expr; use Synth.Expr;
with Synth.Oper;
with Synth.Ieee.Std_Logic_1164; use Synth.Ieee.Std_Logic_1164;
with Synth.Ieee.Numeric_Std; use Synth.Ieee.Numeric_Std;
package body Synth.Static_Oper is
-- From openiee:
type Static_Arr_Kind is (Sarr_Value, Sarr_Net);
type Static_Arr_Type (Kind : Static_Arr_Kind) is record
case Kind is
when Sarr_Value =>
Arr : Value_Array_Acc;
when Sarr_Net =>
N : Net;
end case;
end record;
function Get_Static_Array (V : Value_Acc) return Static_Arr_Type
is
N : Net;
begin
case V.Kind is
when Value_Const =>
return (Kind => Sarr_Value, Arr => V.C_Val.Arr);
when Value_Const_Array =>
return (Kind => Sarr_Value, Arr => V.Arr);
when Value_Net =>
N := V.N;
when Value_Wire =>
N := Synth.Environment.Get_Const_Wire (V.W);
when others =>
raise Internal_Error;
end case;
return (Kind => Sarr_Net, N => N);
end Get_Static_Array;
function Logic_To_Std_Logic (Va : Uns32; Zx : Uns32) return Std_Ulogic
is
subtype Uns4 is Uns32 range 0 .. 3;
begin
case Uns4 (Va + 2 * Zx) is
when 0 =>
return Std_Ulogic'Val (Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos);
when 1 =>
return Std_Ulogic'Val (Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos);
when 2 =>
return Std_Ulogic'Val (Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos);
when 3 =>
return Std_Ulogic'Val (Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos);
end case;
end Logic_To_Std_Logic;
function Get_Static_Std_Logic (Sarr : Static_Arr_Type; Off : Uns32)
return Std_Ulogic is
begin
case Sarr.Kind is
when Sarr_Value =>
return Std_Ulogic'Val (Sarr.Arr.V (Iir_Index32 (Off + 1)).Scal);
when Sarr_Net =>
declare
Va : Uns32;
Zx : Uns32;
begin
Get_Net_Element (Sarr.N, Off, Va, Zx);
return Logic_To_Std_Logic (Va, Zx);
end;
end case;
end Get_Static_Std_Logic;
function Create_Res_Bound (Prev : Type_Acc) return Type_Acc is
begin
if Prev.Vbound.Dir = Iir_Downto
and then Prev.Vbound.Right = 0
then
-- Normalized range
return Prev;
end if;
return Create_Vec_Type_By_Length (Prev.W, Prev.Vec_El);
end Create_Res_Bound;
function Synth_Vector_Dyadic (Left, Right : Value_Acc;
Op : Table_2d;
Loc : Syn_Src) return Value_Acc
is
El_Typ : constant Type_Acc := Left.Typ.Vec_El;
Larr : constant Static_Arr_Type := Get_Static_Array (Left);
Rarr : constant Static_Arr_Type := Get_Static_Array (Right);
Arr : Value_Array_Acc;
begin
if Left.Typ.W /= Right.Typ.W then
Error_Msg_Synth (+Loc, "length of operands mismatch");
return null;
end if;
Arr := Create_Value_Array (Iir_Index32 (Left.Typ.W));
for I in Arr.V'Range loop
declare
Ls : constant Std_Ulogic :=
Get_Static_Std_Logic (Larr, Uns32 (I - 1));
Rs : constant Std_Ulogic :=
Get_Static_Std_Logic (Rarr, Uns32 (I - 1));
V : constant Std_Ulogic := Op (Ls, Rs);
begin
Arr.V (I) := Create_Value_Discrete (Std_Ulogic'Pos (V), El_Typ);
end;
end loop;
return Create_Value_Const_Array (Create_Res_Bound (Left.Typ), Arr);
end Synth_Vector_Dyadic;
procedure To_Std_Logic_Vector
(Val : Value_Acc; Arr : out Std_Logic_Vector) is
begin
for I in Val.Arr.V'Range loop
Arr (Natural (I)) := Std_Ulogic'Val (Val.Arr.V (I).Scal);
end loop;
end To_Std_Logic_Vector;
function To_Value_Acc (Vec : Std_Logic_Vector; El_Typ : Type_Acc)
return Value_Acc
is
pragma Assert (Vec'First = 1);
Res_Typ : Type_Acc;
Arr : Value_Array_Acc;
begin
Res_Typ := Create_Vec_Type_By_Length (Uns32 (Vec'Last), El_Typ);
Arr := Create_Value_Array (Iir_Index32 (Vec'Last));
for I in Vec'Range loop
Arr.V (Iir_Index32 (I)) :=
Create_Value_Discrete (Std_Ulogic'Pos (Vec (I)), El_Typ);
end loop;
return Create_Value_Const_Array (Res_Typ, Arr);
end To_Value_Acc;
function Synth_Add_Uns_Uns (L, R : Value_Acc; Loc : Syn_Src)
return Value_Acc
is
pragma Unreferenced (Loc);
L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
R_Arr : Std_Logic_Vector (1 .. Natural (R.Arr.Len));
begin
To_Std_Logic_Vector (L, L_Arr);
To_Std_Logic_Vector (R, R_Arr);
declare
Res_Arr : constant Std_Logic_Vector := Add_Uns_Uns (L_Arr, R_Arr);
begin
return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
end;
end Synth_Add_Uns_Uns;
function Synth_Add_Sgn_Int (L, R : Value_Acc; Loc : Syn_Src)
return Value_Acc
is
pragma Unreferenced (Loc);
L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
R_Val : constant Int64 := R.Scal;
begin
To_Std_Logic_Vector (L, L_Arr);
declare
Res_Arr : constant Std_Logic_Vector := Add_Sgn_Int (L_Arr, R_Val);
begin
return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
end;
end Synth_Add_Sgn_Int;
function Synth_Add_Uns_Nat (L, R : Value_Acc; Loc : Syn_Src)
return Value_Acc
is
pragma Unreferenced (Loc);
L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
R_Val : constant Uns64 := Uns64 (R.Scal);
begin
To_Std_Logic_Vector (L, L_Arr);
declare
Res_Arr : constant Std_Logic_Vector := Add_Uns_Nat (L_Arr, R_Val);
begin
return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
end;
end Synth_Add_Uns_Nat;
function Synth_Sub_Uns_Uns (L, R : Value_Acc; Loc : Syn_Src)
return Value_Acc
is
pragma Unreferenced (Loc);
L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
R_Arr : Std_Logic_Vector (1 .. Natural (R.Arr.Len));
begin
To_Std_Logic_Vector (L, L_Arr);
To_Std_Logic_Vector (R, R_Arr);
declare
Res_Arr : constant Std_Logic_Vector := Sub_Uns_Uns (L_Arr, R_Arr);
begin
return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
end;
end Synth_Sub_Uns_Uns;
function Synth_Mul_Uns_Uns (L, R : Value_Acc; Loc : Syn_Src)
return Value_Acc
is
pragma Unreferenced (Loc);
L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
R_Arr : Std_Logic_Vector (1 .. Natural (R.Arr.Len));
begin
To_Std_Logic_Vector (L, L_Arr);
To_Std_Logic_Vector (R, R_Arr);
declare
Res_Arr : constant Std_Logic_Vector := Mul_Uns_Uns (L_Arr, R_Arr);
begin
return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
end;
end Synth_Mul_Uns_Uns;
function Synth_Mul_Sgn_Sgn (L, R : Value_Acc; Loc : Syn_Src)
return Value_Acc
is
pragma Unreferenced (Loc);
L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
R_Arr : Std_Logic_Vector (1 .. Natural (R.Arr.Len));
begin
To_Std_Logic_Vector (L, L_Arr);
To_Std_Logic_Vector (R, R_Arr);
declare
Res_Arr : constant Std_Logic_Vector := Mul_Sgn_Sgn (L_Arr, R_Arr);
begin
return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
end;
end Synth_Mul_Sgn_Sgn;
function Synth_Static_Dyadic_Predefined (Syn_Inst : Synth_Instance_Acc;
Imp : Node;
Left : Value_Acc;
Right : Value_Acc;
Expr : Node) return Value_Acc
is
Def : constant Iir_Predefined_Functions :=
Get_Implicit_Definition (Imp);
Res_Typ : constant Type_Acc :=
Get_Value_Type (Syn_Inst, Get_Type (Expr));
begin
case Def is
when Iir_Predefined_Error =>
return null;
when Iir_Predefined_Enum_Equality =>
return Create_Value_Discrete
(Boolean'Pos (Left.Scal = Right.Scal), Boolean_Type);
when Iir_Predefined_Integer_Plus =>
return Create_Value_Discrete
(Get_Static_Discrete (Left) + Get_Static_Discrete (Right),
Res_Typ);
when Iir_Predefined_Integer_Minus =>
return Create_Value_Discrete
(Get_Static_Discrete (Left) - Get_Static_Discrete (Right),
Res_Typ);
when Iir_Predefined_Integer_Mul =>
return Create_Value_Discrete
(Get_Static_Discrete (Left) * Get_Static_Discrete (Right),
Res_Typ);
when Iir_Predefined_Integer_Div =>
return Create_Value_Discrete
(Left.Scal / Right.Scal, Res_Typ);
when Iir_Predefined_Integer_Mod =>
return Create_Value_Discrete
(Get_Static_Discrete (Left) mod Get_Static_Discrete (Right),
Res_Typ);
when Iir_Predefined_Integer_Rem =>
return Create_Value_Discrete
(Left.Scal rem Right.Scal, Res_Typ);
when Iir_Predefined_Integer_Exp =>
return Create_Value_Discrete
(Left.Scal ** Natural (Right.Scal), Res_Typ);
when Iir_Predefined_Integer_Less_Equal =>
return Create_Value_Discrete
(Boolean'Pos (Left.Scal <= Right.Scal), Boolean_Type);
when Iir_Predefined_Integer_Less =>
return Create_Value_Discrete
(Boolean'Pos (Left.Scal < Right.Scal), Boolean_Type);
when Iir_Predefined_Integer_Greater_Equal =>
return Create_Value_Discrete
(Boolean'Pos (Left.Scal >= Right.Scal), Boolean_Type);
when Iir_Predefined_Integer_Greater =>
return Create_Value_Discrete
(Boolean'Pos (Left.Scal > Right.Scal), Boolean_Type);
when Iir_Predefined_Integer_Equality =>
return Create_Value_Discrete
(Boolean'Pos (Get_Static_Discrete (Left)
= Get_Static_Discrete (Right)), Boolean_Type);
when Iir_Predefined_Integer_Inequality =>
return Create_Value_Discrete
(Boolean'Pos (Get_Static_Discrete (Left)
/= Get_Static_Discrete (Right)), Boolean_Type);
when Iir_Predefined_Physical_Physical_Div
| Iir_Predefined_Physical_Integer_Div =>
return Create_Value_Discrete
(Left.Scal / Right.Scal, Res_Typ);
when Iir_Predefined_Floating_Less =>
return Create_Value_Discrete
(Boolean'Pos (Left.Fp < Right.Fp), Boolean_Type);
when Iir_Predefined_Floating_Less_Equal =>
return Create_Value_Discrete
(Boolean'Pos (Left.Fp <= Right.Fp), Boolean_Type);
when Iir_Predefined_Floating_Equality =>
return Create_Value_Discrete
(Boolean'Pos (Left.Fp = Right.Fp), Boolean_Type);
when Iir_Predefined_Floating_Inequality =>
return Create_Value_Discrete
(Boolean'Pos (Left.Fp /= Right.Fp), Boolean_Type);
when Iir_Predefined_Floating_Greater =>
return Create_Value_Discrete
(Boolean'Pos (Left.Fp > Right.Fp), Boolean_Type);
when Iir_Predefined_Floating_Greater_Equal =>
return Create_Value_Discrete
(Boolean'Pos (Left.Fp >= Right.Fp), Boolean_Type);
when Iir_Predefined_Floating_Plus =>
return Create_Value_Float (Left.Fp + Right.Fp, Res_Typ);
when Iir_Predefined_Floating_Minus =>
return Create_Value_Float (Left.Fp - Right.Fp, Res_Typ);
when Iir_Predefined_Floating_Mul =>
return Create_Value_Float (Left.Fp * Right.Fp, Res_Typ);
when Iir_Predefined_Floating_Div =>
return Create_Value_Float (Left.Fp / Right.Fp, Res_Typ);
when Iir_Predefined_Floating_Exp =>
return Create_Value_Float
(Left.Fp ** Natural (Right.Scal), Res_Typ);
when Iir_Predefined_Array_Array_Concat =>
declare
Ret_Typ : constant Type_Acc :=
Get_Value_Type (Syn_Inst, Get_Return_Type (Imp));
Bnd : Bound_Type;
Res_Typ : Type_Acc;
Arr : Value_Array_Acc;
begin
Bnd := Oper.Create_Bounds_From_Length
(Syn_Inst, Get_Index_Type (Get_Type (Expr), 0),
Left.Arr.Len + Right.Arr.Len);
Res_Typ := Create_Onedimensional_Array_Subtype
(Ret_Typ, Bnd);
Arr := Create_Value_Array (Left.Arr.Len + Right.Arr.Len);
for I in Left.Arr.V'Range loop
Arr.V (I) := Left.Arr.V (I);
end loop;
for I in Right.Arr.V'Range loop
Arr.V (Left.Arr.Len + I) := Right.Arr.V (I);
end loop;
return Create_Value_Const_Array (Res_Typ, Arr);
end;
when Iir_Predefined_Element_Array_Concat =>
declare
Ret_Typ : constant Type_Acc :=
Get_Value_Type (Syn_Inst, Get_Return_Type (Imp));
Bnd : Bound_Type;
Res_Typ : Type_Acc;
Arr : Value_Array_Acc;
begin
Bnd := Oper.Create_Bounds_From_Length
(Syn_Inst, Get_Index_Type (Get_Type (Expr), 0),
1 + Right.Arr.Len);
Res_Typ := Create_Onedimensional_Array_Subtype
(Ret_Typ, Bnd);
Arr := Create_Value_Array (1 + Right.Arr.Len);
Arr.V (1) := Left;
for I in Right.Arr.V'Range loop
Arr.V (1 + I) := Right.Arr.V (I);
end loop;
return Create_Value_Const_Array (Res_Typ, Arr);
end;
when Iir_Predefined_Array_Element_Concat =>
declare
Ret_Typ : constant Type_Acc :=
Get_Value_Type (Syn_Inst, Get_Return_Type (Imp));
Bnd : Bound_Type;
Res_Typ : Type_Acc;
Arr : Value_Array_Acc;
begin
Bnd := Oper.Create_Bounds_From_Length
(Syn_Inst, Get_Index_Type (Get_Type (Expr), 0),
Left.Arr.Len + 1);
Res_Typ := Create_Onedimensional_Array_Subtype
(Ret_Typ, Bnd);
Arr := Create_Value_Array (Left.Arr.Len + 1);
for I in Left.Arr.V'Range loop
Arr.V (I) := Left.Arr.V (I);
end loop;
Arr.V (Left.Arr.Len + 1) := Right;
return Create_Value_Const_Array (Res_Typ, Arr);
end;
when Iir_Predefined_Array_Equality
| Iir_Predefined_Record_Equality =>
return Create_Value_Discrete
(Boolean'Pos (Is_Equal (Left, Right)), Boolean_Type);
when Iir_Predefined_Array_Inequality
| Iir_Predefined_Record_Inequality =>
return Create_Value_Discrete
(Boolean'Pos (not Is_Equal (Left, Right)), Boolean_Type);
when Iir_Predefined_Access_Equality =>
return Create_Value_Discrete
(Boolean'Pos (Left.Acc = Right.Acc), Boolean_Type);
when Iir_Predefined_Access_Inequality =>
return Create_Value_Discrete
(Boolean'Pos (Left.Acc /= Right.Acc), Boolean_Type);
when Iir_Predefined_Ieee_1164_Vector_And
| Iir_Predefined_Ieee_Numeric_Std_And_Uns_Uns
| Iir_Predefined_Ieee_Numeric_Std_And_Sgn_Sgn =>
return Synth_Vector_Dyadic (Left, Right, And_Table, Expr);
when Iir_Predefined_Ieee_1164_Vector_Or
| Iir_Predefined_Ieee_Numeric_Std_Or_Uns_Uns
| Iir_Predefined_Ieee_Numeric_Std_Or_Sgn_Sgn =>
return Synth_Vector_Dyadic (Left, Right, Or_Table, Expr);
when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Uns =>
return Synth_Add_Uns_Uns (Left, Right, Expr);
when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Int =>
return Synth_Add_Sgn_Int (Left, Right, Expr);
when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Nat =>
return Synth_Add_Uns_Nat (Left, Right, Expr);
when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Uns =>
return Synth_Sub_Uns_Uns (Left, Right, Expr);
when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Uns =>
return Synth_Mul_Uns_Uns (Left, Right, Expr);
when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Sgn =>
return Synth_Mul_Sgn_Sgn (Left, Right, Expr);
when others =>
Error_Msg_Synth
(+Expr, "synth_static_dyadic_predefined: unhandled "
& Iir_Predefined_Functions'Image (Def));
raise Internal_Error;
end case;
end Synth_Static_Dyadic_Predefined;
function Synth_Vector_Monadic
(Vec : Value_Acc; Op : Table_1d) return Value_Acc
is
El_Typ : constant Type_Acc := Vec.Typ.Vec_El;
Arr : Value_Array_Acc;
begin
Arr := Create_Value_Array (Vec.Arr.Len);
for I in Arr.V'Range loop
declare
V : constant Std_Ulogic := Std_Ulogic'Val (Vec.Arr.V (I).Scal);
begin
Arr.V (I) :=
Create_Value_Discrete (Std_Ulogic'Pos (Op (V)), El_Typ);
end;
end loop;
return Create_Value_Const_Array (Create_Res_Bound (Vec.Typ), Arr);
end Synth_Vector_Monadic;
function Synth_Vector_Reduce
(Init : Std_Ulogic; Vec : Value_Acc; Op : Table_2d) return Value_Acc
is
El_Typ : constant Type_Acc := Vec.Typ.Vec_El;
Res : Std_Ulogic;
begin
Res := Init;
for I in Vec.Arr.V'Range loop
declare
V : constant Std_Ulogic :=
Std_Ulogic'Val (Vec.Arr.V (I).Scal);
begin
Res := Op (Res, V);
end;
end loop;
return Create_Value_Discrete (Std_Ulogic'Pos (Res), El_Typ);
end Synth_Vector_Reduce;
function Synth_Static_Monadic_Predefined (Syn_Inst : Synth_Instance_Acc;
Imp : Node;
Operand : Value_Acc;
Expr : Node) return Value_Acc
is
Def : constant Iir_Predefined_Functions :=
Get_Implicit_Definition (Imp);
Inter_Chain : constant Node :=
Get_Interface_Declaration_Chain (Imp);
Oper_Type : constant Node := Get_Type (Inter_Chain);
Oper_Typ : constant Type_Acc := Get_Value_Type (Syn_Inst, Oper_Type);
-- Res_Typ : constant Type_Acc :=
-- Get_Value_Type (Syn_Inst, Get_Type (Expr));
begin
case Def is
when Iir_Predefined_Boolean_Not
| Iir_Predefined_Bit_Not =>
return Create_Value_Discrete (1 - Operand.Scal, Oper_Typ);
when Iir_Predefined_Integer_Negation =>
return Create_Value_Discrete (-Operand.Scal, Oper_Typ);
when Iir_Predefined_Integer_Absolute =>
return Create_Value_Discrete (abs Operand.Scal, Oper_Typ);
when Iir_Predefined_Floating_Negation =>
return Create_Value_Float (-Operand.Fp, Oper_Typ);
when Iir_Predefined_Floating_Identity =>
return Operand;
when Iir_Predefined_Floating_Absolute =>
return Create_Value_Float (abs Operand.Fp, Oper_Typ);
when Iir_Predefined_Ieee_1164_Condition_Operator =>
-- Constant std_logic: need to convert.
declare
Val : Uns32;
Zx : Uns32;
begin
From_Std_Logic (Operand.Scal, Val, Zx);
return Create_Value_Discrete
(Boolean'Pos (Val = 1 and Zx = 0), Boolean_Type);
end;
when Iir_Predefined_Ieee_Numeric_Std_Neg_Sgn =>
declare
Op_Arr : Std_Logic_Vector (1 .. Natural (Operand.Arr.Len));
begin
To_Std_Logic_Vector (Operand, Op_Arr);
declare
Res_Arr : constant Std_Logic_Vector := Neg_Sgn (Op_Arr);
begin
return To_Value_Acc (Res_Arr, Operand.Typ.Vec_El);
end;
end;
when Iir_Predefined_Ieee_1164_Vector_Not =>
return Synth_Vector_Monadic (Operand, Not_Table);
when Iir_Predefined_Ieee_1164_Scalar_Not =>
return Create_Value_Discrete
(Std_Ulogic'Pos (Not_Table (Std_Ulogic'Val (Operand.Scal))),
Oper_Typ);
when Iir_Predefined_Ieee_1164_Vector_Or_Reduce =>
return Synth_Vector_Reduce ('0', Operand, Or_Table);
when others =>
Error_Msg_Synth
(+Expr, "synth_static_monadic_predefined: unhandled "
& Iir_Predefined_Functions'Image (Def));
raise Internal_Error;
end case;
end Synth_Static_Monadic_Predefined;
end Synth.Static_Oper;
|