aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/netlists-inference.adb
blob: 383211684128c679ab2284eb470092c76f3d8068 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
`timescale 1ns / 1ps

module testbench;
	parameter [0:0] NEG_TRIGGER = 0;
	parameter [0:0] C_REG = 0;
	parameter [0:0] A_REG = 0;
	parameter [0:0] B_REG = 0;
	parameter [0:0] D_REG = 0;
	parameter [0:0] TOP_8x8_MULT_REG = 0;
	parameter [0:0] BOT_8x8_MULT_REG = 0;
	parameter [0:0] PIPELINE_16x16_MULT_REG1 = 0;
	parameter [0:0] PIPELINE_16x16_MULT_REG2 = 0;
	parameter [1:0] TOPOUTPUT_SELECT = 0;
	parameter [1:0] TOPADDSUB_LOWERINPUT = 0;
	parameter [0:0] TOPADDSUB_UPPERINPUT = 1;
	parameter [1:0] TOPADDSUB_CARRYSELECT = 0;
	parameter [1:0] BOTOUTPUT_SELECT = 0;
	parameter [1:0] BOTADDSUB_LOWERINPUT = 0;
	parameter [0:0] BOTADDSUB_UPPERINPUT = 1;
	parameter [1:0] BOTADDSUB_CARRYSELECT = 0;
	parameter [0:0] MODE_8x8 = 0;
	parameter [0:0] A_SIGNED = 0;
	parameter [0:0] B_SIGNED = 0;

	reg CLK, CE;
	reg [15:0] C, A, B, D;
	reg AHOLD, BHOLD, CHOLD, DHOLD;
	reg IRSTTOP, IRSTBOT;
	reg ORSTTOP, ORSTBOT;
	reg OLOADTOP, OLOADBOT;
	reg ADDSUBTOP, ADDSUBBOT;
	reg OHOLDTOP, OHOLDBOT;
	reg CI, ACCUMCI, SIGNEXTIN;

	output [31:0] REF_O, UUT_O;
	output REF_CO, REF_ACCUMCO, REF_SIGNEXTOUT;
	output UUT_CO, UUT_ACCUMCO, UUT_SIGNEXTOUT;

	integer errcount = 0;

	task clkcycle;
		begin
			#5;
			CLK = ~CLK;
			#10;
			CLK = ~CLK;
			#2;
			if (REF_O !== UUT_O) begin
				$display("ERROR at %1t: REF_O=%b UUT_O=%b DIFF=%b", $time, REF_O, UUT_O, REF_O ^ UUT_O);
				errcount = errcount + 1;
			end
			if (REF_CO !== UUT_CO) begin
				$display("ERROR at %1t: REF_CO=%b UUT_CO=%b", $time, REF_CO, UUT_CO);
				errcount = errcount + 1;
			end
			if (REF_ACCUMCO !== UUT_ACCUMCO) begin
				$display("ERROR at %1t: REF_ACCUMCO=%b UUT_ACCUMCO=%b", $time, REF_ACCUMCO, UUT_ACCUMCO);
				errcount = errcount + 1;
			end
			if (REF_SIGNEXTOUT !== UUT_SIGNEXTOUT) begin
				$display("ERROR at %1t: REF_SIGNEXTOUT=%b UUT_SIGNEXTOUT=%b", $time, REF_SIGNEXTOUT, UUT_SIGNEXTOUT);
				errcount = errcount + 1;
			end
			#3;
		end
	endtask

	initial begin
		$dumpfile("test_dsp_model.vcd");
		$dumpvars(0, testbench);

		#2;
		CLK = NEG_TRIGGER;
		CE = 1;
		{C, A, B, D} = 0;
		{AHOLD, BHOLD, CHOLD, DHOLD} = 0;
		{OLOADTOP, OLOADBOT} = 0;
		{ADDSUBTOP, ADDSUBBOT} = 0;
		{OHOLDTOP, OHOLDBOT} = 0;
		{CI, ACCUMCI, SIGNEXTIN} = 0;

		{IRSTTOP, IRSTBOT} = ~0;
		{ORSTTOP, ORSTBOT} = ~0;

		#3;
		{IRSTTOP, IRSTBOT} = 0;
		{ORSTTOP, ORSTBOT} = 0;

		repeat (300) begin
			clkcycle;

			A = $urandom;
			B = $urandom;
			C = $urandom;
			D = $urandom;

			{AHOLD, BHOLD, CHOLD, DHOLD} = $urandom & $urandom & $urandom;
			{OLOADTOP, OLOADBOT} = $urandom & $urandom & $urandom;
			{ADDSUBTOP, ADDSUBBOT} = $urandom & $urandom & $urandom;
			{OHOLDTOP, OHOLDBOT} = $urandom & $urandom & $urandom;
			{CI, ACCUMCI, SIGNEXTIN} = $urandom & $urandom & $urandom;

			{IRSTTOP, IRSTBOT} = $urandom & $urandom & $urandom;
			{ORSTTOP, ORSTBOT} = $urandom & $urandom & $urandom;
		end

		pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
--  Inference in synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Netlists.Utils; use Netlists.Utils;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Gates_Ports; use Netlists.Gates_Ports;
with Netlists.Locations; use Netlists.Locations;
with Netlists.Errors; use Netlists.Errors;
with Netlists.Internings;
with Netlists.Folds; use Netlists.Folds;
with Netlists.Memories; use Netlists.Memories;

with Synth.Errors; use Synth.Errors;
with Synth.Flags;

package body Netlists.Inference is
   --  DFF inference.
   --  As an initial implementation, the following 'styles' must be
   --  supported:
   --  Note: rising_edge is any clock_edge; '<=' can be ':='.
   --
   --  1)
   --  if rising_edge(clk) then
   --    r <= x;
   --  end if;
   --
   --  2)
   --  if rst = '0' then
   --    r <= x;
   --  elsif rising_edge (clk) then
   --    r <= y;
   --  end if;
   --
   --  3)
   --  wait until rising_edge(clk);
   --   r <= x;
   --  Which is equivalent to 1) when the wait statement is the only and first
   --  statement, as it can be converted to an if statement.
   --
   --  Netlist derived from 1)
   --      +------+
   --      |      |
   --      |   /| |
   --      |  |0+-+
   --  Q --+--+ |
   --         |1+--- D
   --          \|
   --         CLK
   --  This is a memorizing element as there is a loop, the value is changed
   --  to D on a rising edge of the clock.
   --
   --  Netlist derived from 2)
   --      +------------+
   --      |         /| |
   --      |   /|   |0+-+
   --      |  |0+---+ |
   --  Q --+--+ |   |1+----- D
   --         |1+-+  \|
   --          \| | CLK
   --         RST +--------- '0'
   --  This is a memorizing element as there is a loop.  It is an asynchronous
   --  reset as Q is forced to '0' when RST is asserted.

   function Has_Clock (N : Net) return Boolean
   is
      Inst : constant Instance := Get_Net_Parent (N);
   begin
      case Get_Id (Inst) is
         when Edge_Module_Id =>
            return True;
         when Id_And =>
            --  Assume the condition is canonicalized, ie of the form:
            --  CLK and EXPR.
            --  FIXME: do it!
            return Has_Clock (Get_Input_Net (Inst, 0));
         when others =>
            return False;
      end case;
   end Has_Clock;

   --  Find the longest chain of mux starting from VAL with a final input
   --  of PREV_VAL.  Such a chain means this is a memorising element.
   --  RES is the last mux in the chain, DIST the number of mux in the chain.
   procedure Find_Longest_Loop
     (Val : Net; Prev_Val : Net; Res : out Instance; Dist : out Integer)
   is
      Inst : constant Instance := Get_Net_Parent (Val);
   begin
      if Get_Id (Inst) = Id_Mux2 then
         declare
            Res0, Res1 : Instance;
            Dist0, Dist1 : Integer;
         begin
            if Has_Clock (Get_Driver (Get_Mux2_Sel (Inst))) then
               Res := Inst;
               Dist := 1;
            else
               Find_Longest_Loop
                 (Get_Driver (Get_Mux2_I0 (Inst)), Prev_Val, Res0, Dist0);
               Find_Longest_Loop
                 (Get_Driver (Get_Mux2_I1 (Inst)), Prev_Val, Res1, Dist1);
               --  Input1 has an higher priority than input0 in case
               --  the selector is a clock.
               --  FIXME: improve algorithm.
               if Dist1 > Dist0 then
                  Dist := Dist1 + 1;
                  if Dist1 > 0 then
                     Res := Res1;
                  else
                     Res := Inst;
                  end if;
               elsif Dist0 >= 0 then
                  Dist := Dist0 + 1;
                  if Dist0 > 0 then
                     Res := Res0;
                  else
                     Res := Inst;
                  end if;
               else
                  pragma Assert (Dist1 < 0 and Dist0 < 0);
                  Res := No_Instance;
                  Dist := -1;
               end if;
            end if;
         end;
      elsif Val = Prev_Val then
         Res := No_Instance;
         Dist := 0;
      else
         Res := No_Instance;
         Dist := -1;
      end if;
   end Find_Longest_Loop;

   procedure Extract_Clock_And (Ctxt : Context_Acc; Inst : Instance)
   is
   begin
      pragma Assert (Get_Id (Inst) = Id_And);

      declare
         I0 : constant Input := Get_Input (Inst, 0);
         N0 : constant Net := Get_Driver (I0);
         Inst0 : constant Instance := Get_Net_Parent (N0);
      begin
         case Get_Id (Inst0) is
            when Edge_Module_Id =>
               null;
            when Id_And =>
               Extract_Clock_And (Ctxt, Inst0);

               --  If we have:       AND      convert to:     AND
               --                    / \                      / \
               --                  N1  AND0       ==>     AND0   EDGE
               --                      /  \               /  \
               --                     N2  EDGE           N1   N2
               declare
                  I3 : constant Input := Get_Input (Inst0, 0);
                  N3 : constant Net := Get_Driver (I3);
                  Inst3 : constant Instance := Get_Net_Parent (N3);
               begin
                  if Get_Id (Inst3) in Edge_Module_Id then
                     declare
                        Can_Rotate : constant Boolean :=
                          Has_One_Connection (N0);
                        I2 : constant Input := Get_Input (Inst0, 1);
                        N2 : constant Net := Get_Driver (I2);
                        I1 : constant Input := Get_Input (Inst, 1);
                        N1 : constant Net := Get_Driver (I1);
                        N4 : Net;
                     begin
                        Disconnect (I0);
                        Disconnect (I1);
                        Connect (I0, N3);
                        if Can_Rotate then
                           Disconnect (I2);
                           Disconnect (I3);

                           Connect (I1, N0);
                           Connect (I3, N2);
                           Connect (I2, N1);
                        else
                           N4 := Build_Dyadic (Ctxt, Id_And, N2, N1);
                           Copy_Location (N4, Inst);
                           Connect (I1, N4);
                        end if;
                     end;
                  end if;
               end;
            when others =>
               null;
         end case;
      end;

      declare
         I0 : constant Input := Get_Input (Inst, 1);
         N0 : constant Net := Get_Driver (I0);
         Inst0 : constant Instance := Get_Net_Parent (N0);
      begin
         case Get_Id (Inst0) is
            when Edge_Module_Id =>
               --  Swap inputs 0 and 1.
               declare
                  I1 : constant Input := Get_Input (Inst, 0);
                  N1 : constant Net := Get_Driver (I1);
               begin
                  Disconnect (I0);
                  Disconnect (I1);
                  Connect (I1, N0);
                  Connect (I0, N1);
               end;
            when Id_And =>
               Extract_Clock_And (Ctxt, Inst0);

               --  If we have:       AND      convert to:     AND
               --                    / \                      / \
               --                 AND0  N1     ==>         AND0  EDGE
               --                 /  \                     /  \
               --                N2  EDGE                N2   N1
               declare
                  I3 : constant Input := Get_Input (Inst0, 0);
                  N3 : constant Net := Get_Driver (I3);
               begin
                  if Get_Id (Get_Net_Parent (N3)) in Edge_Module_Id then
                     declare
                        Can_Rotate : constant Boolean :=
                          Has_One_Connection (N0);
                        I1 : constant Input := Get_Input (Inst, 0);
                        N1 : constant Net := Get_Driver (I1);
                        N4 : Net;
                     begin
                        Disconnect (I3);
                        Disconnect (I1);
                        Connect (I1, N3);
                        if Can_Rotate then
                           Connect (I3, N1);
                        else
                           N4 := Build_Dyadic
                             (Ctxt, Id_And, N1, Get_Input_Net (Inst0, 1));
                           Connect (I3, N4);
                        end if;
                     end;
                  end if;
               end;
            when others =>
               null;
         end case;
      end;
   end Extract_Clock_And;

   --  Walk the And-net N, and extract clock (posedge/negedge) if found.
   --  ENABLE is N without the clock.
   --  If not found, CLK and ENABLE are set to No_Net.
   procedure Extract_Clock
     (Ctxt : Context_Acc; N : Net; Clk : out Net; Enable : out Net)
   is
      Inst : constant Instance := Get_Net_Parent (N);
   begin
      Clk := No_Net;
      Enable := No_Net;

      case Get_Id (Inst) is
         when Edge_Module_Id =>
            Clk := N;
         when Id_And =>
            --  Canonicalize conditions.
            Extract_Clock_And (Ctxt, Inst);

            --  Condition should be in the form: CLK and EXPR
            declare
               I0 : constant Net := Get_Input_Net (Inst, 0);
               Inst0 : constant Instance := Get_Net_Parent (I0);
            begin
               if Get_Id (Inst0) in Edge_Module_Id then
                  --  INST is clearly not synthesizable (boolean operation on
                  --  an edge).  Will be removed at the end by
                  --  remove_unused_instances.  Do not remove it now as its
                  --  output may be used by other nets.
                  Clk := I0;
                  Enable := Get_Input_Net (Inst, 1);
                  return;
               end if;
            end;
         when others =>
            null;
      end case;
   end Extract_Clock;

   function Is_Prev_FF_Value (V : Net; Prev_Val : Net; Off : Uns32)
                             return Boolean
   is
      Inst : Instance;
   begin
      if V = Prev_Val then
         pragma Assert (Off = 0);
         return True;
      end if;
      Inst := Get_Net_Parent (V);
      return Get_Id (Inst) = Id_Extract
        and then Get_Param_Uns32 (Inst, 0) = Off
        and then Get_Input_Net (Inst, 0) = Prev_Val;
   end Is_Prev_FF_Value;

   --  Build the FF or the RAM according to the inputs.
   function Infere_FF_Create (Ctxt       : Context_Acc;
                              Prev_Val   : Net;
                              Off        : Uns32;
                              Last_Mux   : Instance;
                              Init       : Net;
                              Rst        : Net;
                              Rst_Val    : Net;
                              Data       : Net;
                              Els        : Net;
                              Clk        : Net;
                              Clk_Enable : Net;
                              Loc        : Location_Type) return Net
   is
      Ndata : Net;
      Res   : Net;
      Els_Net : Net;
      Els_Inst : Instance;
   begin
      Els_Net := Els;
      pragma Unreferenced (Els);

      if Off = 0
        and then Rst = No_Net
        and then not Synth.Flags.Flag_Debug_Nomemory1
        and then Can_Infere_RAM (Data, Prev_Val)
      then
         --  Maybe it is a RAM.
         Res := Infere_RAM (Ctxt, Data, Els_Net, Clk, Clk_Enable);
      else
         if Clk_Enable /= No_Net then
            --  If there is a condition with the clock, that's an enable which
            --  keep the previous value if the condition is false.  Add the mux
            --  for it, to create a synchronous enable.
            declare
               Prev : Net;
            begin
               Prev := Build2_Extract (Ctxt, Prev_Val, Off, Get_Width (Data));

               Ndata := Build_Mux2 (Ctxt, Clk_Enable, Prev, Data);
               Set_Location (Ndata, Loc);
            end;
         else
            Ndata := Data;
         end if;

         --  Create the FF.
         if Rst = No_Net then
            --  No async reset
            pragma Assert (Rst_Val = No_Net);

            if Els_Net /= No_Net then
               Els_Inst := Get_Net_Parent (Els_Net);
               if Get_Id (Els_Inst) in Dff_Module_Id
                 and then Same_Clock (Clk, Get_Input_Net (Els_Inst, 0))
               then
                  Els_Net := No_Net;
               end if;
            end if;

            if Els_Net = No_Net then
               if Init /= No_Net then
                  Res := Build_Idff (Ctxt, Clk, D => Ndata, Init => Init);
               else
                  Res := Build_Dff (Ctxt, Clk, D => Ndata);
               end if;
            else
               if Init /= No_Net then
                  Res := Build_Midff (Ctxt, Clk, D => Ndata,
                                      Els => Els_Net, Init => Init);
               else
                  Res := Build_Mdff (Ctxt, Clk, D => Ndata, Els => Els_Net);
               end if;
            end if;
         else
            if Els_Net /= No_Net then
               Error_Msg_Synth
                 (Loc, "synchronous code does not expect else part");
            end if;

            if Init /= No_Net then
               Res := Build_Iadff (Ctxt, Clk, D => Ndata,
                                   Rst => Rst, Rst_Val => Rst_Val,
                                   Init => Init);
            else
               Res := Build_Adff (Ctxt, Clk, D => Ndata,
                                  Rst => Rst, Rst_Val => Rst_Val);
            end if;
         end if;

         Set_Location (Res, Loc);
      end if;

      --  The output may already be used (if the target is a variable that
      --  is read).  So redirect the net.
      Redirect_Inputs (Get_Output (Last_Mux, 0), Res);
      return Res;
   end Infere_FF_Create;

   --  Remove the Mux2 and handle the 'else' branch.
   procedure Infere_FF_Mux (Ctxt : Context_Acc;
                            Prev_Val : Net;
                            Off : Uns32;
                            Last_Mux : Instance;
                            Els : out Net;
                            Data : out Net)
   is
      Mux_Loc  : constant Location_Type := Get_Location (Last_Mux);
      Sel      : constant Input := Get_Mux2_Sel (Last_Mux);
      I0       : constant Input := Get_Mux2_I0 (Last_Mux);
      I1       : constant Input := Get_Mux2_I1 (Last_Mux);
      Els_Inst : Instance;
      Els_Clk  : Net;
      Els_En   : Net;
      Els_Data : Net;
      Els_Els  : Net;
   begin
      Els := Get_Driver (I0);
      if Is_Prev_FF_Value (Els, Prev_Val, Off) then
         --  The 'else' part of the mux2 is the logical loop.
         Els := No_Net;
      else
         --  The 'else' part is not a loop.  It should be a second FF for a
         --  DDR (not yet supported) or a true-dual-port RAM.
         Els_Inst := Get_Net_Parent (Els);
         if Get_Id (Els_Inst) = Id_Mux2 then
            Extract_Clock (Ctxt, Get_Driver (Get_Mux2_Sel (Els_Inst)),
                           Els_Clk, Els_En);
         else
            Els_Clk := No_Net;
         end if;
         if Els_Clk = No_Net then
            Error_Msg_Synth
              (Mux_Loc, "clocked logic requires clocked logic on else part");
            Els := No_Net;
         else
            --  Create and return the DFF.

            --  1. Remove the mux that creates the loop (will be replaced by
            --     the dff).
            Infere_FF_Mux (Ctxt, Prev_Val, Off, Els_Inst, Els_Els, Els_Data);

            Els := Infere_FF_Create (Ctxt, Prev_Val, Off, Els_Inst, No_Net,
                                     No_Net, No_Net, Els_Data, Els_Els,
                                     Els_Clk, Els_En, Get_Location (Els_Inst));
            Remove_Instance (Els_Inst);
         end if;
      end if;

      Disconnect (Sel);
      --  Don't try to free driver of I0 as this is Prev_Val or a selection
      --  of it.
      Disconnect (I0);
      Data := Get_Driver (I1);
      --  Don't try to free driver of I1 as it is reconnected.
      Disconnect (I1);
   end Infere_FF_Mux;

   --  A Mux2 with a logical loop and a clock has been found.
   --  Determine the kind of FF and extract the asynchronous reset.
   --  Build the FF (or the RAM).
   --
   --  CLOCK_MUX is the mux whose input 0 is the loop and clock for selector.
   function Infere_FF (Ctxt : Context_Acc;
                       Val : Net;
                       Prev_Val : Net;
                       Off : Uns32;
                       Clock_Mux : Instance;
                       Clk : Net;
                       Clk_Enable : Net;
                       Loc : Location_Type) return Net
   is
      O : constant Net := Get_Output (Clock_Mux, 0);
      Mux_Loc : constant Location_Type := Get_Location (Clock_Mux);
      Data : Net;
      Res : Net;
      Sig : Instance;
      Init : Net;
      Rst : Net;
      Rst_Val : Net;
      Enable : Net;
      Els : Net;
      Last_Mux : Instance;
      --  Previous mux to be free.
      Prev_Mux : Instance;
   begin
      --  Create and return the DFF.

      --  1. Remove the mux that creates the loop (will be replaced by the
      --     dff).
      Infere_FF_Mux (Ctxt, Prev_Val, Off, Clock_Mux, Els, Data);

      --  If the signal declaration has an initial value, get it.
      Sig := Get_Net_Parent (Prev_Val);
      case Get_Id (Get_Module (Sig)) is
         when Id_Isignal
           | Id_Ioutput =>
            Init := Get_Input_Net (Sig, 1);
            Init := Build2_Extract (Ctxt, Init, Off, Get_Width (O));
         when others =>
            Init := No_Net;
      end case;

      --  As an enable signal, start with the enable extracted from the clock
      --  to handle conditions like: `rising_edge(clk) and en`
      Enable := Clk_Enable;

      --  Look for asynchronous set/reset.  They are muxes after the loop
      --  mux.  In theory, there can be many set/reset with a defined order.
      Rst_Val := No_Net;
      Rst := No_Net;
      declare
         Mux : Instance;
         Sel : Net;
         Last_Out : Net;
         Mux_Not_Rst : Net;
         Mux_Rst : Net;
         Mux_Rst_Val : Net;
         Prev_Input : Input;
      begin
         Prev_Mux := Clock_Mux;

         --  LAST_MUX is the last handled mux and LAST_OUT its output.
         Last_Mux := Clock_Mux;
         Last_Out := O;

         --  Initially, the final output is not connected.  So walk from the
         --  clocked mux until reaching the final output.
         while Last_Out /= Val loop
            if not Has_One_Connection (Last_Out)
              and then not Is_Const_Net (Last_Out)
            then
               --  TODO.
               raise Internal_Error;
            end if;

            --  The parent must be a mux (it's a chain of muxes).
            Mux := Get_Input_Parent (Get_First_Sink (Last_Out));
            if Get_Id (Mux) = Id_Nop then
               --  Should have stopped.
               exit;
            end if;
            pragma Assert (Get_Id (Mux) = Id_Mux2);

            --  Extract the reset condition and the reset value.
            Sel := Get_Driver (Get_Mux2_Sel (Mux));
            Prev_Input := Get_Mux2_I0 (Mux);
            if Get_Driver (Prev_Input) = Last_Out then
               --  Normal reset
               Mux_Rst_Val := Get_Driver (Get_Mux2_I1 (Mux));
               Mux_Rst := Sel;
            else
               --  Inverted reset.
               Prev_Input := Get_Mux2_I1 (Mux);
               pragma Assert (Get_Driver (Prev_Input) = Last_Out);
               Mux_Rst_Val := Get_Driver (Get_Mux2_I0 (Mux));
               Mux_Rst := Build_Monadic (Ctxt, Id_Not, Sel);
            end if;

            --  Disconnect this mux.
            Disconnect (Get_Mux2_I0 (Mux));
            Disconnect (Get_Mux2_I1 (Mux));
            Disconnect (Get_Mux2_Sel (Mux));

            --  Next net to be handled.
            Last_Mux := Mux;
            Last_Out := Get_Output (Mux, 0);

            if Is_Prev_FF_Value (Mux_Rst_Val, Prev_Val, Off) then
               --  The mux is like an enable.  Like in this example, q2 is not
               --  assigned when RST is true:
               --    if rst then
               --      q1 <= '0';
               --    elsif rising_edge(clk) then
               --      q2 <= d2;
               --      q1 <= d1;
               --    end if;

               --  Add the negation of the condition to the enable signal.
               --  Negate the condition for the current reset.
               Mux_Not_Rst := Build_Monadic (Ctxt, Id_Not, Mux_Rst);
               Set_Location (Mux_Not_Rst, Loc);
               if Rst /= No_Net then
                  Rst := Build_Dyadic (Ctxt, Id_And, Rst, Mux_Not_Rst);
                  Set_Location (Rst, Loc);
               end if;
               if Enable = No_Net then
                  Enable := Mux_Not_Rst;
               else
                  Enable := Build_Dyadic (Ctxt, Id_And, Enable, Mux_Not_Rst);
                  Set_Location (Enable, Loc);
               end if;

               if Prev_Mux /= No_Instance then
                  Remove_Instance (Prev_Mux);
               end if;
               Prev_Mux := Mux;
            else
               --  Assume this is a reset value.
               --  FIXME: check for no logical loop.

               if Rst = No_Net then
                  --  First async reset condition.

                  --  Keep reset value and condition
                  Rst := Mux_Rst;
                  Rst_Val := Mux_Rst_Val;

                  --  Remove the last mux.  Will free this mux.
                  if Prev_Mux /= No_Instance then
                     Remove_Instance (Prev_Mux);
                  end if;
                  Prev_Mux := Mux;
               else
                  --  New async reset condition.
                  Rst := Build_Dyadic (Ctxt, Id_Or, Mux_Rst, Rst);
                  Copy_Location (Rst, Mux_Rst);

                  --  Use prev_mux to select the reset value.
                  Connect (Get_Mux2_Sel (Prev_Mux), Mux_Rst);
                  Connect (Get_Mux2_I0 (Prev_Mux), Rst_Val);
                  Connect (Get_Mux2_I1 (Prev_Mux), Mux_Rst_Val);

                  --  The reset value is the output of prev_mux.
                  Rst_Val := Get_Output (Prev_Mux, 0);

                  --  Allow to free this mux.
                  Prev_Mux := Mux;
               end if;
            end if;
         end loop;

         pragma Assert (Prev_Mux = No_Instance or else Prev_Mux = Last_Mux);
      end;

      Res := Infere_FF_Create (Ctxt, Prev_Val, Off, Last_Mux, Init,
                               Rst, Rst_Val, Data, Els, Clk, Enable, Mux_Loc);

      if Prev_Mux /= No_Instance then
         Remove_Instance (Prev_Mux);
      end if;

      return Res;
   end Infere_FF;

   --  Detect false combinational loop.  They can easily appear when variables
   --  are only used in one branch:
   --    process (all)
   --      variable a : std_logic;
   --    begin
   --      r <= '1';
   --      if sel = '1' then
   --        a := '1';
   --        r <= '0';
   --      end if;
   --    end process;
   --  There is a combinational path from 'a' to 'a' as
   --    a := (sel = '1') ? '1' : a;
   --  But this is a false loop because the value of 'a' is never used.  In
   --  that case, 'a' is assigned to 'x' and all the unused logic will be
   --  removed during clean-up.
   --
   --  Detection is very simple: the closure of readers of 'a' must be only
   --  muxes (which were inserted by controls).
   function Is_False_Loop (Prev_Val : Net) return Boolean
   is
      package Inst_Interning renames
        Netlists.Internings.Dyn_Instance_Interning;
      use Inst_Interning;
      T : Inst_Interning.Instance;

      function Add_From_Net (N : Net) return Boolean
      is
         Inst : Netlists.Instance;
         Inp : Input;
      begin
         Inp := Get_First_Sink (N);
         while Inp /= No_Input loop
            Inst := Get_Input_Parent (Inp);
            case Get_Id (Inst) is
               when Mux_Module_Id
                 | Id_Pmux =>
                  null;
               when others =>
                  return False;
            end case;

            --  Add to T (if not already).
            Get (T, Inst, Inst);

            Inp := Get_Next_Sink (Inp);
         end loop;

         return True;
      end Add_From_Net;

      function Walk_Nets (N : Net) return Boolean
      is
         Inst : Netlists.Instance;
      begin
         --  Put gates that read the value.
         if not Add_From_Net (N) then
            return False;
         end if;

         --  Follow the outputs.
         for I in First_Index .. Index_Type'Last loop
            exit when I > Inst_Interning.Last_Index (T);
            Inst := Get_By_Index (T, I);
            if not Add_From_Net (Get_Output (Inst, 0)) then
               return False;
            end if;
         end loop;

         --  No external readers.
         return True;
      end Walk_Nets;

      Res : Boolean;
   begin
      Inst_Interning.Init (T);

      Res := Walk_Nets (Prev_Val);

      Inst_Interning.Free (T);

      return Res;
   end Is_False_Loop;

   function Infere_Latch (Ctxt : Context_Acc;
                          Val : Net;
                          Prev_Val : Net;
                          Loc : Location_Type) return Net
   is
      Name : Sname;
   begin
      --  In case of false loop, do not close the loop but assign X.
      if Is_False_Loop (Prev_Val) then
         return Build_Const_X (Ctxt, Get_Width (Val));
      end if;

      --  Latch or combinational loop.
      if Get_Id (Get_Net_Parent (Prev_Val)) = Id_Output then
         --  Outputs are connected to a port.  The port is the first connection
         --  made, so it is the last sink.  Be more tolerant and look for
         --  the (only) port connected to the output.
         declare
            Inp : Input;
            Inst : Instance;
         begin
            Inp := Get_First_Sink (Prev_Val);
            loop
               pragma Assert (Inp /= No_Input);
               Inst := Get_Input_Parent (Inp);
               if Get_Id (Inst) >= Id_User_None then
                  Name := Get_Output_Desc (Get_Module (Inst),
                                           Get_Port_Idx (Inp)).Name;
                  exit;
               end if;
               Inp := Get_Next_Sink (Inp);
            end loop;
         end;
      else
         Name := Get_Instance_Name (Get_Net_Parent (Prev_Val));
      end if;

      if not Flag_Latches then
         Error_Msg_Synth
           (Loc, "latch infered for net %n (use --latches)", +Name);
      end if;

      return Val;
   end Infere_Latch;

   --  VAL is the value to be assigned to a wire at offset OFF.
   --  Note: PREV_VAL is the wire gate, so with full width and no offset.
   function Infere (Ctxt : Context_Acc;
                    Val : Net;
                    Off : Uns32;
                    Prev_Val : Net;
                    Loc : Location_Type;
                    Last_Use : Boolean) return Net
   is
      pragma Assert (Val /= No_Net);
      pragma Assert (Prev_Val /= No_Net);
      First_Mux, Last_Mux : Instance;
      Len : Integer;
      Sel : Input;
      Clk : Net;
      Enable : Net;
      Res : Net;
   begin
      if Get_First_Sink (Prev_Val) = No_Input then
         --  PREV_VAL is never read, so there cannot be any loop.
         --  This is an important optimization for control signals.
         return Val;
      end if;

      --  Infere tri-buf.
      First_Mux := Get_Net_Parent (Val);
      if Get_Id (First_Mux) = Id_Mux2 then
         declare
            Nsel, N0, N1 : Net;
         begin
            --  Check for VAL <= SEL ? N1 : 'Z'
            if Get_Id (Get_Input_Instance (First_Mux, 1)) = Id_Const_Z then
               --  Disconnect the mux.
               Nsel := Disconnect_And_Get (First_Mux, 0);
               N0 := Disconnect_And_Get (First_Mux, 1);
               N1 := Disconnect_And_Get (First_Mux, 2);
               --  Build the tri buf.
               Res := Build_Tri (Ctxt, Nsel, N1);
               --  Remove the 'Z' (shouldn't be connected).
               Remove_Instance (Get_Net_Parent (N0));
               --  Copy location.
               Copy_Location (Res, First_Mux);
               --  Redirect tri output.
               Redirect_Inputs (Get_Output (First_Mux, 0), Res);
               Remove_Instance (First_Mux);
               return Res;
            end if;
         end;
      end if;

      Find_Longest_Loop (Val, Prev_Val, Last_Mux, Len);
      if Len <= 0 then
         --  No logical loop or self assignment.
         return Val;
      end if;
      if Last_Use
        and then Has_One_Connection (Prev_Val)
        and then not Is_Connected (Val)
      then
         --  Value is not used, to be removed.  Do not try to infere anything.
         --  Conditions:
         --   * last_use must be true: the signal won't be use after the call
         --     to infere (because it goes out of scope).
         --   * Prev_val must be connected once (to create a loop).
         --   * Val must not be connected (for variables).
         return Val;
      end if;

      --  So there is a logical loop.
      Sel := Get_Mux2_Sel (Last_Mux);
      Extract_Clock (Ctxt, Get_Driver (Sel), Clk, Enable);
      if Clk = No_Net then
         --  No clock -> latch or combinational loop
         Res := Infere_Latch (Ctxt, Val, Prev_Val, Loc);
      else
         --  Clock -> FF
         First_Mux := Get_Net_Parent (Val);
         pragma Assert (Get_Id (First_Mux) = Id_Mux2);

         Res := Infere_FF (Ctxt, Val, Prev_Val, Off, Last_Mux,
                           Clk, Enable, Loc);
      end if;

      return Res;
   end Infere;

   --  INST is a mux2 of a condition chain.
   --  Return the input that is not 0.  Could be either a mux2 or a const.
   function Find_Condition_Chain_Next (Inst : Instance) return Instance
   is
      Mux_In0, Mux_In1 : Net;
      In0_Inst, In1_Inst : Instance;
   begin
      Mux_In0 := Get_Input_Net (Inst, 1);
      In0_Inst := Get_Net_Parent (Mux_In0);

      Mux_In1 := Get_Input_Net (Inst, 2);
      In1_Inst := Get_Net_Parent (Mux_In1);

      if Get_Id (In0_Inst) /= Id_Const_UB32 then
         --  The other input must be const 0.
         pragma Assert (Get_Id (In1_Inst) = Id_Const_UB32
                          and then Get_Param_Uns32 (In1_Inst, 0) = 0);
         return In0_Inst;
      else
         --  Either both are const, or the other input must be const 0.
         if Get_Id (In1_Inst) = Id_Const_UB32 then
            --  Both are const.  Return the const 1.
            if Get_Param_Uns32 (In1_Inst, 0) = 0 then
               pragma Assert (Get_Param_Uns32 (In0_Inst, 0) = 1);
               return In0_Inst;
            else
               pragma Assert (Get_Param_Uns32 (In1_Inst, 0) = 1);
               pragma Assert (Get_Param_Uns32 (In0_Inst, 0) = 0);
               return In1_Inst;
            end if;
         end if;

         pragma Assert (Get_Param_Uns32 (In0_Inst, 0) = 0);
         return In1_Inst;
      end if;
   end Find_Condition_Chain_Next;

   --  VAL is a chain of mux2 that define the conditions to enable assertions.
   function Infere_Assert (Ctxt : Context_Acc;
                           Val : Net;
                           En_Gate : Net;
                           Loc : Location_Type) return Net
   is
      Inst       : Instance;
      First_Inst : Instance;
      Last_Inst  : Instance;
      Clk, En    : Net;
      Areset     : Net;
      One        : Net;
   begin
      --  Extract clock (if any) from VAL.  Return VAL is no clock.
      First_Inst := Get_Net_Parent (Val);
      Inst := First_Inst;
      loop
         case Get_Id (Inst) is
            when Id_Mux2 =>
               null;
            when Id_Const_UB32
               | Id_Pmux =>
               return Val;
            when others =>
               raise Internal_Error;
         end case;
         Extract_Clock (Ctxt, Get_Input_Net (Inst, 0), Clk, En);
         exit when Clk /= No_Net;

         --  No clock.  Try the father.
         Inst := Find_Condition_Chain_Next (Inst);
      end loop;

      --  INST is the mux2 with clock CLK.

      --  Extract enable and asynchronous reset (if any).
      Last_Inst := Inst;
      Areset := No_Net;
      Inst := First_Inst;
      while Inst /= Last_Inst loop
         declare
            Cond : Net;
            Next_Inst : Instance;
         begin
            Cond := Get_Input_Net (Inst, 0);

            --  Find the next mux.
            Next_Inst := Find_Condition_Chain_Next (Inst);

            --  If the next mux is in1, negate COND.
            if Next_Inst = Get_Net_Parent (Get_Input_Net (Inst, 2)) then
               Cond := Build_Monadic (Ctxt, Id_Not, Cond);
               Set_Location (Cond, Loc);
            end if;

            --  'And' COND to Areset.
            Areset := Build2_And (Ctxt, Areset, Cond, Loc);

            Inst := Next_Inst;
         end;
      end loop;

      --  Same for LAST_INST, but check it is on in1.
      declare
         Next_Inst : Instance;
      begin
         Next_Inst := Find_Condition_Chain_Next (Last_Inst);
         if Next_Inst /= Get_Net_Parent (Get_Input_Net (Inst, 2)) then
            Error_Msg_Synth
              (+Last_Inst, "assertion checked on else branch of an edge");
            return Val;
         end if;

         En := Build2_And (Ctxt, En, Get_Output (Next_Inst, 0), Loc);
      end;

      One := Build_Const_UB32 (Ctxt, 1, 1);

      --  Build an idff/iadff for each condition of the assertions.
      --  The caller will connect the returned value (En) to the enable gate.
      declare
         En_Inp : Input;
         Assert_Inp : Input;
         N : Net;
         Dff : Net;
      begin
         En_Inp := Get_First_Sink (En_Gate);
         pragma Assert (En_Inp /= No_Input);
         while En_Inp /= No_Input loop
            --  The Enable gate is connected to an implication.
            Inst := Get_Input_Parent (En_Inp);
            pragma Assert (Get_Id (Inst) = Id_Not);
            N := Get_Output (Inst, 0);
            pragma Assert (Has_One_Connection (N));
            Inst := Get_Input_Parent (Get_First_Sink (N));
            pragma Assert (Get_Id (Inst) = Id_Or);

            N := Get_Output (Inst, 0);
            pragma Assert (Has_One_Connection (N));
            Inst := Get_Input_Parent (Get_First_Sink (N));

            pragma Assert (Get_Id (Inst) = Id_Assert);

            Assert_Inp := Get_Input (Inst, 0);
            Disconnect (Assert_Inp);

            if Areset = No_Net then
               Dff := Build_Idff (Ctxt, Clk, N, One);
            else
               Dff := Build_Iadff (Ctxt, Clk, N, Areset, One, One);
            end if;
            Set_Location (Dff, Loc);

            Connect (Assert_Inp, Dff);

            En_Inp := Get_Next_Sink (En_Inp);
         end loop;
      end;

      return En;
   end Infere_Assert;

end Netlists.Inference;