aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/elab-vhdl_expr.adb
blob: bfd4aa3aa0d1e8f7b8d48bf6ed934a4d2758dc53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
--  Expressions synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Types; use Types;
with Name_Table;
with Str_Table;

with Netlists;

with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Scanner;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Evaluation; use Vhdl.Evaluation;

with Elab.Memtype; use Elab.Memtype;
with Elab.Vhdl_Heap; use Elab.Vhdl_Heap;
with Elab.Vhdl_Types; use Elab.Vhdl_Types;
with Elab.Vhdl_Errors; use Elab.Vhdl_Errors;

with Synth.Vhdl_Expr; use Synth.Vhdl_Expr;
with Synth.Vhdl_Eval; use Synth.Vhdl_Eval;
with Synth.Errors; use Synth.Errors;

with Grt.Types;
with Grt.Vhdl_Types;
with Grt.Strings;
with Grt.To_Strings;
with Grt.Vstrings;

package body Elab.Vhdl_Expr is
   function Synth_Bounds_From_Length (Atype : Node; Len : Int32)
                                     return Bound_Type
   is
      Rng : constant Node := Get_Range_Constraint (Atype);
      Limit : Int32;
   begin
      Limit := Int32 (Eval_Pos (Get_Left_Limit (Rng)));
      case Get_Direction (Rng) is
         when Dir_To =>
            return (Dir => Dir_To,
                    Left => Limit,
                    Right => Limit + Len - 1,
                    Len => Uns32 (Len));
         when Dir_Downto =>
            return (Dir => Dir_Downto,
                    Left => Limit,
                    Right => Limit - Len + 1,
                    Len => Uns32 (Len));
      end case;
   end Synth_Bounds_From_Length;

   function Exec_Simple_Aggregate (Syn_Inst : Synth_Instance_Acc;
                                   Aggr : Node) return Valtyp
   is
      Els : constant Iir_Flist := Get_Simple_Aggregate_List (Aggr);
      Last : constant Natural := Flist_Last (Els);
      Aggr_Type : constant Node := Get_Type (Aggr);
      Res_Typ : Type_Acc;
      Val : Valtyp;
      Res : Valtyp;
   begin
      --  Allocate the result.
      Res_Typ := Synth_Subtype_Indication (Syn_Inst, Aggr_Type);
      pragma Assert (Get_Nbr_Dimensions (Aggr_Type) = 1);
      pragma Assert (Res_Typ.Abound.Len = Uns32 (Last + 1));

      Res := Create_Value_Memory (Res_Typ, Current_Pool);

      for I in Flist_First .. Last loop
         --  Elements are supposed to be static, so no need for enable.
         Val := Synth_Expression_With_Type
           (Syn_Inst, Get_Nth_Element (Els, I), Res_Typ.Arr_El);
         pragma Assert (Is_Static (Val.Val));
         Write_Value (Res.Val.Mem + Size_Type (I) * Res_Typ.Arr_El.Sz, Val);
      end loop;

      return Res;
   end Exec_Simple_Aggregate;

   function Exec_Subtype_Conversion (Vt : Valtyp;
                                     Dtype : Type_Acc;
                                     Bounds : Boolean;
                                     Loc : Node) return Valtyp is
   begin
      return Synth_Subtype_Conversion (null, Vt, Dtype, Bounds, Loc);
   end Exec_Subtype_Conversion;

   --  Return True iff ID = S, case insensitive.
   function Match_Id (Id : Name_Id; M : Memory_Ptr; Len : Natural)
                     return Boolean is
   begin
      if Name_Table.Get_Name_Length (Id) /= Len then
         return False;
      end if;
      declare
         Img : constant String (1 .. Len) := Name_Table.Image (Id);
         C : Character;
      begin
         for I in Img'Range loop
            C := Read_Char (M + Size_Type (I - 1));
            C := Grt.Strings.To_Lower (C);
            if C /= Img (I) then
               return False;
            end if;
         end loop;
         return True;
      end;
   end Match_Id;

   --  V is the string whose value should be extracted from.  ETYPE and DTYPE
   --  are the type of the value.
   function Value_Attribute (V : Valtyp; Etype : Node; Dtype : Type_Acc)
                            return Valtyp
   is
      Btype : constant Node := Get_Base_Type (Etype);
      M : constant Memory_Ptr := V.Val.Mem;
      L : constant Uns32 := V.Typ.Abound.Len;
      Len : Uns32;
      First, Last : Size_Type;
      Val : Int64;
   begin
      --  LRM93 14.1 Predefined attributes.
      --  Leading and trailing whitespace are ignored.
      First := 0;
      Last := Size_Type (L - 1);
      while First <= Last loop
         exit when not Vhdl.Scanner.Is_Whitespace (Read_Char (M + First));
         First := First + 1;
      end loop;
      while Last >= First loop
         exit when not Vhdl.Scanner.Is_Whitespace (Read_Char (M + Last));
         Last := Last - 1;
      end loop;
      Len := Uns32 (Last - First + 1);

      case Get_Kind (Btype) is
         when Iir_Kind_Enumeration_Type_Definition =>
            declare
               Id : Name_Id;
               En : Node;
            begin
               if Len = 3
                 and then Read_Char (M + First) = '''
                 and then Read_Char (M + First + 2) = '''
               then
                  Id := Name_Table.Get_Identifier (Read_Char (M + First + 1));
               else
                  declare
                     S : String (1 .. Natural (Len));
                     C : Character;
                  begin
                     for I in S'Range loop
                        C := Read_Char (M + First + Size_Type (I - 1));
                        C := Grt.Strings.To_Lower (C);
                        S (I) := C;
                     end loop;
                     Id := Name_Table.Get_Identifier_No_Create (S);
                  end;
               end if;
               En := Find_Name_In_Flist
                 (Get_Enumeration_Literal_List (Btype), Id);
               if En = Null_Node then
                  return No_Valtyp;
               end if;
               Val := Int64 (Get_Enum_Pos (En));
            end;
         when Iir_Kind_Integer_Type_Definition =>
            declare
               use Grt.To_Strings;
               use Grt.Types;
               use Grt.Vhdl_Types;
               Res : Value_I64_Result;
            begin
               Res := Value_I64 (To_Std_String_Basep (To_Address (M + First)),
                                 Ghdl_Index_Type (Len), 0);
               if Res.Status /= Value_Ok then
                  return No_Valtyp;
               end if;
               Val := Int64 (Res.Val);
            end;
         when Iir_Kind_Floating_Type_Definition =>
            declare
               use Grt.To_Strings;
               use Grt.Types;
               use Grt.Vhdl_Types;
               Res : Value_F64_Result;
            begin
               Res := Value_F64 (To_Std_String_Basep (To_Address (M + First)),
                                 Ghdl_Index_Type (Len), 0);
               if Res.Status /= Value_Ok then
                  return No_Valtyp;
               end if;
               return Create_Value_Float (Fp64 (Res.Val), Dtype);
            end;
         when Iir_Kind_Physical_Type_Definition =>
            declare
               use Grt.Types;
               use Grt.Vhdl_Types;
               use Grt.To_Strings;
               Is_Real : Boolean;
               Lit_Pos : Ghdl_Index_Type;
               Lit_End : Ghdl_Index_Type;
               Unit_Pos : Ghdl_Index_Type;
               Unit_F : Size_Type;
               Unit_Len : Natural;
               Mult : Int64;
               Unit : Iir;
               Unit_Id : Name_Id;
               Val_F : Grt.To_Strings.Value_F64_Result;
               Val_I : Grt.To_Strings.Value_I64_Result;
            begin
               Grt.To_Strings.Ghdl_Value_Physical_Split
                 (To_Std_String_Basep (To_Address (M)), Ghdl_Index_Type (L),
                  Is_Real, Lit_Pos, Lit_End, Unit_Pos);
               Unit_F := Size_Type (Unit_Pos);

               --  Find unit.
               Unit_Len := 0;
               for I in Unit_F .. Last loop
                  exit when Grt.Strings.Is_Whitespace (Read_Char (M + I));
                  Unit_Len := Unit_Len + 1;
               end loop;

               Unit := Get_Primary_Unit (Btype);
               while Unit /= Null_Iir loop
                  Unit_Id := Get_Identifier (Unit);
                  exit when Match_Id (Unit_Id, M + Unit_F, Unit_Len);
                  Unit := Get_Chain (Unit);
               end loop;

               if Unit = Null_Iir then
                  return No_Valtyp;
               end if;
               Mult := Get_Value (Get_Physical_Literal (Unit));

               if Is_Real then
                  Val_F := Value_F64 (To_Std_String_Basep (To_Address (M)),
                                      Lit_End, Ghdl_Index_Type (First));
                  if Val_F.Status /= Value_Ok then
                     return No_Valtyp;
                  end if;
                  Val := Int64 (Val_F.Val * Ghdl_F64 (Mult));
               else
                  Val_I := Value_I64 (To_Std_String_Basep (To_Address (M)),
                                      Lit_End, Ghdl_Index_Type (First));
                  if Val_I.Status /= Value_Ok then
                     return No_Valtyp;
                  end if;
                  Val := Int64 (Val_I.Val) * Mult;
               end if;
            end;

         when others =>
            raise Internal_Error;
      end case;
      return Create_Value_Discrete (Val, Dtype);
   end Value_Attribute;

   function Exec_Value_Attribute (Syn_Inst : Synth_Instance_Acc; Attr : Node)
                                 return Valtyp
   is
      Param : constant Node := Get_Parameter (Attr);
      Etype : constant Node := Get_Type (Attr);
      V : Valtyp;
      Dtype : Type_Acc;
      Res : Valtyp;
   begin
      --  The value is supposed to be static.
      V := Synth_Expression (Syn_Inst, Param);
      if V = No_Valtyp then
         return No_Valtyp;
      end if;

      Dtype := Get_Subtype_Object (Syn_Inst, Etype);
      if not Is_Static (V.Val) then
         Error_Msg_Elab (+Attr, "parameter of 'value must be static");
         return No_Valtyp;
      end if;

      Res := Value_Attribute (V, Etype, Dtype);
      if Res = No_Valtyp then
         Error_Msg_Synth (Syn_Inst, Attr, "incorrect 'value string");
      end if;
      return Res;
   end Exec_Value_Attribute;

   function Synth_Image_Attribute_Str (Val : Valtyp; Expr_Type : Iir)
                                      return String
   is
      use Grt.Types;
   begin
      case Get_Kind (Expr_Type) is
         when Iir_Kind_Floating_Type_Definition
           | Iir_Kind_Floating_Subtype_Definition =>
            declare
               Str : String (1 .. 24);
               Last : Natural;
            begin
               Grt.To_Strings.To_String
                 (Str, Last, Ghdl_F64 (Read_Fp64 (Val)));
               return Str (Str'First .. Last);
            end;
         when Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Integer_Subtype_Definition =>
            declare
               Str : String (1 .. 21);
               First : Natural;
            begin
               Grt.To_Strings.To_String
                 (Str, First, Ghdl_I64 (Read_Discrete (Val)));
               return Str (First .. Str'Last);
            end;
         when Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Enumeration_Subtype_Definition =>
            declare
               Lits : constant Iir_Flist :=
                 Get_Enumeration_Literal_List (Get_Base_Type (Expr_Type));
            begin
               return Name_Table.Image
                 (Get_Identifier
                    (Get_Nth_Element (Lits, Natural (Read_Discrete (Val)))));
            end;
         when Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Physical_Subtype_Definition =>
            declare
               Str : String (1 .. 21);
               First : Natural;
               Id : constant Name_Id :=
                 Get_Identifier (Get_Primary_Unit (Get_Base_Type (Expr_Type)));
            begin
               Grt.To_Strings.To_String
                 (Str, First, Ghdl_I64 (Read_Discrete (Val)));
               return Str (First .. Str'Last) & ' ' & Name_Table.Image (Id);
            end;
         when others =>
            Error_Kind ("synth_image_attribute_str", Expr_Type);
      end case;
   end Synth_Image_Attribute_Str;

   function Exec_Image_Attribute (Syn_Inst : Synth_Instance_Acc; Attr : Node)
                                 return Valtyp
   is
      Param : constant Node := Get_Parameter (Attr);
      Etype : constant Node := Get_Type (Attr);
      V : Valtyp;
      Dtype : Type_Acc;
      Res : Memtyp;
   begin
      --  The parameter is expected to be static.
      V := Synth_Expression (Syn_Inst, Param);
      if V = No_Valtyp then
         return No_Valtyp;
      end if;
      Dtype := Get_Subtype_Object (Syn_Inst, Etype);
      if not Is_Static (V.Val) then
         Error_Msg_Elab (+Attr, "parameter of 'image must be static");
         return No_Valtyp;
      end if;

      Strip_Const (V);
      Res := String_To_Memtyp
        (Synth_Image_Attribute_Str (V, Get_Type (Param)), Dtype);
      return Create_Value_Memtyp (Res);
   end Exec_Image_Attribute;

   function Exec_Instance_Name_Attribute
     (Syn_Inst : Synth_Instance_Acc; Attr : Node) return Valtyp
   is
      Atype : constant Node := Get_Type (Attr);
      Atyp  : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Atype);
      Name  : constant Path_Instance_Name_Type :=
        Get_Path_Instance_Name_Suffix (Attr);
      Res : Memtyp;
   begin
      --  Return a truncated name, as the prefix is not completly known.
      Res := String_To_Memtyp (Name.Suffix, Atyp);
      return Create_Value_Memtyp (Res);
   end Exec_Instance_Name_Attribute;

   procedure Check_Matching_Bounds (L, R : Type_Acc; Loc : Node) is
   begin
      if not Are_Types_Equal (L, R) then
         Error_Msg_Elab (+Loc, "non matching bounds");
      end if;
   end Check_Matching_Bounds;

   --  Return the bounds of a one dimensional array/vector type and the
   --  width of the element.
   procedure Get_Onedimensional_Array_Bounds
     (Typ : Type_Acc; Bnd : out Bound_Type; El_Typ : out Type_Acc) is
   begin
      case Typ.Kind is
         when Type_Array
           | Type_Vector =>
            pragma Assert (Typ.Alast);
            El_Typ := Typ.Arr_El;
            Bnd := Typ.Abound;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Onedimensional_Array_Bounds;

   function Create_Onedimensional_Array_Subtype
     (Btyp : Type_Acc; Bnd : Bound_Type; El_Typ : Type_Acc) return Type_Acc
   is
      Res : Type_Acc;
   begin
      case Btyp.Kind is
         when Type_Vector =>
            pragma Assert (El_Typ.Kind in Type_Nets);
            Res := Create_Vector_Type (Bnd, False, Btyp.Arr_El);
         when Type_Unbounded_Vector =>
            pragma Assert (El_Typ.Kind in Type_Nets);
            Res := Create_Vector_Type (Bnd, False, Btyp.Uarr_El);
         when Type_Array =>
            pragma Assert (Btyp.Alast);
            pragma Assert (Is_Bounded_Type (Btyp.Arr_El));
            Res := Create_Array_Type (Bnd, False, True, Btyp.Arr_El);
         when Type_Unbounded_Array =>
            pragma Assert (Btyp.Ulast);
            pragma Assert (Is_Bounded_Type (El_Typ));
            Res := Create_Array_Type (Bnd, False, True, El_Typ);
         when others =>
            raise Internal_Error;
      end case;
      return Res;
   end Create_Onedimensional_Array_Subtype;

   function Exec_Name_Subtype (Syn_Inst : Synth_Instance_Acc; Name : Node)
                              return Type_Acc is
   begin
      case Get_Kind (Name) is
         when Iir_Kind_Simple_Name
           | Iir_Kind_Selected_Name =>
            return Exec_Name_Subtype (Syn_Inst, Get_Named_Entity (Name));
         when Iir_Kind_Parenthesis_Expression =>
            return Exec_Name_Subtype (Syn_Inst, Get_Expression (Name));
         when Iir_Kinds_Object_Declaration =>
            return Get_Value (Syn_Inst, Name).Typ;
         when Iir_Kind_Selected_Element =>
            declare
               Idx : constant Iir_Index32 :=
                 Get_Element_Position (Get_Named_Entity (Name));
               Pfx : constant Node := Get_Prefix (Name);
               Res : Type_Acc;
            begin
               Res := Exec_Name_Subtype (Syn_Inst, Pfx);
               Res := Res.Rec.E (Idx + 1).Typ;
               return Res;
            end;
         when Iir_Kind_Indexed_Name =>
            declare
               Pfx : constant Node := Get_Prefix (Name);
               Res : Type_Acc;
            begin
               Res := Exec_Name_Subtype (Syn_Inst, Pfx);
               return Res.Arr_El;
            end;
         when Iir_Kind_Slice_Name =>
            declare
               use Netlists;
               Pfx_Typ : Type_Acc;
               Pfx_Bnd : Bound_Type;
               El_Typ : Type_Acc;
               Res_Bnd : Bound_Type;
               Sl_Off : Value_Offsets;
               Inp : Net;
               Err : Boolean;
            begin
               Pfx_Typ := Exec_Name_Subtype (Syn_Inst, Get_Prefix (Name));
               Get_Onedimensional_Array_Bounds (Pfx_Typ, Pfx_Bnd, El_Typ);
               Synth_Slice_Suffix (Syn_Inst, Name, Pfx_Bnd, Pfx_Typ.Wkind,
                                   El_Typ, Res_Bnd, Inp, Sl_Off, Err);
               if Err then
                  return null;
               end if;
               pragma Assert (Inp = No_Net);
               return Create_Onedimensional_Array_Subtype
                 (Pfx_Typ, Res_Bnd, El_Typ);
            end;
         when Iir_Kind_Implicit_Dereference
           | Iir_Kind_Dereference =>
            declare
               Val : Valtyp;
               Obj : Memtyp;
            begin
               --  Maybe do not dereference it if its type is known ?
               Val := Synth_Expression (Syn_Inst, Get_Prefix (Name));
               Obj := Elab.Vhdl_Heap.Synth_Dereference (Read_Access (Val));
               return Obj.Typ;
            end;
         when Iir_Kind_Function_Call =>
            declare
               Ret_Typ : Type_Acc;
               Val : Valtyp;
            begin
               Ret_Typ := Get_Subtype_Object (Syn_Inst, Get_Type (Name));
               if Is_Bounded_Type (Ret_Typ) then
                  return Ret_Typ;
               end if;

               --  Humm, is it an error ?
               Val := Synth.Vhdl_Expr.Synth_Expression (Syn_Inst, Name);
               return Val.Typ;
            end;

         when Iir_Kind_Enumeration_Literal
            | Iir_Kind_Unit_Declaration =>
            return Get_Subtype_Object (Syn_Inst, Get_Type (Name));

         when Iir_Kind_String_Literal8
           | Iir_Kind_Aggregate =>
            --  TODO: the value should be computed (once) and its type
            --  returned.
            return Synth_Subtype_Indication (Syn_Inst, Get_Type (Name));

         when Iir_Kind_Image_Attribute =>
            declare
               Val : Valtyp;
            begin
               Val := Synth.Vhdl_Expr.Synth_Expression (Syn_Inst, Name);
               return Val.Typ;
            end;

         when Iir_Kind_Element_Attribute =>
            declare
               Pfx : Type_Acc;
            begin
               Pfx := Exec_Name_Subtype (Syn_Inst, Get_Prefix (Name));
               return Pfx.Arr_El;
            end;

         when others =>
            Error_Kind ("exec_name_subtype", Name);
      end case;
   end Exec_Name_Subtype;

   function Exec_String_Literal (Syn_Inst : Synth_Instance_Acc;
                                 Str : Node;
                                 Str_Typ : Type_Acc) return Valtyp
   is
      pragma Assert (Get_Kind (Str) = Iir_Kind_String_Literal8);
      Id : constant String8_Id := Get_String8_Id (Str);
      Len : constant Int32 := Get_String_Length (Str);

      Str_Type : constant Node := Get_Type (Str);
      El_Type : Type_Acc;
      Bounds : Bound_Type;
      Res_Type : Type_Acc;
      Res : Valtyp;
      Pos : Nat8;
   begin
      case Str_Typ.Kind is
         when Type_Vector
           | Type_Array =>
            Bounds := Str_Typ.Abound;
            if Bounds.Len /= Uns32 (Len) then
               Error_Msg_Synth
                 (Syn_Inst, Str, "string length doesn't match constraints");
               return No_Valtyp;
            end if;
         when Type_Unbounded_Vector
            | Type_Unbounded_Array =>
            Bounds := Synth_Bounds_From_Length
              (Get_Index_Type (Str_Type, 0), Len);
         when others =>
            raise Internal_Error;
      end case;

      El_Type := Get_Array_Element (Str_Typ);
      if El_Type.Kind in Type_Nets then
         Res_Type := Create_Vector_Type (Bounds, True, El_Type);
      else
         Res_Type := Create_Array_Type (Bounds, True, True, El_Type);
      end if;
      Res := Create_Value_Memory (Res_Type, Current_Pool);

      --  Only U8 are handled.
      pragma Assert (El_Type.Sz = 1);

      --  From left to right.
      for I in 1 .. Bounds.Len loop
         -- FIXME: use literal from type ??
         Pos := Str_Table.Element_String8 (Id, Pos32 (I));
         Write_U8 (Res.Val.Mem + Size_Type (I - 1), Nat8'Pos (Pos));
      end loop;

      return Res;
   end Exec_String_Literal;

   function Exec_Path_Instance_Name_Attribute
     (Inst : Synth_Instance_Acc; Attr : Iir) return Memtyp
   is
      use Grt.Vstrings;
      use Name_Table;

      Is_Instance : constant Boolean :=
        Get_Kind (Attr) = Iir_Kind_Instance_Name_Attribute;

      Atype : constant Node := Get_Type (Attr);
      Str_Typ  : constant Type_Acc := Get_Subtype_Object (Inst, Atype);
      Name : constant Path_Instance_Name_Type :=
        Get_Path_Instance_Name_Suffix (Attr);
      Instance, Parent : Synth_Instance_Acc;
      Rstr : Rstring;
      Label, Stmt : Node;
   begin
      if Name.Path_Instance = Null_Iir then
         return String_To_Memtyp (Name.Suffix, Str_Typ);
      end if;

      Instance := Get_Instance_By_Scope
        (Inst, Get_Info_Scope (Name.Path_Instance));

      loop
         Parent := Get_Instance_Parent (Instance);
         if Parent = Root_Instance then
            Parent := null;
         end if;
         Label := Get_Source_Scope (Instance);
         Stmt := Get_Statement_Scope (Instance);

         case Get_Kind (Label) is
            when Iir_Kind_Entity_Declaration =>
               if Parent = null then
                  Prepend (Rstr, Image (Get_Identifier (Label)));
                  exit;
               end if;
            when Iir_Kind_Architecture_Body =>
               if Is_Instance then
                  Prepend (Rstr, ')');
                  Prepend (Rstr, Image (Get_Identifier (Label)));
                  Prepend (Rstr, '(');
               end if;

               if Is_Instance or else Parent = null then
                  Prepend (Rstr, Image (Get_Identifier (Get_Entity (Label))));
               end if;
               if Parent = null then
                  Prepend (Rstr, ':');
                  exit;
               end if;
            when Iir_Kind_Block_Statement =>
               Prepend (Rstr, Image (Get_Label (Label)));
               Prepend (Rstr, ':');
            when Iir_Kind_Generate_Statement_Body =>
               declare
                  Gen : constant Node := Get_Parent (Label);
               begin
                  case Iir_Kinds_Generate_Statement (Get_Kind (Gen)) is
                     when Iir_Kind_For_Generate_Statement =>
                        declare
                           It : constant Node :=
                             Get_Parameter_Specification (Gen);
                           Val : Valtyp;
                        begin
                           Val := Get_Value (Instance, It);
                           Prepend (Rstr, ')');
                           Prepend
                             (Rstr,
                              Synth_Image_Attribute_Str (Val, Get_Type (It)));
                           Prepend (Rstr, '(');
                        end;

                        --  Skip the for generate instance.
                        Parent := Get_Instance_Parent (Parent);

                     when Iir_Kind_If_Generate_Statement
                       | Iir_Kind_Case_Generate_Statement =>
                        null;
                  end case;

                  Prepend (Rstr, Image (Get_Label (Gen)));
                  Prepend (Rstr, ':');
               end;

            when Iir_Kind_Component_Declaration =>
               if Is_Instance then
                  Prepend (Rstr, '@');
               end if;
               Prepend (Rstr, Image (Get_Label (Stmt)));
               Prepend (Rstr, ':');
            when others =>
               Error_Kind ("Exec_Path_Instance_Name_Attribute",
                           Label);
         end case;
         Instance := Parent;
      end loop;
      declare
         Str1 : String (1 .. Length (Rstr));
         Len1 : Natural;
      begin
         Copy (Rstr, Str1, Len1);
         Free (Rstr);
         return String_To_Memtyp (Str1 & ':' & Name.Suffix, Str_Typ);
      end;
   end Exec_Path_Instance_Name_Attribute;
end Elab.Vhdl_Expr;